低压配电系统短路电流计算
短路电流计算公式

短路电流计算公式变压器短路容量-短路电流计算公式-短路冲击电流的计算供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。
为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。
二.计算条件1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。
具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。
只要计算35KV及以下网络元件的阻抗。
2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。
3. 短路电流计算公式或计算图表,都以三相短路为计算条件。
因为单相短路或二相短路时的短路电流都小于三相短路电流。
能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。
三.简化计算法即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。
一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。
在介绍简化计算法之前必须先了解一些基本概念。
1.主要参数Sd三相短路容量 (MVA)简称短路容量校核开关分断容量Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定x电抗(W)其中系统短路容量Sd和计算点电抗x 是关键.2.标么值计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).(1)基准基准容量 Sjz =100 MVA基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3因为S=*U*I 所以 IJZ (KA)44(2)标么值计算容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.电压标么值 U*= U/UJZ ; 电流标么值 I* =I/IJZ3无限大容量系统三相短路电流计算公式短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)冲击电流有效值: IC = Id *√1 2 (KC-1)2 (KA)其中KC冲击系数,取所以IC =冲击电流峰值: ic =* Id*KC= Id (KA)当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取这时:冲击电流有效值IC =*Id(KA)冲击电流峰值: ic = Id(KA)掌握了以上知识,就能进行短路电流计算了。
04-低压短路电流计算课件

短路电流速查表
详见附录 第67页
Schneider Electric - LVFDI training – Chen Xiliang – 201503 17
两台变压器并联运行时的短路
● 思考题: ● 两台同容量变压器并联运行,变压器低压侧短路电流为25KA ● 确定进线及馈线断路器的分断能力
D1
分断能力校验
●断路器分断能力应不小于预期最大短路电流 Ics (Icu)>Iscmax Icu-断路器极限短路分断能力 Ics-断路器运行短路分断能力 Iscmax-安装点预期最大短路电流
Schneider Electric - LVFDI training – Chen Xiliang – 201503 3
Schneider Electric - LVFDI training – Chen Xiliang – 201503 10
阻抗法计算短路电流
Schneider Electric - LVFDI training – Chen Xiliang – 201503 11
短路电流的计算方法(续)
●合成法: 当不掌握电源参数时,可以根据回路首端已知的短路电流,
Isc1=
U/ 3 Zsc + ZLn
Isc (0)=
U/ 3 Zsc + Z (0)
9
短路电流的计算方法
●阻抗法: 用于计算三相系统中任一点的短路电流,该方法具有高的
计算精度
Isck =
U20 = 3 Zk
U20 3 Rk2 + Xk2
U20: 变压器二次侧空载线电压 Zk : 故障点电源侧每相总阻抗
Schneider Electric - LVFDI training – Chen Xiliang – 201503 5
低压柴油发电机组配电系统短路电流计算

tmin=0.05s Ib=3 33311A=99933A=100kA
