CPLD与FPGA的区别与优缺点
可编程逻辑器件CPLD和FPGA的特点和应用

可编程逻辑器件CPLD和FPGA的特点和应用一、可编程逻辑器件(CPLD)的特点和应用:CPLD是一种具有很高逻辑容量的可编程逻辑器件,它通常由可编程逻辑单元(PLE)和可编程互连网络(PIN)组成。
CPLD的主要特点如下:1.逻辑容量大:CPLD的逻辑容量通常可以达到数千个逻辑门等效。
这使得CPLD非常适合那些需要大规模逻辑功能的应用,如控制器、通信接口和高级数学运算等。
2.可编程性强:CPLD可以通过编程操作来实现不同的逻辑功能。
它使用类似于电荷耦合器(CPL)的可编程逻辑单元来实现逻辑功能,其中每个CPL可以实现与或非门、与非门或非与门等逻辑运算。
3.器件内部拓扑复杂:CPLD具有丰富的内部互连网络,可以将各个逻辑元件之间的信号按照需要进行连接。
这使得CPLD可以实现复杂的信号处理和数据流处理功能。
4.快速重编程:CPLD可以在运行时进行在线编程,从而允许系统进行动态配置和故障恢复。
这一特点使得CPLD广泛应用于技术验证、原型设计和快速迭代开发等场景。
CPLD的应用主要集中在以下几个领域:1.控制器:CPLD可以用于实现各种控制器,如数字信号处理器(DSP)的外围控制器、数据采集/输出控制器等。
其高逻辑容量和可编程性强的特点使得CPLD非常适合这些应用场景。
2. 通信接口:CPLD可以实现多种通信协议和接口,如串行通信接口(SPI/I2C/UART)、嵌入式总线接口(PCI/USB/Ethernet)等。
这些接口在通信系统中起到了关键的作用。
3.高级数学运算:CPLD可以实现各种高级数学运算,如矩阵运算、滤波运算、FFT运算等。
这些运算对于数字信号处理(DSP)和图像处理等应用非常重要。
4.逻辑分析仪:CPLD可以实现逻辑分析仪的功能,用于捕获和分析数字信号的时序和逻辑关系。
逻辑分析仪在系统调试和故障分析中非常有用。
二、现场可编程门阵列(FPGA)的特点和应用:FPGA是一种具有大规模逻辑容量和可编程性的可编程逻辑器件。
FPGA与CPLD的结构原理

FPGA与CPLD的结构原理FPGA结构原理:FPGA是一种可重构器件,它由大量的可编程逻辑单元(Logic Element,LE)组成,每个LE都包含查找表(Look-Up Table,LUT)、寄存器以及可编程连接资源。
FPGA的结构原理可以分为三个关键组件:查找表、可编程连接资源和I/O资源。
1.查找表:FPGA中的查找表是其最基本的单元,通常由4-6个输入信号和1个或多个输出信号组成。
查找表中包含一个存储器单元和一组可编程拨码开关。
存储器单元中存储了一组真值表,根据输入信号的组合来选择对应的输出信号。
这种基于查找表的逻辑实现既灵活又高效。
2.可编程连接资源:FPGA中的连接资源是一个非常重要的部分,它可以实现片上资源之间的任意连接。
通常,FPGA中的连接资源采用可编程互连点(Programmable Interconnect Point,PIP)的方式实现。
每个PIP可以通过可编程电路来控制是否对其中一对逻辑单元进行连接。
3.I/O资源:FPGA的I/O资源用于与外部世界进行交互。
每个I/O资源通常包含输入/输出引脚、输入/输出缓冲器以及可编程的电平转换电路。
通过对I/O资源的编程,可以根据实际需求来设置引脚的输入/输出电平以及输出驱动能力。
CPLD结构原理:CPLD是一种较小规模的可编程逻辑器件,它通常由若干个宏单元(Macrocell)组成,每个宏单元都包含与FPGA相似的逻辑资源和可编程连接资源。
CPLD的结构原理可以分为三个关键组件:宏单元、可编程连接资源和I/O资源。
1.宏单元:宏单元是CPLD的核心单元,通常由多个查找表、寄存器和触发器组成。
宏单元中的查找表用于实现逻辑功能,寄存器用于存储中间结果或控制信号,触发器用于实现时序逻辑。
一个CPLD可以包含多个宏单元,各个宏单元可以通过可编程连接资源相互连接。
2.可编程连接资源:CPLD中的可编程连接资源通常采用矩阵交叉开关(Crosspoint Switch)的方式实现。
