全等三角形导学案
新人教板第12章全等三角形用导学案(整理完善)

第十二章 全等三角形学习内容: 12.1全等三角形学习目标: 1.能说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。
2.能在全等三角形中正确地找出对应顶点、对应边、对应角。
3.能说出全等三角形的对应边、对应角相等的性质。
学习重点:探究全等三角形的性质学习难点: 掌握两个全等三角形的对应边、对应角 学习方法:小组讨论,合作探究一 课前预习:阅读课本P31-32,解决下列问题 (一)、全等形、全等三角形的概念阅读课本P31内容,回答课本思考问题,并完成下面填空: 1.能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2.全等三角形.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
(二)、全等三角形的对应元素及表示阅读课本P31第一个思考及下面两段内容,完成下面填空:1. 平移 翻折 旋转甲DCABFE 乙DCAB丙DCABE启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略. 2.全等三角形的对应元素(说一说)(1)对应顶点(三个)——重合的(2)对应边(三条) ——重合的 (3)对应角(三个) ——重合的第(4)题图EBAE 第(1)题图E BFCB第(2)题图D C B 3.寻找对应元素的规律(1)有公共边的,公共边是 ;(2)有公共角的,公共角是 ; (3)有对顶角的,对顶角是 ;(4)在两个全等三角形中,最长边对应最长边,最短边对应最短边;最大角对应最大角,最小角对应最小角.简单记为:(1)大边对应大边,大角对应 ;(2) 公共边是对应边,公共角是 ,对顶角也是 ;4.“全等”用“ ”表示,读作“ ”如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF 如图乙记作: 读作: 如图丙记作: 读作: 注意:两个三角形全等时,把表示对应顶点的字母写在对应的位置上.(三)、全等三角形的性质阅读课本P32第二个思考及下面内容,完成下面填空:课堂探究(小组讨论 合作交流)活动一:观察下列各组的两个全等三角形,并回答问题:(1) 如图(1)△ABC ≌△DEF ,BC 的对应边是 ,即可记为BC= 。
全等三角形的判定(ASA、AAS)导学案4

《全等三角形(ASA、AAS)》导学案一、学习目标1.掌握三角形全等的“角边角”,“角角边”条件。
2.经历探索三角形全等条件的过程,体会利用操作,归纳获得数学结论的过程。
3.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
二、学习重点:掌握三角形全等的“角边角”,“角角边”条件。
三、学习难点:正确运用“角边角”,“角角边”条件判定三角形全等,解决实际问题。
四、自主学习1、复习思考(1).到目前为止,可以作为判别两三角形全等的方法有种,是。
今天我们接着探究已知两角一边是否可以判断两三角形全等?2、课内探究现在,我们探究:如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形能全等吗?这时同样应有两种不同的情况:如图所示,一种情况是两个角及这两角的夹边;另一种情况是两个角及其中一角的对边.探究一:两角和它们的夹边对应相等的两个三角形是否全等?1、动手试一试。
已知两个角和一条线段,以这两个角为内角,以这条线段为这两个角的夹边,画一个三角形.按下面步骤画出图形:(1)、画一线段AB,使它等于4cm;(2)、画∠MAB=60°、∠NBA=40°,MA与NB交于点C.△ABC即为所求.把你画的三角形与其他同学画的三角形进行比较,观察它们是不是全等?你能得出什么规律?由作图可知:2、归纳;由上面的画图和实验可以得出全等三角形判定(三):两角和它们的夹边对应相等的两个三角形(可以简写成“”或“”)3、用数学语言表述全等三角形判定(三:ASA)∵∴△_____ ≌△______探究二:两角和其中一角的对边对应相等的两三角形是否全等?(利用ASA定理推导得出AAS定理)1、如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?(能否用上面的ASA来证明右图的两个三角形全等?)分析: 因为三角形的内角和等于180°,因此有两个角分别对应相等,那么第三个角必对应相等,于是由“角边角”,便可证得这两个三角形全等.证明:2、归纳;由上面的证明可以得出全等三角形判定(四):两个角和其中一角的对边对应相等的两个三角形(可以简写成“”或“”)3、如图,用数学语言表述全等三角形判定(四:AAS)∵∴△______ ≌△_______五、课堂检测1. 如图所示,点C、F在BE上,∠1=∠2,BC=EF,①根据 ASA ,请补充条件:_______,可判定△ABC≌△DEF;②根据AAS ,请补充条件:_______,可判定△ABC≌△DEFC'B'A'CBAC'B'A'CBADCAB FE21(9)F EDCBA⎧⎨⎨⎩⎧⎩2.如图,AB ⊥BC ,AD ⊥DC ,∠BAC =∠CAD .求证:AB=AD .六、小结提升:这节课我们学习了哪些内容?七. 课后作业1:如图,OP 是∠MON 的角平分线,C 是OP 上一点,CA ⊥OM ,CB ⊥ON ,垂足分别为A 、B ,△AOC ≌△BOC 吗?为什么?3、如下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .求证:△ADC ≌ △AEBMNPBAO C D CABE。
8.2 《全等三角形》导学案