tmin=0.10s Ib=3 29110A=87330A=87.3kA
2.5
F5
E
~
RL=roL=0.013 23=0.3mΩ XL=xoL=0.008 23=0.19mΩ Rk=KGRG+RL=0.916 0.0012+0.0003=0.0014Ω Xk=KGX″d+XL=0.916 0.0047+0.000024=0.0043Ω
49385.5 3013
=0.7136
Ib=0.7136 49385.5=35241A
Electrical Technology of Intelligent Buildings
万方数据
2007 2
1
1
tmin=0.10s
49385.5
µ=0.62+0.72e-0.32I″k G/IrG=0.62+0.72e-0.32 3013 =0.6236
智能建筑电气技术 ELECTRICAL TECHNOLOGY OF INTELLIGENT BUILDINGS 2007,1(1) 0次
参考文献(2条) 1.国家质量技术监督局 GB/T 15544-1995.三相交流系统短路电流计算 1995 2.王振声.王玉卿 35~6/0.4kV配变电系统短路电流计算实用手册 2004
=√
1 3
380 0.0047
=46680A
ip
ip=κ√2 I″k
κ
1.02+0.98e-3Rk/Xk=1.02+0.98e-3
0.0014 0.00447
=1.4
ip=1.4√2 46680=92408A
低压断路器的选择与低压短路电流计算

低压断路器的选择与低压短路电流计算低压断路器分断能⼒的选择和低压短路电流计算赵庆贤鞍⼭冶⾦设计研究院摘要:通过对影响低压主母线上短路电流的各种因素的分析与具体计算,找出影响短路电流的主要因素,进⽽得出简化计算办法。
同时根据计算得出的三相短路电流周期分量和短路冲击电流值,合理选择断路器的分断能⼒。
关键字:短路电流;分断能⼒;电⼒系统的短路电流计算是电⽓设计中的主要⽂件之⼀。
通过计算,获取系统的短路数据,为⾼压电⽓设备的选择:如,⾼压断路器、⾼压隔离开关、电流互感器选择等提供了依据。
同时,也是继电保护整定的主要依据。
⽽上述主要针对⾼压系统的短路计算书,因为对低压系统的特殊性质没有全⾯包含,因⽽不能直接⽤来选择低压断路器。
本⽂结合国外某矿⼭项⽬的设计,阐述低压短路电流计算在低压断路器选型上的应⽤。
1 低压短路电流的计算1.1依据某矿⼭项⽬的设计,截取其中⼀段线路的计算结果 (见表1)及计算⽤线路图(见图1),两者都表明,上述计算中对于415V的计算,指的是6.6KV/0.415KV 变压器的⼆次出⼝,⽽不是低压主母线。
换⾔之,影响低压主母线上短路电流的许多因素,上述计算中没有予以考虑。
例如:变压器⼆次出线电缆(或母线)阻抗,低压受电断路器的阻抗,低压隔离开关的阻抗、低压主母线阻抗,等。
图1: 计算电路图1.2 另外,在电⼒系统的⾼压短路电流计算中,通常不计及各种元件的电阻。
⽽在低压短路计算时,元件电阻的影响,不能忽略。
1.3 根据规范:验算电器在短路条件下的通断能⼒,应采⽤安装处预期短路电流周期分量的有效值,当短路点附近所接电动机额定电流之和超过短路电流的1%时,应计⼊电动机反馈电流的影响。
在⾼压短路电流计算中,⼀般没有考虑低压电动机反馈电流的影响。
1.4 低压短路电流的计算: 1)系统阻抗:Xx = Ue *Ue *1000/Sdx =1.12m Ω Xx=系统阻抗;Ue=0.433Kv ;Sdx=系统短路容量或变压器⾼压侧短路容量; Sdx =168MVA(根据短路电流计算结果)。
低压系统短路电流计算和断路器整定

Copyright©博看网 . All Rights Reserved.
34
仪器仪表用户 INSTRUMENTA高供电的可靠性 [1]。因此,设计人员需合理 选择配电系统的保护装置。根据规范 [2] 并结合工程实际, 低压电动机一般装设过载保护、短路保护和接地故障保护。 由于低压断路器兼有过载和短路保护功能,目前大部分使 用断路器作为电动机的保护电器。
用于选择熔断器、设定保护值或作为校验继电保护装置灵 敏度及校验感应电动机启动的依据 [3]。因此,低压系统短 路电流计算是电气设计的重要组成部分。
低压配电系统中设置保护装置的目的是迅速检测出电 气系统、电气设备的异常状态,并予以切除,以防止事故
收稿日期:2021-03-17 作者简介:庄馨(1988-),女,山东日照人,硕士,工程师,从事石油化工装置的电气设计工作。
低压网络短路电流计算一般采用有名制。 由于低压网络远离发电系统,系统容量视为无限大电 源容量系统,短路电流交流分量不发生衰减,即预期短路 电流是由不衰减的交流分量和以初始值衰减到零的直流分 量组成,通常认为三相短路电流初始值 Ik'' 和稳态短路电流 有效值 Ik 是相等的 [3]。 1.1 三相短路电流 三相短路电流初始值 Ik'' 的计算公式如下 :
