广东省惠州市2018届高三第一次调研考试数学(理)试题(WORD版,含解析)

合集下载

广州市铁一中学、广州大学附属中学、广州外国语学校2018-2019三校联考高三第一次理科数学试题(解析版)

广州市铁一中学、广州大学附属中学、广州外国语学校2018-2019三校联考高三第一次理科数学试题(解析版)

广州市铁一中学、广大附中、广外2018-2019三校联考高三第一次理科数学(解析版)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B.C. D.【答案】A【解析】【分析】根据的定义域求出集合;解不等式得到集合,再由交集的运算即可求出结果. 【详解】因为的定义域为,所以;又解不等式得,即,所以.故选A【点睛】本题主要考查集合的交集运算,熟记概念即可求解,属于基础题型.2.已知复数满足,则A. B. 3 C. 4 D. 5【答案】D【解析】【分析】先由复数的四则运算求出,再由复数模的运算即可求出结果.【详解】因为,所以,所以.故选D【点睛】本题主要考查复数的四则运算,以及复数模的运算,熟记公式即可求解,属于基础题型.3.已知双曲线的渐近线方程为,且过点,则该双曲线的标准方程为A. B. C. D.【答案】A【解析】【分析】根据双曲线的渐近线方程,先设出双曲线方程,再将点代入即可求出结果.【详解】因为双曲线的渐近线方程为,所以可设双曲线的方程为,又双曲线过点,所以,即,所以双曲线的方程为.故选A【点睛】本题主要考查双曲线,由双曲线的渐近线方程求出双曲线方程,只需熟记双曲线性质即可求解,属于基础题型.4.已知满足约束条件,则最大值为A. 6B. 4C. 3D. 1【答案】B【解析】【分析】先由约束条件作出可行域,再将目标函数化为,结合可行域即可求出结果.【详解】由约束条件作出可行域如下:又可化为,所以的最大值,即是直线在轴截距的最大值,由可行域易知,直线过点时,截距最大,即最大值为.故选B【点睛】本题主要考查简单的线性规划问题,只需先作出可行域,再由目标函数的几何意义即可求解,属于基础题型.5.展开式中x2的系数为A. 15B. 20C. 30D. 35【答案】C【解析】因为(1+x)6的通项为x r,所以1+(1+x)6展开式中含x2的项为1·x2和x4.因为+=2=30,所以1+(1+x)6展开式中x2的系数为30.故选C.6.已知函数是上的奇函数,且的图象关于对称,当时,,则的值为A. B. C. 0 D. 1【答案】C【解析】【分析】先根据函数的图象关于对称且是上的奇函数,可求出函数的最小正周期,再由时,,即可求出结果.【详解】根据题意,函数的图象关于对称,则,又由函数是上的奇函数,则,则有,变形可得,即函数是周期为4的周期函数,则,又由函数是上的奇函数,则,故.故选C【点睛】本题主要考查函数的基本性质,周期性、奇偶性、对称性等,熟记相关性质即可求解,属于常考题型.7.下列程序框图中,输出的A的值是A. B. C. D.【答案】B【解析】【分析】分析框图的作用,逐步执行框图,即可求出结果.【详解】执行程序框图如下:初始值,则,进入循环,,进入循环,,进入循环,,进入循环,,进入循环,,进入循环,,进入循环,,进入循环,,结束循环,输出.【点睛】本题主要考查程序框图,分析框图作用,逐步列举即可取出结果.8.已知点是圆内的一点,直线是以为中点的弦所在的直线,直线的方程为,那么()A. 且与圆相交B. 且与圆相切C. 且与圆相离D. 且与圆相离【答案】C【解析】试题分析:以点M为中点的弦所在的直线的斜率是,直线m∥l,点M(a,b)是圆内一点,所以,圆心到,距离是,故相离考点:直线与圆的位置关系9.九章算术中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图中如图所示,已知该几何体的体积为,则图中A. 1B.C. 2D.【答案】B【解析】【分析】由三视图可得:该几何体为一个四棱锥和一个三棱柱组合而成,作出其直观图,分别利用体积公式即可求出结果.【详解】由三视图可得:该几何体为一个四棱锥和一个三棱柱组合而成,作出其直观图如下:所以该几何体的体积为:,解得.故选B【点睛】本题主要考查几何体的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于基础题型.10.已知函数的最大值为2,且满足,则A. B. C. 或 D. 或【答案】D【解析】【分析】先由函数的最大值为2求出,再由得是函数的一条对称轴,进而可求出结果.【详解】因为函数的最大值为2,所以,所以,所以,又因为,所以是函数的一条对称轴,所以,所以,又因为,所以或.故选D【点睛】本题主要考查正弦型复合函数的图像和性质,熟记相关性质即可求解,属于常考题型. 11.已知点是抛物线上不同的两点,为抛物线的焦点,且满足,弦的中点到直线的距离记为,若,则的最小值为()A. 3B.C.D. 4【答案】A【解析】解析:设,则抛物线的定义及梯形中位线的性质可得,所以由题设可得,因为,即,所以,应选答案A。