逻辑设计中的FPGA与CPLD技术应用

逻辑设计中的FPGA与CPLD技术应用在现代电子行业中,逻辑设计是一个至关重要的环节。
FPGA (Field-Programmable Gate Array)和CPLD(Complex Programmable Logic Device)技术作为两种主要的可编程设备,已经在逻辑设计中广泛应用。
它们具有灵活性、可编程性以及高度集成的特点,使得它们在各种应用领域中扮演着重要的角色。
一、FPGA技术应用FPGA是一种可编程逻辑器件,其内部可通过编程实现各种逻辑功能和数字电路设计。
FPGA通常由可编程逻辑单元(CLB)、输入输出引脚和输入输出模块等部分构成。
其设计过程包含RTL(Register-Transfer Level)描述、综合、布局布线以及配置等环节。
1. 通信与网络领域在通信领域,FPGA被广泛应用于协议转换、调制解调器设计以及网络加速器等方面。
由于FPGA的可编程性,可以根据需要灵活配置不同的协议,实现不同网络之间的无缝对接。
2. 数字信号处理(DSP)领域在数字信号处理领域,FPGA被广泛应用于图像处理、音频处理以及实时数据处理等方面。
由于FPGA具有并行处理的能力,能够同时处理多个数据流,因此在实时性要求较高的应用中表现出色。
3. 汽车电子领域在汽车电子领域,FPGA被广泛应用于汽车控制单元(ECU)和车载娱乐系统等方面。
由于汽车电子应用对可靠性和安全性要求较高,FPGA的可编程性以及自适应性能使其成为理想的选择。
二、CPLD技术应用CPLD是一种更小规模的可编程器件,与FPGA相比,CPLD通常更适用于复杂逻辑功能的实现。
CPLD通常由可编程逻辑阵列(PLA)、输入输出引脚以及输入输出缓冲区组成。
1. 控制系统领域在控制系统领域,CPLD被广泛应用于逻辑控制器的设计。
由于CPLD具有高速、低功耗以及可靠性强的特点,被广泛应用于各类自动化控制系统中。
2. 电源管理系统领域在电源管理系统领域,CPLD被广泛应用于电源管理单元(PMU)的设计。
一文带你了解CPLD、FPGA、DSP之间的区别与联系

一文带你了解CPLD、FPGA、DSP之间的区别与联系ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。
ARM也是单片机。
ARM 架构是面向低预算市场设计的第一款RISC微处理器,基本是32位单片机的行业标准,它提供一系列内核、体系扩展、微处理器和系统芯片方案,四个功能模块可供生产厂商根据不同用户的要求来配置生产。
由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行。
目前ARM在手持设备市场占有90以上的份额,可以有效地缩短应用程序开发与测试的时间,也降低了研发费用。
DSP(digital singnal processor)是一种独特的微处理器,有自己的完整指令系统,是以数字信号来处理大量信息的器件。
一个数字信号处理器在一块不大的芯片内包括有控制单元、运算单元、各种寄存器以及一定数量的存储单元等等,在其外围还可以连接若干存储器,并可以与一定数量的外部设备互相通信,有软、硬件的全面功能,本身就是一个微型计算机。
DSP采用的是哈佛设计,即数据总线和地址总线分开,使程序和数据分别存储在两个分开的空间,允许取指令和执行指令完全重叠。
也就是说在执行上一条指令的同时就可取出下一条指令,并进行译码,这大大的提高了微处理器的速度。
另外还允许在程序空间和数据空间之间进行传输,因为增加了器件的灵活性。
其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
由于它运算能力很强,速度很快,体积很小,而且采用软件编程具有高度的灵活性,因此为从事各种复杂的应用。
FPGA、CPLD、ASIC、DSP、单片机的区别

1. FPGAFPGA(Field-Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