8.2 《全等三角形》导学案辛兴初中八年级数学组主备人:臧运建一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2.掌握全等三角形的对应边相等,对应角相等的性质,并运用这一性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养学生的符号意识、空间观念和几何直观。
二、教材分析:1、本节在学生了解全等形的基础上,研究在图形与几何领域中,最常见,最基本也是最简单的一类全等图形,即全等三角形。
本节的主要内容是全等三角形的概念及性质、全等三角形的对应元素、全等三角形的符号表示。
2、本书中所说的对应顶点、对应边、对应角的概念是在三角形全等的前提下提出的,其内涵是两个三角形完全重合时,相互重合的三角形的元素,它们是成对出现的。
3、全等三角形的对应边相等、对应角相等,这是今后研究边相等、角相等的重要依据,所以教科书先让学生观察图8—4,并提出两个问题,让学生思考,然后设计了两个小伙伴的对话。
在此基础上,教科书由具体到抽象,由特殊到一般,归纳出“全等三角形的对应边相等、对应角相等”的性质。
4、例1、例2都是在具体问题中,识别全等三角形的对应边和对应角。
这两个例子的图形都是涉及到公共边,习题8.2中3(1)题涉及到公共角。
发现公共边(角)是学生学习的一个难点。
三、教学过程:(一)自主预习课本25——27页内容,独立完成课后练习1,2后,与小组同学交流(课前完成)。
(二)通过预习课本25——27页内容,回答下列问题,并在小组内交流:1、把一张纸对折以后随意剪出一个图案,然后展开,比较得到的两个图形在形状、大小方面的关系是。
按同样的办法剪出一个三角形图案,然后展开,比较得到的两个三角形在形状、大小方面的关系是。
2、归纳:①能够完全重合的两个图形叫全等形。
同理:②能够完全重合的两个三角形叫。
③能够的两个四边形叫。
④能够的两个叫全等五边形,等等。
3、全等三角形的表示:三角形全等用符号“≌”表示,如△ABC与△DEF全等,记作:△ABC≌△DEF,读作:三角形ABC全等于三角形DEF,“≌”读作“全等于”.4、把两个全等的三角形重合到一起,相互重合的顶点叫对应顶点,相互重合的边叫,相互重合的角叫①已知,△ABC≌△DEF,则顶点A与顶点D是对应顶点,顶点B与顶点是对应顶点,顶点F与顶点是对应顶点.②∠A与是对应角, ∠E与是对应角, ∠F与是对应角.③AB与是对应边,DF与是对应边,FE与是对应边注意:相互重合的顶点的字母一定要写在相互对应的位置上。
11.3三角形全等的判定导学案(SAS)

11.全等三角形导案(SAS)一、导学目标1.知道三角形全等“边角边”的内容.2.会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.二、导学重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三SAS三、导学准备:三角尺、圆规四、导学流程:1、复习全等三角形的判定12、探索三角形全等的条件(SAS)3、用“SAS”判定的运用4、题型训练11.全等三角形学案(SAS)一、学习目标1.知道三角形全等“边角边”的内容.2.会运用“S AS ”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 二、学习重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三角SAS三、知识储备全等三角形的性质和全等三角形的判定1----SSS四、教学流程 (一)知识回顾1. 如图,四边形ABCD 中,AD =BC ,A B =DC . 求证:△ABC ≌△CDA .2.如图,A B D C =,A CD B=,△ABC ≌△DCB 全等吗?为什么(二)、探索新知 活动一 探索三角形全等的条件DCBA1.如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?(1)在上面的例子中我们已知哪些条件(从三角形的边、角关系作答),得到什么结论?(2)由(1)中的回答,你能得到什么猜想?2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?(三)、知识点小结总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动二全等三角形判定的简单应用阅读课本第9页例2后,完成下列问题:1.如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2.思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?把你的发现和同伴交流。
《全等三角形》 导学案