(完整word版)2018-2019高三第一次模拟试题文科数学

(完整word版)2018-2019高三第一次模拟试题文科数学

高三年级第一次模拟考试60分.在每小题给出的四个选项中,有且合 题目要畚考公式:样本败据x lt 鬲的标准差 尸¥门如一訝+他— 英叩丘为样車屮均数柱体的体积公式Y=*其中/为底!ftl 曲积・h 为海341(1)复数 I ~i = (A) 1+2i (B) 1-2i(C) 2-i (D) 2+i⑵函数的定义域为(A) (-1,2) (B) (0, 2] (C) (0, 2) (D) (-1,2] ⑶ 己知命题p :办I 砒+ llX ,则了为 锥体的体积公式v=*h 乩中$为底面面枳,h 为商 耶的親血祝*休枳公式$=4庆,評It 中月为球的半牲(A) (C)函数|;宀林匚阴的图象可以由函数'尸沁酬的图象 (A) 64 (B) 31 (C) 32 (D) 63(7) 已知某几何体的三视图如图所示,则其表面积为 (A)右+4观(B)「(C) 2 (D) 8一、选择题:本大题共12小题,毎小题5〕 分,共 只有一 项 符(B)(D)(A) (C)向左平移个单位得到JL个单位得到(B)向右平移3个单位得到 向左平移设变量x 、y 满足约束条件 ⑸ (A) 3 (B) 2 (C) 1 (D) 5(D)向右平移个单位得到g+2y —2 鼻(h[2x +工一7冬6则的最小值为(6)等比数列{an }的公比a>1,血,则-血+口 $+他"卜彌=(8) 算法如图,若输入 m=210,n= 119,则输出的n 为 (A) 2 (B) 3 (C) 7 (D) 11(9) 在 中,/恥C 权」,AB=2, AC=3,则 = (A) 10 (B)-10(C) -4 (D) 4(10) 点A 、B 、C D 均在同一球面上,其中 的体积为(11) 已知何m 2 '黑⑴-代2侧集合」「等于D |『工=对止卡(B)卜: (12) 抛物线 的焦点为F,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为 的重心,则直线 BC 的方程为 (A)龙卄一0 (B): tT '■(C)Ly=0 (D) | It \.■二、填空题:本大题共 4小题,每小题5分,共20分.(13) 班主任为了对本班学生的考试成绩进行分析,从全班 50名同学中按男生、女生用分层 抽样的方法随机地抽取一个容量为 10的样本进行分析•己知抽取的样本中男生人数为 6,则班内女生人数为 ________ .Lif ]町= :—(14) 函数.文+】(X 〉0)的值域是 _________ .(15) 在数列1禺1中,尙=1,如 厂% = 2门丨,则数列的通项 □」= _________ .—7 --- F ------(16) —P 尺的一个顶点P ( 7,12)在双曲线 产 3上,另外两顶点 F1、F2为该双曲线是正三角形,AD 丄平面 AD=2AB=6则该球(D)(C) 卜 j(—Ak 土(D)(A) (B) 15 (C)的左、右焦点,则屮八几的内心的横坐标为 __________ .三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 (17) (本小题满分12分)在厶ABC 中,角A 、B C 的对边分别为a 、b 、c, A=2B,呦占」5 ' (I ) 求cosC 的值;[c\(II)求的值•(18) (本小题满分12分)某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查, 右表是在某单位得到的数据(人数)•(I )能否有90%以上的把握认为对这一问题的看法与性别有关?(II)从反对“男女同龄退休”的甲、 乙等6名男士中选出2人进行陈述,求甲、乙至少有- 人被选出的概率.反对 合计|男 5 6 H 1 女II1 3 "14 合计 16925(19) (本小题满分12分)如图,在三棱柱.A 尅匚 "Q 中,CC1丄底面ABC 底面是边长为2的正三角形,M N 、G 分别是棱CC1 AB, BC 的中点. (I ) 求证:CN//平面AMB1 (II)若X 严2迄,求证:平面AMG.(20) (本小题满分12 分)X'设函数:「—L(I )当a=0时,求曲线在点(1, f(1))处的切线 方程;P(K 2^k) 0.25 Od U 0J0 kL323 2.072 2.706__ ,讯耐一比严 ____(a+附:(II )讨论f(x)的单调性•(21) (本小题满分12分)中心在原点0,焦点F1、F2在x 轴上的椭圆E 经过点C(2, 2),且 ―二◎土::(I) 求椭圆E 的方程;(II) 垂直于0C 的直线I 与椭圆E 交于A B 两点,当以AB 为直径的圆P 与y 轴相切时,求 直线I 的方程和圆P 的方程•请考生在第(22)、( 23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分 •作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑 •(22) (本小题满分10分)选修4-1:几何证明选讲如图,AB 是圆0的直径,以B 为圆心的圆B 与圆0的一个交点为P.过点A 作直线交圆Q 于 点交圆B 于点M N. (I )求证:QM=QNi110(II)设圆0的半径为2,圆B 的半径为1,当AM= 时,求MN 的长.(23) (本小题满分10分)选修4-4:坐标系与参数 方程 以直角坐标系的原点 O 为极点,x 轴正半轴为极轴,.已知直线I 的参数方程为 (t 为参数,(I )求曲线C 的直角坐标方程;(II)设直线I 与曲线C 相交于A B 两点,当a 变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5:不等式选讲 设曲线C 的极坐标方程为2cos 0 L朋& *并在两种坐标系中取相同的长度单位(I) 求不等式的解集S;(II) 若关于x不等式应总=1我=;『;:纂釧有解,求参数t的取值范围(18) 解: 由此可知,有90%的把握认为对这一问题的看法与性别有关.…5分(H)记反对“男女同龄退休”的6男士为ai , i = 1, 2,…,6,其中甲、乙分别为a2,从中选出2人的不同情形为: a1a2, a1a3, a1a4, a1a5, a1a6, a2a3, a2a4, a2a5 , a2a6, a3a4, a3a5, a3a6 , a4a5, a4a6, a5a6,…9分共15种可能,其中甲、乙至少有1人的情形有9种,93 所求概率为P = .