关键词 :短路电流 ;断路器整定 ;过电流脱扣器 ;异步电动机
中图分类号:TM74
文献标志码:A
DOI:10.3969/j.issn.1671-1041.2021.06.007 文章编号:1671-1041(2021)06-0033-05
Calculation of Current in Short-Circuit and Setting of Circuit Breaker for Low Voltage System
低压系统短路电流计算和断路器选择

低压系统短路电流计算与断路器选择低压系统短路电流计算是电气设计中的一项重要组成部分,计算数据量大,过程繁琐,设计人员大多以经验估算,常常影响设计质量,甚至埋下安全隐患。
本文拟在通过对低压短路电流的计算简述以与实例介绍,说明低压断路器的选择与校验方法。
在设计中,短路电流计算与断路器选择的步骤如下:①简单估算低压短路电流;②确定配电中心馈出电缆满足热稳定的最小截面;③选择合适的低压断路器;④合理选择整定值,校验灵敏度与选择性。
1.低压短路电流估算1.1短路电流的计算用途短路电流的计算用途主要有以下几点:①校验保护电器的整定值,如断路器、熔断器的分断能力应大于安装处最大预期短路电流。
②确定保护电器的整定值,使其在短路电流对开关电器与线路器材造成破坏之前切断故障电路。
③校验开关电器与线路器材的动热稳定是否满足规X和实际运行的要求。
1.2短路电流的计算特点短路电流计算的特点:①用户变压器容量远小于系统容量,短路电流周期分量不衰减。
②计入短路各元件有效电阻,但不计入元件与设备的接触电阻和电抗。
③因线路电阻较大,不考虑短路电流非周期分量的影响。
④变压器接线方式按D、yn11考虑。
1.3短路电流的计算方法短路电流计算的方法:式中 I k——三相短路电流或单相短路电流kA;Z k——短路回路总阻抗mΩ(包括系统阻抗、变压器阻抗、母线阻抗与电缆阻抗等,其中阻抗还包括电阻、电抗、相保电阻、相保电抗)U——电压V(用于三相短路电流时取230,用于单相短路电流时取220)1.4短路电流的计算示例下面通过X例来叙述低压短路电流的计算过程。
分析结论①系统容量一般为固定值,变压器出口短路电流取决于变压器容量与阻抗电压百分数。
变压器容量越大,短路电流也越大。
②设备端的短路电流取决于电缆的阻抗,即截面大小,截面越大,短路电流也越大。
2.配电中心馈出电缆的最小截面断路器应该在短路电流对电缆与元器件产生的热效应与机械力危害之前分断短路回路。
低压短路电流计算方法

一、短路原因及危害短路是电力系统中常见的故障之一,它是指供配电系统中相导体之间或者相导体与大地之间不通过负载阻抗而直接电气连接所产生的。
产生短路电流的主要原因有绝缘老化或者机械损伤;雷击或高电位浸入;误操作;动、植物造成的短路等。
发生短路时会产生很大的短路电流,短路电流会产生很大的电动力和很高的温度,也就是短路的电动效应和热效应,可能会造成电路及电气装置的损坏;短路将系统电压骤减,越靠近短路点电压越低,严重影响设备正常运行;还有发生短路后保护装置动作,从而造成停电事故,越靠近电源造成停电范围越大;对于电子信息设备可能会造成电磁干扰。
短路电流可以分为:三相短路,两相短路,单相短路。
两相短路分为相间短路和两相接地短路。
单相短路可以分为相对地短路和相对中性线短路。
一般三相短路电流值最大,单相短路电流值最小。
二、计算短路电流的意义1 选择电器。
《低压配电设计规范》GB 50054—2011第3.1.1的5和6条关于选择低压电器需要考虑短路电流的有关规定如下:电器应满足短路条件下的动稳定与热稳定的要求;用于断开短路电流的电器应满足短路条件下的接通能力和分断能力。
2 选择导体。
《低压配电设计规范》GB 50054—2011第3.2.2的3条关于选择电缆需要考虑短路电流的有关规定如下:导体应满足动稳定与热稳定的要求;3 断路器灵敏度校验。
《低压配电设计规范》GB 50054—2011第6.2.4条关于低压断路器灵敏度校验有关规定如下:当短路保护电器为断路器时,被保护线路末端的短路电流不应小于断路器瞬时或短延时过电流脱扣器整定电流的1.3倍。
4 根据 IEC60364-434.2 和IEC60364-533.2 条文中的规定,必须计算在回路首端的预期最大短路电流和回路末端的预期最小短路电流。
5 预期最大短路电流用在:断路器的分断能力;电器的接通能力;电气线路和开关装置的热稳定性和动稳定性。
6 预期最小短路电流主要用在:断路器脱扣器和熔断器灵敏度校验。
0.4kv短路电流简单计算方法

一、概述电力系统中,短路电流是一个非常重要的参数,它直接关系到电力设备的安全运行和系统的稳定性。
准确计算短路电流对于电力系统的设计和运行至关重要。