以硬件描述语言(Verilog或VHDL)所完成的电路设计,可以经过简单的综合与布局,快速的烧录至FPGA 上进行测试,是现代IC设计验证的技术主流。
这些可编辑元件可以被用来实现一些基本的逻辑门电路(比如AND、OR、XOR、NOT)或者更复杂一些的组合功能比如解码器或数学方程式。
在大多数的FPGA里面,这些可编辑的元件里也包含记忆元件例如触发器(Flip-flop)或者其他更加完整的记忆块。
系统设计师可以根据需要通过可编辑的连接把FPGA内部的逻辑块连接起来,就好像一个电路试验板被放在了一个芯片里。
一个出厂后的成品FPGA的逻辑块和连接可以按照设计者而改变,所以FPGA可以完成所需要的逻辑功能。
什么是FPGA?简单来说,FPGA就是“可反复编程的逻辑器件”。
FPGA取自Field Programmable Gate Array的首个字母,代表现场(Field)可编程(Programmable)逻辑阵列(Gate Array)。
由于在产品发售后您仍然可以对产品设计作出修改,因此我们可以顺利地对产品进行更新以及针对新的协议标准作出相应改进。
相对于对售后产品设计无法进行修改的ASIC和ASSP来说,这是FPGA特有的一个优势。
由于FPGA 可编程的灵活性以及近年来科技的快速发展,FPGA也正向高集成,高性能,低功耗,低价格的方向发展,并具备了与ASIC和ASSP 同等的性能,被广泛地使用在各行各业的电子及通信设备里。
FPGA与CPLD的区别尽管很多人听说过CPLD,但是关于CPLD与FPGA之间的区别,了解的人可能不是很多。
EDA总结

一.CPLD 和FPGA 的主要区别1. 结构上的不同:CPLD-乘积项 FPGA-基于查找表(LUT)2. 集成度的不同CPLD :500 - 50000门;FPGA :1K – 几千万门 3 应用范围的不同CPLD 逻辑能力强而寄存器少(1K 左右), 适用于控制密集型系统;FPGA 逻辑能力较弱但寄存器多,适于数据密集型系 CPLD 逻辑密集型----适于简单逻辑功能 2、中小规模(1000 ~ 50000) 3、布线延迟固定,时序特性稳定 4、编程数据不丢失,电路简单 5、保密性好二.Verilog HDL 适用的描述层次:1、系统级(System ) 部分可物理实现,主要用于仿真2、算法级(Alogrthem ) 部分可物理实现,主要用于仿真3、寄存器传输级(RTL )可完全物理实现,用于电路设计4、逻辑级(Logic ) 可完全物理实现,用于电路设计5、门级(Gate ) 可完全物理实现,用于电路设计6、电路开关级(Switch )软件中不涉及,用于芯片设计三.电路的两种基本计算机输入方式——原理图输入和硬件描述语言输入 四.语言输入与原理图输入方式相比的优点: 1、容易把设计移植到不同厂家的不同芯片中去;2、信号位数容易修改,可以很方便的适应不同规模的应用;3、与实现工艺无关;V erilog HDL 综合器生成标准的电子设计互换格式(EDIF )文件,方便文档交换与保存;五.软核、固核、硬核的概念 软核(Soft Core ):功能经过验证的、可综合的、实现后电路结构总门数在5000门以上的V erilog HDL 模型。
由软核构成的器件称为虚拟器件。
三者中灵活性最高。
固核(Firm Core ):指在某一种现场可编程门阵列(FPGA )器件上实现的、经验证是正确的、总门数在5000门以上电路结构编码文件。
硬核(Hard Core ):指在某一种专用集成电路(ASIC )工艺的器件上实现的、经验证是正确的、总门数在5000门以上的电路结构版图掩膜CPLD逻辑密集型----适于简单逻辑功能 2、中小规模(1000 ~ 50000) 3、布线延迟固定,时序特性稳定 4、编程数据不丢失,电路简单 5、保密性好FPGA1、数据密集型——适于复杂的时序逻辑2、大规模设计(5000 ~ 数百万门)3、布线灵活,但时序特性不稳定4、需用专用的 ROM 进行数据配置5、保密性较差HDL 功能数字系统仿真、验证(全部语法支持) 数字系统设计、综合(部分语法支持) HDL 功能:六.Verilog 的两种描述——如果只从行为和功能的角度来描述某一电路模块,就称为行为模块;如果从电路结构的角度来描述该电路模块,就称为结构模块。