…12分(19)解:(I)设 AB1的中点为 P ,连结NP 、MP1 1•/ CM^ — A1 , NP^— A1 , • CM^ NP,2 2文科数学参考答案 一、 选择题: A 卷: ADCDC B 卷: BCDAB 二、 填空题: (13) 20 三、 解答题: (17)解:DACB ADDCAB(14) BB CA(-1,1)(15) n2(16) 1(I): B =(0,亍),••• cosB = 1— s in 2B =•/ A = 2B ,「.4si nA = 2si nBcosB = , cosA = cos2B = 1 — 2si n2B = 5 , ••• cosC = cos[ —(A + B)] = — cos(A + B) = si nAsi nB — cosAcosB =— 2.525 'sinC =1 — cos2C=11 .525 ,根据由正弦定理,c si nC 11b sinB 5…12分(I) K2= 25 X (5 X 3— 6 X11)216 X 9X 11 X 142.932 > 2.706 a1 ,• CNPK是平行四边形,• CN// MP•/ CN平面AMB1 MP平面AMB1 • CN//平面AMB1 …4分(n)v cc 仏平面 ABC •••平面 CC1B1E L 平面 ABC , •/ AG 丄 BC, • AGL 平面 CC1B1B • B1M L AG •/ CC1 丄平面 ABC 平面 A1B1C1 //平面 ABC •- CC L AC, CC1 丄 B1C1 ,在 Rt △ MCA 中 , AM k CM 即 AC2= 6. 同理,B1M=6.•/ BB1/ CC1, • BB1 丄平面 ABC •- BB1 丄 AB, • AB1= B1B2+ AB2= C1C2+ AB2= 2.3 , • AM2+ B1M2= AB2, • B1ML AM 又 AG A AM= A , • B1ML 平面 AMG (20)解:, , x2 x(x — 2) (I)当 a = 0 时,f(x) = , f (x)=—亠exex1 1f(i) =T ,f (i) =-^,曲线y = f(x)在点(1 , f(1))处的切线方程为(2x — a)ex — (x2 — ax 土 a)ex e2x(1 )若 a = 2,贝U f (x) w 0 , f(x)在(一a , +s )单调递减. …7 分(2 )若 a v 2,贝 U…10分 …12分1y =肓(x — 1) +(x — 2)(x — a)exA Bf (x)当x€ ( —a , a)或x€ (2 , +a )时,f (x) v 0,当x € (a , 2)时,f (x) > 0 , 此时f(x)在(—a , a)和(2 , +a )单调递减,在(a , 2)单调递增.(3)若a> 2,贝U当x€ ( —a , 2)或x€ (a , +a )时,f (x) v 0,当x € (2 , a)时,f (x) >0 , 此时f(x)在(—a , 2)和(a , +a )单调递减,在(2 , a)单调递增. …12分x2 y2(21)解:(I)设椭圆E的方程为02+ b2 = 1 (a>b> 0),贝y a2+ b2记c= ,a2—b2 ,不妨设F1( — c , 0) , F2(c , 0),则C f1= ( —c—2, —2) , C f2= (c —2, —2),则C f1 • C f2= 8 —c2 = 2 , c2 = 6,即a2 —b2= 6.由①、②得a2= 12, b2= 6. 当m= 3时,直线I 方程为y =— x + 3, 此时,x1 + x2 = 4,圆心为(2 , 1),半径为2,圆P 的方程为(x — 2)2 + (y — 1)2 = 4; 同理,当 m=— 3时,直线I 方程为y = — x — 3,圆P 的方程为(x + 2)2 + (y + 1)2 = 4. …12分 (22)解:(I)连结 BM BN BQ BP. •/ B 为小圆的圆心,••• BM= BN 又••• AB 为大圆的直径,• BQL MN , •- QM= QN …4 分 (n)v AB 为大圆的直径,•/ APB= 90 , • AP 为圆B 的切线,• AP2= AM- AN …6分 由已知 AB= 4, PB= 1 , AP2= AB2- PB2= 15,所以曲线C 的直角坐标方程为 y2= 2x .(n)将直线l 的参数方程代入 y2 = 2x ,得t2sin2 a — 2tcos a — 1= 0.所以椭圆E 的方程为 x2 y2 i2+ 6 = 1. (也可通过2a = iCFlI + |C ?2|求出a ) (n)依题意,直线 0C 斜率为1,由此设直线I 的方程为y = — X + m 代入椭圆 E 方程,得 3x2 — 4m 灶2m2- 12= 0. 由△= 16m2- 12(2m2 — 12) = 8(18 — m2),得 m2< 18. 4m 2m2— 12 记 A(x1 , y1)、B(x2 , y2),贝U x1 + x2=^ , x1x2 = -—. 3 3 x1 + x2 圆P 的圆心为(一_, y1 + y2 2 ),半径r = 当圆P 与y 轴相切时, x1 + x2 r = 1 2 1, 2x1x2 = (x1 + x2)2 4 2(2m2 — 12)= 3 = 4m2 —,m2= 9v 18. …10分 (I)由 2cos 0 p = sinr v ,得(p sin 0 )2 = 2 p cos 0, …6分 7 6设A、B两点对应的参数分别为t1、t2,则4C0S2 a 4 2 + = ------------------------ sin4 a sin2 a sin2 a当a =—亍时,|AB|取最小值2 .…10分 (24)解:—x + 3, x v — 3,(I) f(x) = — 3x — 3,— 3<x < 0,x — 3, x >0.如图,函数y = f(x)的图象与直线 y = 7相交于横坐标为 x1 =— 4,x2 = 10的两点, 由此得 S = [ — 4, 10].\ :I…6分(n)由(I )知,f (x )的最小值为一3,则不等式 f(x) + |2t —3| < 0有解必须且只需—3 + |2t — 3| < 0,解得0W t < 3,所以t 的取值范围是[0 , 3]. t1 + t2 = 2C0S a sin2 at1t2 sin2 a :.|AB| = |t1 - t2| = (t1 + t2)2 - 4t1t2 …10分。

