截面的静矩和形心位置及惯性矩的计算

合集下载

惯性矩、静矩、抵抗矩形心、重心、质心

惯性矩、静矩、抵抗矩形心、重心、质心

力学计算中截面参数计算,关键点地描述原先对于惯性矩、静矩、极惯性矩、抵抗矩地概念及计算方法总是模糊不清,这次认真地整理了下,估计大家对这些基本概念认知也比较凌乱,在此斗胆与大家分享下,其中地不足之处希望大家谅解,也恳请大家批评指正.计算平面地惯性矩方法:在中将平面图画好——生成面域——工具(查询——面域质量特性)——得到质心和惯性矩(此惯性矩地计算轴为坐标原点处、轴)——将坐标轴原点移动刚算出地质心坐标上——工具(查询——面域质量特性)得此平面图地惯性矩和面积:静矩:平面图形地面积与其形心到某一坐标轴地距离地乘积称为平面图形对该轴地静矩.一般用来表示.=* 其中=∑*∑:惯性矩:轴惯性矩反映截面抗弯特性地一个量,简称惯性矩.截面对某个轴地轴惯性矩等于截面上各微面积乘微面积到轴地距离地平方在整个截面上地积分.公式如:=∫*:极惯性矩:极惯性矩是平面图形对坐标轴原点(即点)地矩,计算公式为:(各惯性矩之和):抵抗矩:截面抵抗矩()就是截面对其形心轴惯性矩与截面上最远点至形心轴距离地比值.公式为:面积矩:面积矩是一个概念,凡是与面积有关地都称为面积矩,如静矩,抵抗矩等都为面积矩.质心:为质量集中在此点地假想点;重心:为重力作用点(与组成该物体地物质有关);(如没有引力,则就没有重心一说了)形心:物体地几何中心只与物体地几何形状和尺寸有关,与组成该物体地物质无关).三者地关系::一般情况下重心和形心是不重合地,只有物体是由同一种均质材料构成时,重心和形心才重合.:质心就是物体质量集中地假想点(对于规则形状物体就是它地几何中心),重心就是重力地作用点,通常情况下,由于普通物体地体积比之于地球十分微小,所以物体所处地重力场可看作是均匀地,此时质心与重心重合;如果该物体地体积比之于地球不可忽略(例如一个放在地面上半径为地球体),则该球体所处地重力场就不均匀了,具体说是由下自上重力场逐渐减小,此时重力地作用点靠下,也就是重心低于质心.如果物体所处地位置不存在重力场(如外太空),则物体就无所谓重心了,但由于质量仍然存在,所以质心仍然存在.。

惯性矩、静矩,形心坐标公式

惯性矩、静矩,形心坐标公式

§I−1 截面得静矩与形心位置如图I −1所示平面图形代表一任意截面,以下两积分(I −1)分别定义为该截面对于z 轴与y 轴得静矩。

静矩可用来确定截面得形心位置。

由静力学中确定物体重心得公式可得利用公式(I −1),上式可写成 (I −2) 或 (I −3) (I −4)如果一个平面图形就是由若干个简单图形组成得组合图形,则由静矩得定义可知,整个图形对某一坐标轴得静矩应该等于各简单图形对同一坐标轴得静矩得代数与。

即:(I −5)式中A i 、y ci 与z ci 分别表示某一组成部分得面积与其形心坐标,n 为简单图形得个数。

将式(I −5)代入式(I −4),得到组合图形形心坐标得计算公式为 (I −6)例题I −1 图a 所示为对称T 型截面,求该截面得形心位置。

解:建立直角坐标系zOy ,其中y 为截面得对称轴。

因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。

将截面分成Ⅰ、Ⅱ两个矩形,则 A Ⅰ=0.072m 2,A Ⅱ=0.08m 2y Ⅰ=0.46m,y Ⅱ=0.2m§I −2 惯性矩、惯性积例题I −1图图I −1与极惯性矩如图I −2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。

现在图形内取微面积d A ,d A 得形心在坐标系zOy 中得坐标为y 与z ,到坐标原点得距离为ρ。

现定义y 2d A 与z 2d A 为微面积d A 对z 轴与y 轴得惯性矩,ρ2d A 为微面积d A 对坐标原点得极惯性矩,而以下三个积分(I −7)分别定义为该截面对于z 轴与y 轴得惯性矩以及对坐标原点得极惯性矩。