二、短路电流的定义短路电流是指在电气系统中,由于短路故障而流过短路点的电流。
当电气设备发生短路故障时,短路电流会迅速增大,可能引起设备损坏甚至火灾。
三、短路电流的计算方法在实际工程中,计算短路电流主要有以下几种方法:1. 阻抗法阻抗法是最常用的短路电流计算方法。
它通过建立电气系统的节点阻抗矩阵,采用节点电流法或戴维南电流法求解短路电流。
这种方法计算结果较为准确,但需要大量的手工计算和复杂的数学运算,适用于小型系统或理论研究。
2. 复等值法复等值法是一种简化的计算方法,它将电气设备抽象成等值阻抗或等值电动势源,将电气系统简化为等值电路进行计算。
这种方法适用于大规模电力系统的短路电流计算,能够快速得到较为准确的结果。
3. 解耦法解耦法是一种结合了阻抗法和复等值法的计算方法,它通过对电气系统进行逐步解耦,将复杂的系统简化为多个相互独立的子系统进行计算,最后将子系统的计算结果进行组合得到整个系统的短路电流。
这种方法在复杂系统的短路电流计算中有一定的优势。
四、0.4kv短路电流计算方法对于0.4kv低压电力系统,常见的短路电流计算方法是采用复等值法。
以下是简单的0.4kv短路电流计算步骤:1. 收集系统参数首先需要收集系统中各个电气设备的参数,包括变压器、发电机、配电柜等设备的额定容量、短路阻抗等信息。
2. 建立等值电路根据收集到的设备参数,建立0.4kv电力系统的等值电路模型,将各个设备抽象成等值阻抗或等值电动势源。
3. 进行短路计算利用等值电路模型进行短路电流的计算,得到系统各个节点的短路电流值。
4. 计算结果分析对于得到的短路电流值进行分析,评估系统的短路容量,确定保护装置的参数和动作时间。
五、结论0.4kv短路电流的计算是电力系统设计和运行中不可或缺的一步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中:un—变压器低压侧线电压,0.4KV
--变压器高压侧系统短路容量,MVA
系统电阻Rs及系统电抗Xs可按下式计算:
Rs=0.1Xs Xs=0.995Zs
无论D, yn11及Y, 接线的变压器,低压侧发生单相短路,零序电流均不能在三相三线制、且该变压器中性点又不接地的高压系统中流通,而只能经低压侧中性点完成回路。从低压侧短路点往电源看,高低压侧正(负)序阻抗是串联的,而高低压侧零序阻抗则是并联的。并联一个无穷大阻抗,就等效于串联一个零阻抗,故在计算相保阻抗时,不计高压系统的零序阻抗。又由于短路点离发电机较远,可认为所有元件的负序阻抗等于正序阻抗,即相阻抗,因此高压系统的相保电阻及相保电抗可按下式计算:
假定三相电源和网络元件阻抗都是对称的,因此三相短路是对称的短路,元件的阻抗是指元件的相阻抗,即正序阻抗。但是单相短路是不对称的短路,在TN系统中,发生单相接地短路时,短路电流从相线流出,经保护中性线(TN-C中的PEN线)或保护线(TN-S中的PE线)流回,遇到的是相线与保护线间的阻抗,这一阻抗过去叫相零阻抗,即从相线流出,零线流回,如今TN系统叫保护线,故引入了相保阻抗这一概念。
表1高压侧系统阻抗与相保阻抗值m
短路容量 MVA
10
20
30
50
75
100
200
300
∞
Zs
16.00
8.00
5.33
3.20
2.13
1.60
0.80
0.53
0
Rs
1.59
0.80
0.53
0.32
0.21
0.16
0.08
0.05
0
Xs
15.92
7.96
5.30
3.18
2.12
1.59
0.80
0.53
19.45
(80,13)
400
4.30
4.30
4.30
(33,70)
4.30
(14,10)
15.40
15.40
(159,20)
15.40
(63,33)
500
5.10
3.26
3.26
(25,70)
3.26
(10,74)
12.38
12.38
(127,50)
12.38
(50,75)
630
4.5
6.20
2.50
Sn—变压器额定容量KVA
UZ%--变压器阻抗电压百分数
Ur%--变压器电阻电压百分数
Ux%--变压器电抗电压百分数
Un%--变压器低压侧额定线电压,为0.4KV
变压器的零序电阻及电抗,对于D,yn11接线来说,可考虑等于其正(负)序电阻及电抗,但是Y, 接线的变压器,需由制造厂通过测试提供。
变压器的相保电阻及相保电抗可按下式计算:
式中 , , , , , 分别为系统的正序、负序、零序电阻及电抗。
按上述公式计算出变压器高压侧在不同短路容量时的系统阻抗与相保阻抗值(归算到0.4KV侧)列于表1。
请注意:“高压系统相保阻抗”一词,只为了采用阻抗相加的办法(串联)来计算低压侧单相短路电流而引入的抽象概念,实际上并不存在高压系统的相保回路。因而,如果试图仅用高压系统相保阻抗去除系统相电压来求取高压侧单相短路电流,那就错了!