惠州市2018届高三第一次调研考试(理数)

惠州市2018届高三第一次调研考试(理数)

惠州市2018届高三第一次调研考试数学(理科)注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.作答选择题时,选出每一个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。

3.非选择题必需用黑色笔迹签字笔作答,答案必需写在答题卡各题指定的位置上,写在本试卷上无效。

4.考试终止后,将本试卷和答题卡一并交回。

一、选择题:此题共12小题,每题5分,共60分. 在每题给出的四个选项中,只有一项符合题目要求. (1)已知集合{|12}M x x =-≤≤,{|2}xN y y ==,那么MN =( )A .(0,2]B .(0,2)C .[0,2]D .[2,)+∞(2)已知a 是实数,i 是虚数单位,假设1a ii-+是纯虚数,那么a =( ) A. 1 B.1 C.2 D.2(3)从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是( ) A .6B .8C .10D .12(4)已知概念域为R 的偶函数()f x 在(,0]-∞上是减函数,且(1)2f =, 那么不等式2(log )2f x >的解集为( ) A .(2,)+∞ B .1(0,)(2,)2+∞ C .2(2,)+∞ D .2,)+∞DC B A zyox(5)点()y x P ,为不等式组⎪⎩⎪⎨⎧≥-+≤-+≥--012083022y x y x y x 所表示的平面区域内的动点,则x y的最小值为( ) A .21- B .2- C .3- D .31-(6)设命题p :假设概念域为R 的函数()f x 不是偶函数,那么x R ∀∈,()()f x f x -≠. 命题q :()||f x x x =在(,0)-∞上是减函数,在(0,)+∞上是增函数. 那么以下判定错误的选项是( ) A .p 为假 B .q 为真 C .p ∨q 为真 D. p ∧q 为假(7)已知函数()3cos()(0)3f x x πωω=+>和()2sin(2)1g x x ϕ=++的图象的对称轴完全相同,假设[0,]3∈x π,那么()f x 的取值范围是( )A.[3,3]-B.3[,3]2- C.33[-D.3[3,]2-(8)一个四面体的极点在空间直角坐标系O xyz -中的坐标别离是(0,0,0),(1,0,1,) (0,1,1),1(,1,0)2,绘制该四面体三视图时, 正视图的方向如以下图所示,那么取得左视图...能够为( )(9)三国时期吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包括四个全等的勾股形及一个小正方形,别离涂成红(朱)色及黄色,其面积称为朱实、黄实,利用⨯2勾⨯股+()2勾—股⨯=4朱实+黄实=弦实,化简得:勾2+股2=弦2.设勾股形中勾股比为3:1,假设向弦图内随机抛掷1000颗图钉(大小忽略不计),那么落在黄色图形内的图钉数大约为( )()732.13≈A .866B .500C .300D .134朱朱 朱朱黄(10)已知函数()x f y =的概念域为R ,且知足以下三个条件:①对任意的[]84,21,∈x x ,当21x x <时,都有()()02121>--x x x f x f 恒成立;② ()()x f x f -=+4; ③ ()4+=x f y 是偶函数;若()()()2017116f c f b f a ===,,,那么c b a ,,的大小关系正确的选项是( ) A. c b a << B. c a b << C. b c a << D. a b c <<(11)已知三棱锥S ABC -,ABC ∆是直角三角形,其斜边8,AB SC =⊥平面,ABC6SC =,那么三棱锥的外接球的表面积为( )A .64πB .68πC .72πD .100π(12)已知12,F F 别离是双曲线22221(,0)y x a b a b-=>的两个核心,过其中一个核心与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,假设点M 在以线段12F F 为直径的圆内,那么双曲线离心率的取值范围是( )A .(1, 2)B .(2, +∞) C.(1, D.)+∞ 二.填空题:此题共4小题,每题5分。

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上,写在本试卷上无效。

3.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。

$(-4,-3)$B。

$[-4,-3]$C。

$(-\infty,-3)\cup(4,+\infty)$D。

$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。

$-\frac{2}{5}+\frac{1}{5}i$B。

$-\frac{2}{5}-\frac{1}{5}i$C。

$\frac{2}{5}+\frac{1}{5}i$D。

$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。

$\frac{2}{3}$B。

$\frac{1}{5}$C。

$\frac{2}{5}$D。

$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。

广东省2018年中考数学试题及答案解析(WORD版)

广东省2018年中考数学试题及答案解析(WORD版)

2018年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5。

考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是 A . B . C . D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12B .13C .14D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A .30°B .40°C .50°D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m <B .94m ≤C .94m >D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 。

高2021届高2018级高三数学一轮专题训练试题及考试参考答案 (5)

高2021届高2018级高三数学一轮专题训练试题及考试参考答案 (5)