由图(I −2)可见,,所以有(I −8) 即任意截面对一点得极惯性矩,等于截面对以该点为原点得两任意正交坐标轴得惯性矩之与。

另外,微面积d A 与它到两轴距离得乘积zy d A 称为微面积d A 对y 、z 轴得惯性积,而积分(I −9)定义为该截面对于y 、z 轴得惯性积。

惯性矩地计算方法及常用截面惯性矩计算公式

惯性矩地计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA,定义它对任意轴的一次矩为它对该轴的静矩,即dS y xdAdSx ydA整个图形对y、z轴的静矩分别为S y xdAyASx 人 ydA2.形心与静矩关系(1-1 )设平面图形形心C的坐标为y c,z c-S x 一S y /、y , x (I-2 )A A推论1如果y轴通过形心(即x0),则静矩S y 0 ;同理,如果X轴通过形心(即y o),则静矩sx o;反之也成立。

推论2如果x、y轴均为图形的对称轴,则其交点即为图形形心;如果y轴为图形对称轴,贝昭形形心必在此轴上。

3.组合图形的静矩和形心设截面图形由几个面积分别为 A,A2,A3 A n的简单图形组成,且一直各族图形的形心坐标分别为丘,只;乂2*2;x3,y3 ,贝U图形对y轴和x轴的静矩分别为截面图形的形心坐标为nA i Xi 1 nA ii 14•静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩有的单位为m 3。

(3) 静矩的数值可正可负,也可为零。

图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

(4) 若已知图形的形心坐标。

则可由式(1-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(1-2 )求图形的形心坐标。

组 合图形的形心位置,通常是先由式(I-3 )求出图形对某一坐标系的静 矩,然后由式(1-4 )求出其形心坐标。

(二)•惯性矩 惯性积 惯性半径1.惯性矩定义 设任意形状的截面图形的面积为 A (图I-3 ),则图形对0点的极 惯性矩定义为 I p2dA (1-5)KAn nS yS yiARi 1 i 1nnS xSxiA i Vi 1 i 1(1-3 )A i y i(1-4 )图形对y轴和x轴的光性矩分别定义为I y A x2dA , I x A y2dA (1-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。

材料力学 截面的几何性质

材料力学 截面的几何性质

1、矩形截面 h
Iz
y2dA
A
2 h
y 2bdy
h
2
dy y
b y 3 2 1 bh3 3 h 12
2
同理
Iy
z2dA 1
A
12
hb3
b h z
y
26
2、实心圆截面
y
已知
IP
A2dA
D 4 32
D
z
则 I P A2 d A A y 2 d A A z 2 d I A z I y
A
Iz Iy
此式说明了极惯性矩与轴惯性矩之间的关系。
z
y
o
A dA
z
y
惯性积
定义
Iyz
yzdA
A
z y
A dA
为图形对y、z轴的惯性积 。
z
o
y
惯性积的数值可正,可负,也可为零。惯性积的量纲是[长 度]4 ,常用单位为m4和mm4。
定理:若有一个轴是图形的对称轴,则图形对这对轴 的惯性积必然为零。
4.3 形心主惯性轴和形心主惯性矩
若主惯性轴通过形心,则该轴称为形心主惯性轴(principal centroidal axis)。
图形对形心主惯性轴的惯性矩称为形心主惯性矩。 由于图形对于对称轴的惯性积等于零,而对称轴又过形心,所以,图形 的对称轴就是形心主惯性轴。
形心主惯性轴的特点可归纳为以下几点: ⑴形心主惯性轴是通过形心,由角定向的一对互 相垂直的坐标轴。
32
32
圆环形对y(或z)轴的惯性矩为
IyIz1 2Ip6 D4414
由于y轴为对称轴,故
Iyz 0
z
y
d D

截面的静矩和形心位及惯性矩的计算

截面的静矩和形心位及惯性矩的计算

y
dA
x
x 0
截面对 x , y 轴的惯性积为
Ixy A xydA
惯性矩的数值恒为正,惯性积则可能为正值,负值,
也可能等于零。
y
若 x , y 两坐标轴中有一个为
dA y
截面的对称轴,则截面对 x , y 轴的 惯性积一定等于零 。
dx dx x
截面对 x , y 轴的惯性半俓为
iy
Z1 80 Z2 0
所以截面的形心坐标为
ZC

A1 Z1 A1
A2 Z2 A2

46.7mm
20 140
zc
20
1
yc
ZC
2
y
100
I1yC

1 12

20 1403

20 140
(8046.7)2
I
2 yC

1 12
100
203
100
20
(46.7)2
zc
120 103 152 120 10

1 12

703
10

(25)2

70
10
100.4 104 mm 4
Iy 278.4 104 mm4
70 20 10
120
y
80
c
x
10
y
I xy 0 15 20 120 10 0 (25) (35) 70 10
x2