FPGA与CPLD 总结

CPLD(complex programable logic device)复杂可编程逻辑器件FPGA(field programable gate array)现场可编程门阵列FPGA和CPLD的逻辑单元本身的结构与SPLD相似,即与阵列和可配置的输出宏单元组成。
FPGA逻辑单元是小单元,每个单元只有1-2个触发器,其输入变量通常只有几个因而采用查找表结构(PROM形式)这样的工艺结构占用的芯片面积小,速度高(通常只有1-2纳秒),每个芯片上能集成的单元数多,但逻辑单元功能弱。
如果想实现一个较复杂的功能,需要几个这样的单元组合才能完成(总延时是各个单元延时和互连延时的和),互连关系复杂。
CPLD中的逻辑单元是单元,通常其变量数约20-28个。
因为变量多,所以只能采用PAL结构。
由于这样的单元功能强大,一般的逻辑在单元内均可实现,因而其互连关系简单,一般通过集总总线既可实现。
电路的延时通常就是单元本身和集总总线的延时(通常在数纳秒至十几纳秒),但是同样集成规模的芯片中的触发器的数量少得多。
从上面分析可知道:小单元的FPGA较适合数据型系统,这种系统所需要的触发器数多,但是逻辑相对简单;大单元的CPLD较适合逻辑型系统,如控制器等,这种系统逻辑复杂,输入变量多,但触发器需求量相对较少。
反熔丝工艺只能一次性编程,EPROM EEPROM 和FLASH工艺可以反复的编程,但是他们一经编程片内逻辑就被固定。
他们都是只读型(ROM)编程,这类编程不仅可靠性较高还可以加密。
XILINX公司的FPGA芯片采用RAM型编程,相同集成规模的芯片中的触发器数目较多,功耗低,但是掉电后信息不能保存,必须与存储器联用。
每次上电时必须先对芯片配置,然后才能使用,这似乎是RAM型PLD的缺点,但是ROM型PLD中的编程信息在使用时是不能变化的,RAM型PLD却可以在工作时更换内容,实现不同的逻辑。
CPLD和FPGA的结构,性能对照:CPLD FPGA PROM集成规模:小(最大数万门)大(最高达百万门)单元粒度:大(PAL结构)小(PROM结构)互连方式:集总总线分段总线长线专用互连编程工艺:EPROM EEPROM FLASH SRAM编程类型:ROM RAM型须与存储器联用信息:固定可实时重构触发器数:少多单元功能:强弱速度:高低222222222222222222222222222222222222延迟:确定,可以预测不能确定不能预测功耗:高低加密性能:可加密不能加密适用场合:逻辑型系统数据型系统LCA(LOGIC CELL ARRAY)逻辑单元阵列CLB(CONFIGURABLE LOGIC BLOCK)可配置逻辑模块IOB(INPUT OUTOUT BLOCK)输入输出块Spartan-xl系列FPGA的主要特性SPARTAN-XL系列的FPGA具有低压,低功耗的特点。
DSP、MCU、CPLD、ARM、FPGA芯片的区别

DSP、MCU、CPLD、ARM、FPGA芯片的区别DSP、MCU、CPLD、ARM、FPGA芯片的区别1,单片机小型电脑处理器,最小可以到8个脚,价格便宜,最便宜2块钱2,PLC可变逻辑控制器,主要用在工业控制,里面是类似一个加强的单片机。
对输入输出均有做处理(抗干扰能力、带负载能力都增强)。
例如抗干扰,增加带负载驱动能力3,DSP 数字信号处理芯片,这个用途可做信号处理,例如图像处理,数据采集处理,它比单片要快很多,比单片机功能要强大4,FPGA、CPLD可变逻辑控制,这个做逻辑处理控制,小型的CPLD是没有中央处理器的,大型可以嵌入系统,功能在单片机之上,适合做大型的数据处理,逻辑控制。
其价格不便宜。
但是他和单片机有本质的区别。
例如单片机有内嵌外设AD,DA转换等,CPLD则需要通过控制其他外设IC。
要想诠释清楚,也非三言两语能道明,还是多看看书本吧学习可以以单片机为先,其次是FPGA,CPLD,DSP。