《全等三角形》导学案一、学习目标1、理解全等三角形的概念,能识别全等三角形中的对应顶点、对应边、对应角。
2、掌握全等三角形的性质,能用符号正确地表示两个三角形全等。
3、能熟练运用全等三角形的性质解决简单的几何问题。
二、学习重点1、全等三角形的概念和性质。
2、寻找全等三角形的对应边和对应角。
三、学习难点1、全等三角形对应元素的确定。
2、运用全等三角形的性质进行推理和计算。
四、学习过程(一)知识回顾1、什么是三角形?三角形由哪些元素组成?2、三角形的内角和是多少度?三角形的外角和是多少度?(二)新课导入观察下列两组图形:第一组:(展示两个形状相同、大小相等的三角形)第二组:(展示两个形状相同,但大小不同的三角形)思考:这两组图形有什么不同?(三)全等三角形的概念1、定义:能够完全重合的两个三角形叫做全等三角形。
2、举例说明生活中全等三角形的例子,如同一副三角板中的两个直角三角形。
(四)全等三角形的表示方法1、表示:全等用符号“≌”表示,读作“全等于”。
例如:△ABC≌△DEF2、注意事项:(1)对应顶点的字母写在对应的位置上。
(2)全等符号“≌”的书写要规范。
(五)全等三角形的性质1、全等三角形的对应边相等。
例如:若△ABC≌△DEF,则 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等。
例如:若△ABC≌△DEF,则∠A =∠D,∠B =∠E,∠C =∠F。
(六)寻找全等三角形的对应边和对应角1、方法:(1)公共边是对应边。
(2)公共角是对应角。
(3)对顶角是对应角。
(4)长边对长边,短边对短边;大角对大角,小角对小角。
2、例题分析:已知:△ABC≌△DEF,AB = 5,∠A = 60°,∠B = 70°,求 DE 的长度和∠F 的度数。
解:因为△ABC≌△DEF,所以 DE = AB = 5。
∠F = 180°∠D ∠E = 180° 60° 70°= 50°(七)全等三角形的应用1、证明线段相等例如:已知△ABC≌△DEF,且 AB = DE,若要证明 AC = DF,可以利用全等三角形的对应边相等这一性质。
(完整版)全等三角形导学案

教学设计《全等三角形》学习目标:知道什么是全等形、全等三角形及变换前后两个图形的全等关系;知道并能找出两个全等三角形的对应极点、对应边、对应角;会用符号表示两个三角形全等;掌握全等三角形的性质并会进行简单的应用.课前预习单1.以下列图片中有形状、大小相同的图形吗?你能再举出一些例子吗?2.把一块三角板按在纸板上,画以下列图形,照图形裁下来的纸板和三角板的形状、大小是完满相同吗?把三角板和裁得的纸板放在一起能够完满重合吗?3.什么是全等形?什么是全等三角形?什么是全等三角形的对应极点?对应边?对应角?DAB C E F你能找出上图中两个全等三角形的对应极点、对应边、对应角吗?4.你能用符号表示两个三角形全等吗?记全等时要注意什么?用符号表示上图中的全等关系:课堂活动单活动一:小组白板显现预习单并交流活动二:合作研究在图- 1 中,把△ ABC 沿直线 BC 平移,获取△ DEF 。
在图- 2 中,把△ ABC 沿直线 BC 翻折 180°,获取△ DBC。
在图- 3 中,把△ ABC 旋转 180°,获取△ AED 。
各图中的两个三角形全等吗?小结:经过变换后两个三角形的对应极点、对应边、对应角分别是什么?并在小组内说说。
即时反响:(小组内先试着说说,再派代表报告)1.如右图所示,△ OCA≌△ OBD,C B对应极点有:点 ___和点 ___,点 ___和点 ___,点 ___和点 __ _ ;对应角有: ____和____, _____和 _____, _____和 _____;O对应边有: ____和____, _____和 __ __ , _____和 _____。
A D2.以以下列图,已知△ ABE ≌△ ACD ,指出对应极点、对应边和对应角.A ACEB D E CB D3.如上图△ ABC ≌△ ADE ,试找出对应边、对应角.C 4.如右图△ ABC ≌ △ DEC ,试找出对应边、对应角。
12.1全等三角形导学案