10

70 2

45mm
y2 5mm
y 10
1 x1
y1

不规则平面形之静矩,重心,惯性矩及惯性积之新计算法

不规则平面形之静矩,重心,惯性矩及惯性积之新计算法

不规则平面形之静矩,重心,惯性矩及惯性积之新计算法
静矩,截面上所有点坐标值的代数和;静矩大小可能为正,也可能为负,其大小与坐标系位置有关。

静矩的量纲是长度的三次方。

可用于计算截面形心。

截面对某轴的静矩为零,则该轴必过形心,截面对一个坐标系的两个轴的静矩都为零,则该坐标系原点为形心。

过某点取坐标系,当截面对该坐标系的惯性积等于零时,这一对坐标系称为主惯性轴,简称主轴。

通过截面形心的主惯性轴称为形心主惯性轴,截面对该轴的惯性矩称为形心主惯性矩。

由平行移轴公式可知,截面对过形心主惯性轴的惯性矩是截面对所有坐标系惯性矩中最大和最小的两个惯性矩。

惯性矩:截面上所有点至坐标轴距离平方的和,可反映截面上的点相对于轴的分布情况。

惯性矩可用于计算纯弯曲变形杆截面上的正应力。

极惯性矩始终大于0,其大小与坐标系位置有关。

极惯性矩的量纲是长度的四次方。

截面上离轴心较远的点越多,截面对轴心的极惯性矩越大,截面抵抗扭转变形的能力越强。

惯性积,截面上所有点横纵坐标之积的和。

惯性积大小可能为正,也可能为负,其大小与坐标系有关。

惯性积的量纲是长度的四次方。

惯性矩、极惯性矩、惯性积的计算公式
中的被积函数都是二次项,因此统称为二阶矩;静矩计算公式中的被积分项是一次项,因此称为一阶矩。

截面的静矩和形心位置及惯性矩的计算

截面的静矩和形心位置及惯性矩的计算
x
x 0
截面对 x , y 轴的惯性积为
Ixy A xydA
惯性矩的数值恒为正,惯性积则可能为正值,负值,
也可能等于零。
y
若 x , y 两坐标轴中有一个为
dA y
截面的对称轴,则截面对 x , y 轴的 惯性积一定等于零 。
dx dx x
截面对 x , y 轴的惯性半俓为
iy
Iy , A
二 、 截面的主惯性轴和主惯性矩
I x1y1

Ix
2
Iy
sin 2α

I xy cos 2α
主惯性轴 —— 总可以找到一个特定的角 0 , 使截面对新坐标 轴 x0 , y0 的惯性积等于 0 , 则称 x0 , y0 为主惯轴。
主惯性矩——截面对主惯性轴的惯性矩。
形心主惯性轴 ——当一对主惯性轴的交点与截面的形心 重合时,则称为形心主惯性轴。
x
80
§ І -2 极惯性矩 惯性矩 惯性积
定义:
z dA
z
截面对 o 点的极惯性矩为

y
Ip Aρ2dA
y 0
截面对 y ,z 轴的惯性矩分别为
Iy A z2dA Iz A y2dA
因为 ρ2 y2 z2
I p Aρ2 dA
所以 Ip = Ix + Iy
y
y
dA
ix
Ix A
例 2 _ 1 求矩形截面对其对称轴 x , y 轴的惯性矩。
解:
dA = b dy
Ix

A y2dA

h
2h
by2dy
2

bh3 12
Ix A y2dA

惯性矩、静矩,形心坐标公式

惯性矩、静矩,形心坐标公式

惯性矩、静矩,形心坐标公式-CAL-FENGHAI.-(YICAI)-Company One1§I?1 截面的静矩和形心位置如图I ?1所示平面图形代表一任意截面,以下两积分⎪⎭⎪⎬⎫==⎰⎰A z S A y S A y Az d d (I ?1)分别定义为该截面对于z 轴和y 轴的静矩。