[考案5]第五章 综合过关规范限时检测(时间:120分钟 满分150分)一、单选题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.数列32,-54,78,-916,…的一个通项公式为( D )A.a n =(-1)n·2n +12nB.a n =(-1)n ·2n +12nC.a n =(-1)n +1·2n +12n D.a n =(-1)n +1·2n +12n【试题解答】 该数列是分数形式,分子为奇数2n +1,分母是指数2n ,各项的符号由(-1)n+1来确定,所以D 选项正确.2.(2020·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 019的末位数字为( D )A.8B.2C.3D.7【试题解答】 由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,整数项为4,9,49,64,144,169,…,所以数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,…,因为2 019=4×504+3,所以b 2 019的末位数字为7.故选D.3.(2020·贵州贵阳监测)如果在等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( C ) A.14 B.21 C.28D.35【试题解答】 由题意得3a 4=12,则a 4=4,所以a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.故选C.4.(2020·山东潍坊期末)已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =28,a 2m a m =2m +21m -2,则数列{a n }的公比为( B )A.2B.3C.12D.13【试题解答】 设数列{a n }的公比为q ,由题意知q ≠1,因为S 2m S m =28,a 2m a m =2m +21m -2,所以1+q m =28,q m =2m +21m -2,所以m =3,q =3.故选B.5.设等差数列{a n }的前n 项和为S n ,若S 13>0,S 14<0,则S n 取最大值时n 的值为( B ) A.6 B.7 C.8D.13【试题解答】 根据S 13>0,S 14<0,可以确定a 1+a 13=2a 7>0,a 1+a 14=a 7+a 8<0.所以a 7>0,a 8<0,则S n 取最大值时n 的值为7.故选B.6.(2020·江西南昌三中模拟)在等比数列{a n }中,已知对任意的正整数n ,a 1+a 2+a 3+…+a n =2n +m ,则a 21+a 22+…+a 2n =( A )A.13(4n -1) B.2n -1 C.13(2n -1) D.4n -1【试题解答】 通解:设{a n }的公比为q ,∵a 1+a 2+a 3+…+a n =2n +m 对任意的正整数n 均成立,∴a 1=2+m ,a 2=2,a 3=4.∵{a n }是等比数列,∴m =-1,a 1=1,q =2,∴a 21+a 22+…+a 2n=1+4+42+…+4n -1=1-4n 1-4=13(4n-1).故选A. 优解:∵a 1+a 2+a 3+…+a n =2n +m ,∴当n ≥2时,a n =2n -1,又a 1=2+m ,满足上式,∴m =-1,即等比数列{a n }的首项为1,公比为2,∴a n =2n -1,∴a 21+a 22+…+a 2n =1+4+42+…+4n -1=1-4n 1-4=13(4n-1).故选A.7. (2020·河北六校第三次联考)“泥居壳屋细莫详,红螺行沙夜生光.”是宋代诗人欧阳修对鹦鹉螺的描述.假设一条螺旋线是用以下方法画成(如图):△ABC 是边长为1的正三角形,曲线CA 1,A 1A 2,A 2A 3分别是以A ,B ,C 为圆心,AC ,BA 1,CA 2为半径画的弧,曲线CA 1A 2A 3称为螺旋线,再以A 为圆心,AA 3为半径画弧,……如此画下去,则所得弧CA 1,A 1A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度为( A )A.310πB.1103πC.58πD.110π【试题解答】 根据弧长公式知,弧CA 1,A 1A 2,A 2A 3,…,A n -2A n -1,A n -1A n 的长度分别为23π,2×23π,3×23π,…,(n -1)×23π,n ×23π,该数列是首项为23π,公差为23π的等差数列,所以该数列的前n 项和S n =π3n (n +1),所以所得弧CA 1,A 1A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度为S 30=π3×30×(30+1)=310π.故选A.8.(2020·河北衡水中学调研)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n为数列{a n }的前n 项和,则2S n +16a n +3的最小值为( B ) A.3 B.4 C.23-2D.92【试题解答】 由已知有a 23=a 1a 13,所以有(a 1+2d )2=a 1(a 1+12d ),d =2(d ≠0),数列{a n }通项公式a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,所以2S n +16a n +3=n 2+8n +1=(n +1)+9n +1-2≥4,当且仅当n +1=9n +1,即n =2时等号成立.故选B. 二、多选题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分)9.等比数列{a n }的前三项和S 3=14,若a 1,a 2+1,a 3成等差数列,则公比q =( AD ) A.2 B.13 C.3D.12【试题解答】 由a 1,a 2+1,a 3成等差数列, 得2(a 2+1)=a 1+a 3,即2(1+a 1q )=a 1+a 1q 2, 即a 1(q 2-2q +1)=2,①又S 3=a 1+a 2+a 3=a 1(1+q +q 2)=14,② ①÷②得:q 2-2q +11+q +q 2=214,解得q =2或q =12.另解:由2(a 2+1)=a 1+a 3,得3a 2+2=a 1+a 2+a 3=S 3=14,解得a 2=4, 则S 3=4q +4+4q =14,解得q =2或q =12.故选A 、D.10.若数列{a n }满足对任意n ≥2(n ∈N )都有(a n -a n -1-2)·(a n -2a n -1)=0,则下面选项中正确的是( ABD )A.{a n }可以是等差数列B.{a n }可以是等比数列C.{a n }可以既是等差数列又是等比数列D.{a n }可以既不是等差数列又不是等比数列 【试题解答】 因为(a n -a n -1-2)(a n -2a n -1)=0, 所以a n -a n -1-2=0或a n -2a n -1=0, 即a n -a n -1=2或a n =2a n -1,当a n ≠0,a n -1≠0时,{a n }是等差数列或等比数列;当a n =0或a n -1=0时,{a n }可以不是等差数列,也可以不是等比数列,比如数列,2,0,0,0,…….故选A 、B 、D.11.已知等比数列{x n }的公比为q ,若恒有|x n |>|x n +1|,且x 11+q =12,则首项x 1的取值范围可以是( AC ) A.(12,1) B.(0,1) C.(0,12)D.(1,2)【试题解答】 由|x n |>|x n +1|,得1>|x n +1x n|=|q |,故-1<q <0或0<q <1.0<1+q <1或1<1+q <2,又x 11+q =12,所以x 1=1+q 2,所以x 1∈(0,12)∪(12,1).故选A 、C.12.(2020·山东十校联考)设数列{a n }和{b n }分别是等差数列与等比数列,且a 1=b 1=4,a 4=b 4=1,则以下结论不正确的是( BCD )A.a 2>b 2B.a 3<b 3C.a 5>b 5D.a 6>b 6【试题解答】 设等差数列的公差、等比数列的公比分别为d ,q ,则由题设得⎩⎪⎨⎪⎧4+3d =1,4q 3=1,解得⎩⎨⎧d =-1,q =314,则a 2-b 2=3-316>3-327=0;故A 正确.同理,其余都错,故选B 、C 、D.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2020·云南师大附中月考)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n +1,则S 4=__85__. 【试题解答】 a n +1=3S n +1①,a n =3S n -1+1(n ≥2)②,①-②得:a n +1=4a n (n ≥2),又a 1=1,a 2=3a 1+1=4,∴{a n }是首项为1,公比为4的等比数列,∴S 4=1-441-4=85.或S 4=a 1+a 2+a 3+a 4=1+4+16+64=85.14.(2020·福建莆田月考)设S n 为等差数列{a n }的前n 项和,已知a 1+a 3+a 11=6,则S 9=__18__. 【试题解答】 设等差数列{a n }的公差为d .