PLC比较简单,学会前面后面只要了解一周一般都会了一家之言,欢迎指证:DSP:数字信号处理器,处理器采用哈弗结构,工作频率较高,能大幅度提高数字信号处理算法的执行效率。
MCU:微控制器,主要用于控制系统,工作频率一般来说比DSP 低,硬件上具有多个IO 端口,同时也集成了多个外设,主要是便于在控制系统中的应用。
至于ARM处理器,个人认为是MCU的高级版本,ARM本身只是一个内核,目前已经有多个版本。
CPLD:复杂可编程逻辑器件FPGA:现场可编程门阵列后两者都是可编程器件,CPLD目前一半采用FLASH技术,而FPGA采用SRAM技术,这就决定了FPGA需要采用特定的配置技术。
同时FPGA的规模要比CPLD大得多,但CPLD应用起来相对要简单的多。
DSP主要用做运算,如语音,图像等信号的运算处理,但基本不用做控制。
MCU,FPGA,ARM主要用做控制,MCU低价低功耗,但门限很少,结构简单,不能实现复杂控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、 应 用 范 围 的 不 同
系统;
CPLD 逻 辑 能 力 强 而 寄 存 器 少 , 适 用 于 控 制 密 集 型
系统。
FPGA 逻 辑 能 力 较 弱 但 寄 存 器 多 , 适 于 数 据 密 集 型
CPLD 和 FPGA 的 优 点 : 1.规 模 越 来 越 大 , 实 现 功 能 越 来 越 强 , 同 时 可 以 实 现 系 统 集 成 。 2.研 制 开 发 费 用 低 , 不 承 担 投 片 风 险 , 使 用 方 便 。 3.通 过 开 发 工 具 在 计 算 机 上 完 成 设 计 , 电 路 设 计 周 期 短 。 4.不 需 要 设 计 人 员 了 解 很 深 的 IC 知 识 , EDA 软 件 易 学 易 用 。 5.通 过 FPGA 和 CPLD 开 发 的 系 统 成 熟 后 , 可 以 进 行 ASIC 设 计 , 形成批量生产。
CPLD 和 FPGA 的区别与优缺点
FPGA(Field Programmable Gates Array 现场可编程门阵列,内部结构为门 阵列构成静态存储器(SRAM)。该 SRAM 可构成函数发生器,即查找表,通 过查找表可实现逻辑函数功能)
CPLD( Complex Programmable Logic Device 复 杂 可 编 程逻辑器件,内部结构为“与或阵列”。该结构来自于典型的 PAL、 GAL 器 件 的 结 构 。 任 意 一 个 组 合 逻 辑 都 可 以 用 “ 与 — 或 ” 表 达 式 来 描 述 ,所 以 该 “ 与 或 阵 列 ” 结 构 能 实 现 大 量 的 组 合 逻 辑 功能)
结构
FPGA 器件在结构上 ,由逻辑功能块排列为阵列 ,并由可编程的内部连线连接这些功能块来 实现一定的逻辑功能 CPLD 是将多个可编程阵列逻辑 (PAL)器件集成到一个芯片 ,具有类似 PAL 的结构。一般 情况下 CPLD 器件中至少包含三种结构 :可编程逻辑功能块 (FB);可编程 I/ O 单元 ;可编程
EDA 技术
FPGA 是一种高密度的可编程逻辑器件,自从 Xilinx 公司 1985 年推出第一片 FPGA 以 来,FPGA 的集成密度和性能提高很快,其集成密度最高达 500 万门/片以上,系统性能可达 200MHz。由于 FPGA 器件集成度高,方便易用,开发和上市周期短,在数字设计和电子生产中 得到迅速普及和应用,并一度在高密度的可编程逻辑器件领域中独占鳌头。 CPLD 是由 GAL 发展起来的 ,其主体结构仍是与或阵列 ,自从 90 年代初 Lattice 公司高性 能的具有在系统可编程 ISP(In System Programmable)功能的 CPLD 以来 ,CPLD 发展迅速。 具有 ISP 功能的 CPLD 器件由于具有同 FPGA 器件相似的集成度和易用性 ,在速度上还有 一定的优势 ,使其在可编程逻辑器件技术的竞争中与 FPGA 并驾齐驱 ,成为两支领导可编 程器件技术发展的力量之一.