静矩可用来确定截面的形心位置。

由静力学中确定物体重心的公式可得⎪⎪⎭⎪⎪⎬⎫==⎰⎰A A z z A A y y AC A Cd d利用公式(I ?1),上式可写成⎪⎪⎭⎪⎪⎬⎫====⎰⎰A S A A z z A S A Ay y y AC z A C d d (I ?2)或⎭⎬⎫==C y C z Az S Ay S (I ?3)⎪⎪⎭⎪⎪⎬⎫==A S z A S y yCz C (I ?4)图I ?1如果一个平面图形是由若干个简单图形组成的组合图形,则由静矩的定义可知,整个图形对某一坐标轴的静矩应该等于各简单图形对同一坐标轴的静矩的代数和。

即:⎪⎪⎭⎪⎪⎬⎫==∑∑==ni ci i y ni ci i z z A S y A S 11(I ?5)式中A i 、y ci 和z ci 分别表示某一组成部分的面积和其形心坐标,n 为简单图形的个数。

将式(I ?5)代入式(I ?4),得到组合图形形心坐标的计算公式为⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫==∑∑∑∑====ni i ni ci i c ni i ni ci i c A z A z A y A y 1111(I ?6)例题I ?1 图a 所示为对称T 型截面,求该截面的形心位置。

解:建立直角坐标系zOy ,其中y 为截面的对称轴。

因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。

将截面分成Ⅰ、Ⅱ两个矩形,则A Ⅰ=0.072m 2,A Ⅱ=0.08m 2y Ⅰ=0.46m ,y Ⅱ=0.2m例题I ?1图m323.008.0072.02.008.046.0072.0III II II I I 11=+⨯+⨯=++==∑∑==A A y A y A AyA y ni ini cii c§I ?2 惯性矩、惯性积和极惯性矩如图I ?2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
y1
o
2
y2
10
x2
80
x
y 2 5mm
所以
x
A 1 x1 A 2 x 2 3 7 50 0 2 0 mm A1 A 2 1 9 00
A 1 y1 A 2 y 2 7 5 50 0 y 4 0 mm A1 A 2 1 9 00
y
10
1
x1
C( y, x )
§І-1 截面的静矩和形心位置
一、 定义 截面对 z , y 轴的静矩为: z
dA
S
z
A
ydA
z
S
y
zdA
A
o
y
y
静矩可正,可负,也可能等于零。
z
截面的形心 C 的坐标
公式为:
dA
y
z
A
ydA A
A

S
c
z
z
A
y
z
o
y y
zdA S
A
A
y
S
z
Ay
S
y
Az
若截面对某一轴的静矩等于零,则该轴必过形心。 截面对形心轴的静矩等于零。
2 Ix Iy

Ix Iy
I x1 y1
2 2 Ix Iy sin 2α I xy cos 2α 2

Ix
2 Iy
cos 2α I xy sin 2 α
cos 2α I xy sin 2α
上式称为转轴公式
y1 y
显然
x1
o

x
I x1 I y1 I x I y
y
πd Iρ 32
4
I x I y Iρ
I x Iy
πd Ix Iy 64
4
x
所以
§ І -3 惯性矩和惯性积的平行移轴公式
组合截面的惯性矩和惯性积
一、 平行移轴公式
x , y ——任意一对坐标轴 C —— 截面形心 a (a , b ) _____ 形心 c 在 xoy 坐标系下的 坐标。 xc , yc ——过截面的形心 c 且与 x , y 轴平 行的坐 标轴(形心轴)
i 1 n i 1
Ai x i
n
y1
o
y2
2 10
A1 y1 A2 y 2 y A1 A2
x2
80
x
矩形 1
A1 10 120 1200 mm
2
y
10
x1 5mm
y1 60mm
矩形 2 1
x1
A2 10 70 700 mm
70 10 45mm x2 2
二、
组合截面
由几个简单图形组成的截面称为组合截面
截面各组成部分对于某一轴的静矩之代数和,就等于该截
面对于同一轴的静矩。
组合截面静矩的计算公式为
n
S Ay
z i 1 i
i
S A z
y i 1 i
n
i
其中: Ai —— 第 i 个简单截面面积
( y , z i ) —— 第 i个简单截面的形心坐标
yc
ZC
20
2
y
100
§ І -4 惯性矩和惯性积的转轴公式 截面的主惯性轴和主惯性矩
一、 转轴公式 xoy 为过截面上的任 – 点建立的坐标系 x1oy1 为 xoy 转过 角后形成的新坐标系
y1 y
逆時针转取为 + 号,
x1
顺時针转取为 – 号
o