计算中遵循下列规定:
1.计算三相短路电流时,计算相电压取230V,计算单相短路电流时,取220V。
2.计算三相短路电流时,导体计算温度取为+20℃,计算单相短路电流的相保电阻时,对电缆及导线来说,计算温度提高,相应电阻值加大,取+20℃时的1.5倍,母线则不需要提高计算温度,仍按+20℃考虑。
一、高压系统阻抗(S-System)
2.50
(19,60)
2.50
(8,20)
11.15
电压Un KV
容量Sn KVA
阻抗电压Uz%
负载损耗△PdKW
电阻
电抗
正、负序R(1)T,R(2)T
零序R(0)T
相保
正、负序X(1)T,X(2)T
零序X(0)T
相保
D,yn11
Y,
D,yn11
Y,
D,yn11
Y,
D,yn11
Y,
10(6)/ 0.4
200
4
2.60
10.4
10.4
(80,80)
10.4
(33,8Leabharlann )30.2430.24
(290,00)
30.24
(116,83)
250
3.05
7.81
7.81
(61,10)
7.81
(25,57)
24.38
24.38
(253,10)
24.38
(100,62)
315
3.65
5.89
5.89
(45,40)
5.89
(19,06)
19.45
19.45
(201,50)
本资料中列出了高压系统、配电变压器、低压主母线,配电线路的相阻抗及相保阻抗。相阻抗供计算三相短路电流用,相保阻抗供计算单相短路电流用。应该说明,单相接地短路的短路电流除经由PE或PEN线流回外,尚有一部分经接地的其它金属构架回流,但后者难以计算,故本资料中全部按经由保护线流回计算。关于相线与中性线(N线)的单相短路,在TN-C系统,与单相接地短路一样,因PE与N是合一的,而在TN-S系统短路电流经中性线流回,阻抗应略有不同,在中性线与保护线截面相同的情况下,可仍用单相接地短路时的阻抗值,如中性线与保护线的截面不同,则仅更换其电阻值即可。一般工程上只要计算单相接地短路(如碰壳故障)电流值,因这种故障和相线与中性线短路故障相比,其机率要高得多。
低压配电系统短路电流计算说明
中冶京诚工程技术有限公司电气工程技术所
2004年7月
低压配电系统短路电流计算
在设计低压配电系统时,需要进行短路电流计算,以选择低压电器、校验其稳定性及确定保护方案等。目前,钢铁企业电力设计手册上虽有此内容,但不够详细,特别是单相短路计算,很不具体。现从实用角度出发,编写此资料,目的是使设计者在具体工程中能很快地计算出各点的短路电流值。
式中R(1)T、R(2)T、R(0)T、X(1)T、X(2)T、X(0)T分别为变压器的正序、负序、零序电阻及电抗。
S9(S9-M)系列变压器的阻抗值列于表2。由于没有取得Y, 接线变压器零序阻抗的数据,故表2中列出的是S7系列变压器的数据,用括号表示,估计出入不会太大,可供参考。
表2 S9,S9-M系列变压器的阻抗值(归算到0.4KV侧)
0
1.06
0.53
0.35
0.21
0.14
0.11
0.05
0.03
0
10.61
5.31
3.53
2.12
1.41
1.06
0.53
0.35
0
二、配电变压器阻抗(T—Transformer)
变压器的每相正(负)序电阻及电抗可按下式计算:
RT=
式中:RT—变压器相电阻
XT—变压器相电抗
△Pd—变压器负载损耗KW