∵a 1+a 3+a 11=6,∴3a 1+12d =6,即a 1+4d =2,∴a 5=2,∴S 9=(a 1+a 9)×92=2a 5×92=18.15.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =__2n-1__.【试题解答】 因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n , 两式相减得,a n +1=2a n +1, 所以a n +1+1=2(a n +1),即a n +1+1a n +1=2. 又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n ,所以a n =2n -1.故填2n -1.16.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意的n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为 [23,+∞) .【试题解答】 因为数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),所以当n ≥2时,a 1a 2a 3…a n -1=2(n -1)2,则a n =22n -1,a 1=2也适合,所以1a n =122n -1,数列{1a n }是首项为12,公比为14的等比数列,则1a 1+1a 2+…+1a n =12(1-14n )1-14=23(1-14n )<23,则实数t 的取值范围为[23,+∞).故填[23,+∞). 四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .【试题解答】 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2,∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0.∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n+1-4n +2.又当n =1时,上式也满足. ∴当n ∈N *时,S n =2n +1-4n +2.18.(本小题满分12分)(2020·山东省济南第一中学期中考试)已知正项等差数列{a n }的前n 项和为S n ,若S 3=12,且2a 1,a 2,a 3+1成等比数列.(1)求{a n }的通项公式;(2)设b n =a n3n ,记数列{b n }的前n 项和为T n ,求T n .【试题解答】 (1)∵S 3=12,即a 1+a 2+a 3=12, ∴3a 2=12,所以a 2=4, 又∵2a 1,a 2,a 3+1成等比数列,∴a 22=2a 1·(a 3+1),即a 22=2(a 2-d )·(a 2+d +1), 解得,d =3或d =-4(舍去),∴a 1=a 2-d =1,故a n =3n -2. (2)b n =a n 3n =3n -23n =(3n -2)·13n ,∴T n =1×13+4×132+7×133+…+(3n -2)×13n ,①①×13得13T n =1×132+4×133+7×134+…+(3n -5)×13n +(3n -2)×13n +1.②①-②得23T n =13+3×132+3×133+3×134+…+3×13n -(3n -2)×13n +1=13+3×132(1-13n -1)1-13-(3n -2)×13n +1=56-12×13n -1-(3n -2)×13n +1,∴T n =54-14×13n -2-3n -22×13n =54-6n +54×13n .19.(本小题满分12分)(2020·河南洛阳孟津二中月考)在数列{a n }中,设f (n )=a n ,且f (n )满足f (n +1)-2f (n )=2n (n ∈N *),a 1=1.(1)设b n =a n2n -1,证明:数列{b n }为等差数列;(2)求数列{3a n -1}的前n 项和S n .【试题解答】 (1)由已知得a n +1=2a n +2n ,得 b n +1=a n +12n =2a n +2n 2n =a n2n -1+1=b n +1,∴b n +1-b n =1,又a 1=1,∴b 1=1, ∴{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n2n -1=n ,∴a n =n ·2n-1,3a n -1=3n ·2n -1-1.∴S n =3×1×20+3×2×21+3×3×22+…+3(n -1)×2n -2+3n ×2n -1-n , 两边同时乘以2,得2S n =3×1×21+3×2×22+…+3(n -1)×2n -1+3n ×2n -2n ,两式相减,得-S n =3×(1+21+22+…+2n -1-n ×2n )+n =3×(2n -1-n ×2n )+n =3(1-n )2n -3+n , ∴S n =3(n -1)2n +3-n .20.(本小题满分12分)(2020·河北衡水模拟)数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足a n =b 13+1+b 232+1+b 333+1+…+b n 3n +1,求数列b n 的通项公式.【试题解答】 (1)当n =1时,a 1=S 1=2; 当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n , 易知a 1=2满足上式,所以数列{a n }的通项公式为a n =2n . (2)a n =b 13+1+b 232+1+b 333+1+…+b n3n +1(n ≥1),①a n +1=b 13+1+b 232+1+b 333+1+…+b n3n +1+b n +13n +1+1,②②-①得,b n +13n +1+1=a n +1-a n =2,b n +1=2(3n +1+1),故b n =2(3n +1)(n ≥2).又a 1=b 13+1=2,即b 1=8,也满足上式,所以b n =2(3n +1)(n ∈N *).21.(本小题满分12分)(2020·广东广州一测)已知数列{a n }的前n 项和为S n ,数列{S nn }是首项为1,公差为2的等差数列.(1)求数列{a n }的通项公式;(2)设数列{b n }满足a 1b 1+a 2b 2+…+a n b n =5-(4n +5)(12)n ,求数列{b n }的前n 项和T n .【试题解答】 (1)因为数列{S nn }是首项为1,公差为2的等差数列,所以S nn =1+2(n -1)=2n -1,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(2n 2-2)-[2(n -1)2-(n -1)]=4n -3. 当n =1时,a 1=1也符合上式,所以数列{a n }的通项公式为a n =4n -3. (2)当n =1时,a 1b 1=12,所以b 1=2a 1=2.当n ≥2时,由a 1b 1+a 2b 2+…+a n b n =5-(4n +5)(12)n ,①得a 1b 1+a 2b 2+…+a n -1b n -1=5-(4n +1)(12)n -1.② ①-②,得a n b n =(4n -3)(12)n .因为a n =4n -3,所以b n =4n -3(4n -3)(12)n=2n (当n =1时也符合),所以b n +1b n =2n +12n =2,所以数列{b n }是首项为2,公比为2的等比数列,所以T n =2(1-2n )1-2=2n +1-2.22.(本小题满分12分)已知正项数列{a n }的前n 项和S n 满足4S n =a 2n +2a n+1(n ∈N *). (1)求数列{a n }的通项公式;(2)若b n =a n3n ,求数列{b n }的前n 项和T n ;(3)在(2)的条件下,若b n1-T n≤λ(n +4)-1对任意n ∈N *恒成立,求实数λ的取值范围.【试题解答】 (1)由已知得4S n =(a n +1)2,① 当n =1时,4S 1=(a 1+1)2=4a 1,解得a 1=1. 当n ≥2时,4S n -1=(a n -1+1)2.② ①-②得,4a n =(a n +1)2-(a n -1+1)2, 则(a n +a n -1)(a n -a n -1-2)=0. 因为a n >0,所以a n -a n -1=2,即数列{a n }是首项为1,公差为2的等差数列. 所以a n =2n -1. (2)由(1)知b n =2n -13n ,则T n =1·13+3·(13)2+5·(13)3+…+(2n -3)·(13)n -1+(2n -1)·(13)n .13T n =1·(13)2+3·(13)3+5·(13)4+…+(2n -3)·(13)n +(2n -1)·(13)n +1, 两式相减得23T n =13+2[(13)2+(13)3+…+(13)n ]-(2n -1)(13)n +1=23-2n +23·(13)n ,所以T n =1-n +13n .(3)由b n1-T n≤λ(n +4)-1得, 则λ≥3n (n +1)(n +4)=3n +4n +5,因为n +4n≥2n ·4n=4, 所以当且仅当n =2时,3n +4n +5有最大值13,即λ≥13.。