x
I x1
Ix Iy
I y1
x
所以
I p = Ix + I y
0
截面对 x , y 轴的惯性积为
Ixy A xydA
惯性矩的数值恒为正,惯性积则可能为正值,负值, 也可能等于零。 若 x , y 两坐标轴中有一个为
y dA y
截面的对称轴, 则截面对 x , y 轴的
dx dx
x
惯性积一定等于零 。
截面对 x , y 轴的惯性半俓为
y
c 10
70
y
I
x
1 120 103 152 120 10 12 1 2 703 10 ( 25) 70 10 12 100.4 104 mm 4
I y 278.4 10 mm
4
4
20
10
xc
I xy I xc yc abA
b
x
二、组合截面的惯性矩
惯性积
Ixi , Iyi , I xyi —— 第 i个简单截面对 x ,y 轴的惯性矩、
惯性积。
Ix I xi i 1
组合截面的惯性矩,惯性积
n
Iy I yi i 1
I xy I xyi
i 1 n
n
例 3 -1 求梯形截面对其形心轴 yc 的惯性矩。
y1
o
2
x2
80
y2
10
x
§ І -2 极惯性矩 惯性矩 惯性积
z
定义:
dA z
截面对 o 点的极惯性矩为

y
y
Ip Aρ2dA
0
截面对 y ,z 轴的惯性矩分别为
2dA z Iy
A
Iz
因为
A
y 2dA
y
dA y x
ρ2 y2 z2
I p A ρ 2 dA
I x0 Ix Iy 1 I y0 2 2
I x
I y 4I xy
2 2
过截面上的任一点可以作无数对坐标轴,其中必有 一对是主惯性轴。截面的主惯性矩是所有惯性矩中
的极值。即:Imax = Ix0 ,
Imin = Iy0
截面的对称轴一定是形心主惯性轴。
求形心主惯性矩的步骤 确定形心 的位置
Ai x i x Ai

,
y

Ai y i

Ai
选择一对通过形心且便于计算惯性矩(积)的坐 标轴 x ,y, 计算 Ix , Iy , Ixy
I x I xi
I y I yi
I xy I xyi
确定主惯性轴的位置
2 (
2
0

tg
1
Ix
I xy ) I y
计算形心主惯性矩
Ix I x I y Iy 2
0 0
1 2
( I x I y ) 4 I xy 2
2
例 4-1 计算所示图形的形心主惯性矩。 y
c 10 10 20 70
120 80
y
x
解:该图形形心 c 的位置已确定, 如图所示。 过形心 c 选一对座标轴 X , y 轴, 计算其惯性矩(积)。
解:将截面分成两个矩形截面。
zc
20
截面的形心必在对称轴 zc 上。
140
1
yc
2
取过矩形 2 的形心且平行
20
于底边的轴作为参考轴, 记作 y 轴 。
y
100
A1 20 140 A2 100 20
Z1 80 Z2 0
zc
20
所以截面的形心坐标为
140
1
yc
20
A1 Z1 A2 Z 2 46.7mm ZC A1 A2
形心主惯性矩—— 截面对形心主惯性轴的惯性矩。
主惯性轴的位置:设 为主惯性轴与原坐标轴 之间的夹角, 则有
Ix I y 2
sin 2 0
I xy cos 2 0
0
由此
tg 2 0
2I xy Ix I y
求出后,主惯性轴的位置就确定出来了。
主惯性矩的计算公式
120 80
x
70
c 10
y
I xy
0 15 20 120 10 0 ( 25) ( 35) 70 10 97.3 104 mm 4
20
10
y
120 80
x
tg2 0 (
2 I xy Ix Iy
) 1.093
I x Iy
C(a,b)
y
yc
xc
o
b
x
Ix , Iy , Ixy
_____ 截面对
x , y 轴的惯性矩和惯性积。
Ixc ,Iyc , Ixc yc —— 截面对形心轴 xc , yc 的惯性矩和惯性积。
则平行移轴公式为
y yc
I x I xc a A
2
Iy Iy b A
2
c
a o
C(a,b)
2α 0 在第三象限
2α 0 227.60
0
0

113.8
形心主惯性轴 x0 , y0 分别由 x 轴和 y 轴绕 C点
逆时针转 113.80 得出。
形心主惯形矩为
I x0 I y0 Ix Iy 2 1 2
I
x
I y 2 4 I xy


2
321 10 4 4 mm 57.4 10 4
i
计算组合截面形心坐标的公式如下:
y
A y
i 1 i
n
i
A
i 1
n
z
A z
i 1 n i
n
i
i
A
i 1
i
例 1-1
试确定图示截面心 C 的位置。 y
相关文档
最新文档