DCABODC ABE C 1B 1CABA1第一课时 12.1 全等三角形【学习目标】1、知道什么是全等形,什么是全等三角形,能够找出全等三角形的对应元素。
2、会正确表示两个全等三角形,掌握全等三角形的性质。
【学习重点】全等三角形的性质。
【学习难点】正确寻找全等三角形的对应元素 一、学前准备1、三角形的定义:____________________________________2、三角形按边分类: 三角形按角分类:二、探索思考(一)阅读书P31-32,完成下列问题(1) 的两个图形叫做全等形; 叫做全等三角形。
请举出一个生活中全等形的实例 平移、翻折、旋转前后的两个图形 改变了, 、 没变,即它们 (2)全等三角形的对应元素:两个全等的三角形重合到一起,重合的顶点叫 ;重合的边叫 ;重合的角叫如图:两个三角形全等,点C 和点B ,点A和点D是对应顶点, 则△ACO 与△BOD 全等记作 对应边: 和 、 和 、 和 对应角: 和 、 和 、 和 (3)全等三角形的性质:全等三角形的 , 全等三角形的 符号语言:∵△ABC ≌△A 1B 1C 1,∴练习11、将△ABC 沿BC 翻折180°得到△DBC ,则△ABC ≌ ,对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和2、将△ABC 旋转180°得△AED ,△ABC ≌ .对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和3、如图,已知△ABE ≌△ACD ,则对应顶点: 和 、 和 、 和 ∠ADE= ,∠B= ,∠BAE= ;AB= ,BE= ,AD=4、已知如图,△ABC ≌△ADE ,,则对应顶点: 和 、 和 、 和 ∠A= ,∠B= ,∠ACB= ;AB= ,BC= ,AC=三、典例分析1、 将△ABC 沿直线BC 平移,得到△DEF (如图)(1) 线段AB 、DE 是对应线段,有什么关系?线段AC 和DF 呢? (2)线段BE 和CF 有什么关系?为什么?(3)若∠A=50º,∠ABC=30º,求∠D 、∠DEF 、∠DFE 的度数四、当堂反馈1、如图△ BCE ≌ △ CBF ,若BE=3cm ,BF=5cm ,∠CBE=80°, ∠BEC=60, 则∠FBC= ,∠FCB= ,BE= , CE= .2、△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB =8cm ,BD =•6cm ,AD =5cm ,则BC =________cm .3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C4、如图:△ABC ≌△DEF, △ ABC 的周是32cm,DE=9cm,EF=12cm ,求AC.5、如图,△ABC ≌△DEC ,CA 和CD ,CB 和CE 是对应边,∠ACD 和∠BCE 相等吗?为什么?6、如图,△AEC ≌△ADB ,点E 和点D 是对应顶点,若∠A=50°,∠ABD=35°,且∠1=∠2,求∠1的度数。
全等三角形教案(5篇)

全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡西市第十九中学学案
一、填空题
1._____ 的两个图形叫做全等形.
2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____ 上.
3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.
4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.
图1-1 图1-2 图1-3
5.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC =_____
(2)如果AC=DB,请指出其他的对应边_____;
(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.
6.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.
7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形
二、选择题
8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD
9.下列命题中,真命题的个数是()
①全等三角形的周长相等②全等三角形的对应角相等
③全等三角形的面积相等④面积相等的两个三角形全等
A.4 B.3 C.2 D.1
10.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()
A.6 B.5 C.4 D.无法确定
图1-4 图1-5 图1-6
11.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC
12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()
A.40°B.35°C.30°D.25°
三、解答题
13.已知:如图所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.
综合、运用、诊断
一、填空题
14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.
图1-8
15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.
图1-9
拓展、探究、思考
16.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.
图1-10。