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。

写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。

若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

惠州市2018届高三第一次调研考试数 学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求.(1)已知集合{|12}M x x =-≤≤,{|2}xN y y ==,则M N =I ( ) A .(0,2] B .(0,2) C .[0,2]D .[2,)+∞(2)已知a 是实数,i1i-+a 是纯虚数,则a =( ) A. 1 B. -D.(3)从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是( ) A .6 B .8C .10D .12(4)已知定义域为R 的偶函数()f x 在(,0]-∞上是减函数,且(1)2f =,则不等式2(log )2f x >的解集为( )A. (2,)+∞ B . 1(0,)(2,)2+∞U C. (0,)2+∞U D .)+∞ (5)点()y x P ,为不等式组⎪⎩⎪⎨⎧≥-+≤-+≥--012083022y x y x y x 所表示的平面区域上的动点,则x y 最小值为( )A .21- B . 2- C . 3- D . 31-(6)设命题p :若定义域为R 的函数()f x 不是偶函数,则x R ∀∈,()()f x f x -≠. 命题q :()||f x x x =在(,0)-∞上是减函数,在(0,)+∞上是增函数.则下列判断错误..的是( ) A .p 为假 B .q 为真 C .p ∨q为真 D. p ∧q 为假(7) 已知函数()3cos()(0)3f x x πωω=+>和()2sin(2)1g x x ϕ=++的图象的对称轴完全相同,若[0,]3∈x π,则()f x 的取值范围是( )A.[3,3]-B.3[,3]2- C.33[3,]2-D.3[3,]2-(8)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是1(0,0,0),(1,0,1,(0,1,1),(,1,0)2),绘制该四面体三视图时, 按照如下图所示的方向画正视图,则得到左视图可以为( )(9)三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用⨯2勾⨯股+()2勾—股⨯=4朱实+黄实=弦实,化简得:勾+股=弦.设勾股形中勾股比为3:1,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )()732.13≈A .866B .500C .300D .134(10)已知函数()x f y =的定义域为R ,且满足下列三个条件:① 对任意的[]84,21,∈x x ,当21x x <时,都有()()02121>--x x x f x f 恒成立;② ()()x f x f -=+4③ ()4+=x f y 是偶函数;若()()()2017116f c f b f a ===,,,则c b a ,,的大小关系正确的是( ) A. c b a << B. c a b << C. b c a << D. a b c <<(11)已知三棱锥S ABC -,ABC ∆是直角三角形,其斜边8,AB SC =⊥平面,6ABC SC =,则三棱锥的外接球的表面积为( )A . 64πB .68π C. 72π D .100π(12)已知12,F F 分别是双曲线22221(,0)y x a b a b-=>的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段12F F 为直径的圆内,则双曲线离心率的取值范围是( )A .(1, 2)B .(2, +∞)C .(1,2)D .(2,)+∞第Ⅱ卷本卷包括必考题和选考题两部分。