2、 延 迟 小 预 测 能 力
CPLD 连 续 式 布 线 结 构 决 定 时 序 延 时 是 均 匀 的 和 可 预 测 的 , FPGA 分 段 式 布 线 结 构 决 定 了 不 可 预 测 时 间 延 迟 。
3、 集 成 度 的 不 同
CPLD: 500 ~ 50000 门 ; FPGA: 1K ~ 10M 门
内部连线
集成度
FPGA 可以达到比 CPLD 更高的集成度 ,同时也具有更复杂的布线结构和逻辑实现 适合结构
FPGA 更适合于触发器丰富的结构 ,而 CPLD 更适合于触发器有限而积项丰富的结构 编程
CPLD 通过修改具有固定内连电路的逻辑功能来编程 ,FPGA 主要通过改变内部连线的布线 来编程 ;FPGA 可在逻辑门下编程 ,而 CPLD 是在逻辑块下编程 ,在编程上 FPGA 比 CPLD 具有更大的灵活性
功率消耗
CPLD 的缺点比较突出。一般情况下 ,CPLD 功耗要比 FPGA 大 ,且集成度越高越明显 速度
CPLD 优于 FPGA。由于 FPGA 是门级编程 ,且 CLB 之间是采用分布式互连 ;而 CPLD 是 逻辑块级编程 ,且其逻辑块互连是集总式的。因此 ,CPLD 比 FPGA 有较高的速度和较大的 时间可预测性 ,产品可以给出引腿到引腿的最大延迟时间 编程方式
简 单 的 “ 与 或 ” 阵 列 : ( PAL、 GAL、 CPLD)
含 查 找 表 的 逻 辑 单 元 : ( FPGA)
CPLD 和 FPGA 的 主 要 区 别 :
1、 布 线 能 力
C P L D 内 连 率 高 ,不 需 要 人 工 布 局 布 线 来 优 化 速 度 和 面 积 , 较 FPGA 更 适 合 于 EDA 芯 片 设 计 的 可 编 程 验 证 。
目前的 CPLD 主要是基于 E2 PROM 或 FLASH 存储器编程 ,编程次数达 1 万次。其优点是 在系统断电后 ,编程信息不丢失。CPLD 又可分为在编程器上编程和在系统编程 (ISP) CPLD
两种。 ISP 器件的优点是不需要编程器 ,可先将器件装焊于印制板 ,再经过编程电缆进行编 程,编程、调试和维护都很方便 FPGA 大部分是基于 SRAM 编程 ,其缺点是编程数据信息在系统断电时丢失 ,每次上电时 , 需从器件的外部存储器或计算机中将编程数据写入 SRAM 中。其优点是可进行任意次数的 编程,并可在工作中快速编程 ,实现板级和系统级的动态配置 ,因此可称为在线重配置 (ICR:In CircuitReconfigurable)的 PLD 或可重配置硬件(RHP:Reconfigurable Hardware Product)
使Hale Waihona Puke 方便性CPLD 比 FPGA 要好。 CPLD 的编程工艺采用 E2 CPLD 的编程工艺采用 E2 CPLD 的编程 工艺采用 E2 PROM 或 FASTFLASH 技术 ,无需外部存储器芯片 ,使用简单 ,保密性好。而 基于 SRAM 编程的 FPGA,其编程信息需存放在外部存储器上 ,需外部存储器芯片 ,且使用 方法复杂 ,保密性差