第13题~第21题为必考题,每个考生都必须作答。

第22题、第23题为选考题,考生根据要求作答。

二.填空题:本题共4小题,每小题5分,共20分。

(13)执行如图所示的程序框图,则输出S 的结果为.(14)二项式6(x x展开式中的常数项是 . (15)已知正方形ABCD 的中心为O 且其边长为1,则()()=+⋅- .(16)已知a ,b ,c 是ABC ∆的三边,4=a ,)64(,∈b ,C A sin 2sin =,则c 的取值范围为 .三.解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)在公差不为0的等差数列{}n a 中,148,,a a a 成等比数列. (1)已知数列{}n a 的前10项和为45,求数列{}n a 的通项公式; (2)若11n n n b a a +=,且数列{}n b 的前n 项和为n T ,若1199n T n =-+,求数列{}n a 的公差. (18)(本小题满分12分)已知圆柱1OO 底面半径为1,高为π,ABCD 是圆柱的一个轴截面,动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面ABCD 绕着轴1OO 逆时针旋转(0)θθπ<<后,边11B C 与曲线Γ相交于点P .(Ⅰ)求曲线Γ长度; (Ⅱ)当2πθ=时,求点1C 到平面APB 的距离;(19)(本小题满分12分)近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和80后的员工中随机调查了100位,得到数据如下表:愿意被外派 不愿意被外派 合计70后20 20 40 80后40 20 60 合计 60 40 100(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由; (Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排6名参与调查的70后、80后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,从中随机选出3人,记选到愿意被外派的人数为x ;80后员工中有愿意被外派的4人和不愿意被外派的2人报名参加,从中随机选出3人,记选到愿意被外派的人数为y ,求x y <的概率. 参考数据:2()P K k >0.15 0.10 0.05 0.025 0.010 0.005 k2.072 2.7063.8415.0246.6357.879(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++).(20)(本小题满分12分)如图,椭圆2222:1(0)x y C a b a b+=>>的右顶点为(2,0)A ,左、右焦点分别为1F 、2F ,过点A 且斜率为12的直线与y 轴交于点P , 与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点1F .(Ⅰ)求椭圆C 的标准方程; (Ⅱ)过点P且斜率大于12的直线与椭圆交于,M N 两点 (||||PM PN >),若:PAM PBN S S λ∆∆=,求实数λ的取值范围.(21)(本小题满分12分)已知函数x ax x x f ln 2)(2+-=(其中a 是实数). (1)求)(x f 的单调区间;(2)若设320)1(2<<+a e e ,且)(x f 有两个极值点1x 212,()x x x <,求)()(21x f x f -取值范围.(其中e 为自然对数的底数).请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 的参数方程为32,5(42.5x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos tan ρθθ=. (Ⅰ)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(Ⅱ)若1C 与2C 交于A B ,两点,点P 的极坐标为π2,4⎛⎫- ⎪⎝⎭,求11||||PA PB +的值.(23)(本题满分10分)选修4-5:不等式选讲已知函数()211,()f x x x g x x a x a =-++=-++. (Ⅰ)解不等式()9f x >;(Ⅱ)12,x x ∀∈∃∈R R ,使得12()()f x g x =,求实数a 的取值范围.惠州市2018届高三第一次调研考试数学(理科)参考答案与评分标准一、选择题(本大题共12小题,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案AACBDCDBDBDA1.【解析】A 解:依题意得[1,2]M =-,(0,)N =+∞(0,2]M N ∴=I . 2.【解析】设i =i (0)1ia b b -≠+,则i=(1i)i=i a b b b -+-+,所以{,1,a b b =-=- 解得a =1, 选择A 3.【解析】由题意,末尾是0,2,4末尾是0时,有4个;末尾是2时,有3个;末尾是4时,有3个,所以共有4+3+3=10个 故选C .4.【解析】B 解:()f x 是R 的偶函数,在(,0]-∞上是减函数,所以()f x 在[0,)+∞上是增函数, 所以2(log )2(1)f x f >=2(|log |)(1)f x f ⇔>2|log |1x ⇔>2log 1x ⇔>或2log 1x <-2x ⇔>或102x <<. 答案B. 5.【解析】D 如图所示,不等式组⎪⎩⎪⎨⎧≥-+≤-+≥--012083022y x y x y x 所表示的平面区域为图中阴影部分.由⎩⎨⎧=-+=-+012083y x y x 可得⎩⎨⎧-==13y x ,故()1,3-A .x y的几何意义为直线OP 的斜率,故当点P 与点A 重合时直线OP 的斜率的最小,此时31-=OP k .6.【解析】C 解:函数()f x 不是偶函数, 仍然可,(-)()x f x f x ∃=使, p 为假; ()||f x x x ==22(x 0)(x 0)x x ⎧≥⎪⎨-<⎪⎩ 在R 上都是增函数, q 为假; 以 p ∨q 为假,选C .7.【解析】因为函数f (x )和g (x )的图象的对称轴完全相同,故f (x )和g (x )的周期相同,所以ω =2,()3cos(2)3f x x π=+,由[0,]3∈x π,得2[,]33x πππ+∈,根据余弦函数的单调性,当23x ππ+=,即3x π=时,f (x )min =3-,当233x ππ+=,即0x =时,f (x )max =32,所以f (x )的取值范围是3[3,]2-,选择D.8【解析】B 满足条件的四面体如左图,依题意投影到yOz 平面为正投影,所以左(侧)视方向如图所示,所以得到左视图效果如右图,故答案选B .9 【解析】D 设勾为a ,则股为a 3 , ∴ 弦为a 2 ,小正方形的边长为a a -3.所以图中大正方形的面积为 24a ,小正方形面积为()2213a - ,所以小正方形与大正方形的面积比为()2314132-=- ∴ 落在黄色图形(小正方形)内的图钉数大约为 1341000231≈⨯⎪⎪⎭⎫ ⎝⎛-.10 【解析】B 由①知函数()x f 在区间[]84,上为单调递增函数;由②知()()()x f x f x f =+-=+48,即函数()x f 的周期为8,所以()()()1182522017f f f c =+⨯==,()()311f f b ==;由③可知()x f 的图象关于直线4=x 对称,所以()()()5311f f f b ===,()()71f f c ==;因为函数()x f 在区间[]84,上为单调递增函数,所以()()()765f f f <<,即c a b <<11.【解析】D 本题考查空间几何体的表面积.三棱锥所在长方体的外接球,即三棱锥所在的外接球;所以三棱锥的外接球的直径,即三棱锥的外接球的半径;所以三棱锥的外接球的表面积.选D.12【解析】A 如图1,不妨设12(0,),(0,)F c F c -,则过F 1与渐近线a y x b =平行的直线为ay x c b=+, 联立,,a y x c b a y x b ⎧=+⎪⎨⎪=-⎩解得,2,2bc x a c y ⎧=-⎪⎨⎪=⎩即(,)22bc c M a -因M 在以线段12F F 为直径的圆222x y c +=内,故222()()22bc c c a -+<,化简得223b a <, 即2223c a a -<,解得2ca<,又双曲线离心率1ce a=>,所以双曲线离心率的取值范围是(1,2). 选择A .二、填空题(本大题共4个小题,每小题5分,共20分)13. 30 14.240 15. 1 16.)102,24( 13.【解析】第一次,i=1,满足条件,i <6,i=1+2=3,S=6, 第二次,i=3,满足条件,i <6,i=3+2=5,S=6+10=16, 第三次,i=5,满足条件,i <6,i=5+2=7,S=16+14=30, 第四次,i=7,不满足条件i <6,程序终止, 输出S=30,故答案为:3014.【解析】二项式6)2(xx +展开式的通项公式为r rrr x C T 236612-+=,令0236=-r ,求得4=r,所以二项式6()x x +展开式中的常数项是46C ×24=240.15.【解析】()()145cos 21=⨯⨯=⋅=+⋅-οBD AD BC BA OA OD 16.【解析】由正弦定理C c A sin sin 4=,AcA 2sin sin 4=∴,A c cos 8=∴, 由余弦定理A bc c b cos 161622-+=,A b A b 222cos 16cos 6416-=-∴164)4(16)4)(4(166416cos 22b b b b b b A +=-+-=--=,b b Ac 41616464cos 6422+=+⨯==由)64(,∈b ,40322<<c ,10224<<∴c .三、解答题(本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程) 17.(本小题满分12分)解:(1)设数列}{n a 的公差为d (0≠d ),由148,,a a a 成等比数列可得2418a a a =⋅,即)7()3(1121d a a d a +⋅=+,得d a 91= …………4分由数列{}n a 的前10项和为45得4545101=+d a ,即454590=+d d ,所以3,311==a d .故数列}{n a 的通项公式为:3831)1(3+=⨯-+=n n a n . …………8分 (2)因为11n n n b a a +=)11(11+-=n n a a d ,所以数列{}n b 的前n项和为n T )11(1)11()11()11(11113221++-=⎥⎦⎤⎢⎣⎡-++-+-=n n n a a d a a a a a a dΛ, 即n T n n d nd d d d nd a a d +-=+-=+-=+-=9191)9191(1)9191(1)11(1211,因此112=d,解得公差1-=d 或1. …………12分 18.(本小题满分12分)【解】(Ⅰ)Γ在侧面展开图中为BD 的长,其中AB = AD = π,∴Γ的长为2π; …………………………3分 (Ⅱ)当2πθ=时,建立如图所示的空间直角坐标系,……………………4分则有(0,1,0)A -、(0,1,0)B 、(1,0,)2P π-、1(1,0,)C π-,……………………6分(0,2,0)AB ⇒=u u u r 、(1,0,)2AP π=-u u u r 、1(1,0,)OC π=-u u u u r ……………………8分设平面ABP 的法向量为(,,)n x y z =r ,则2002y x y z π=⎧⎪⎨-++=⎪⎩,…………9分取z = 2得(,0,2)n π=r,……………………10分所以点C 1到平面PAB 的距离为12||||4OC n d n π=+u u u u r r g r ;……………………12分注:本题也可以使用等积法求解.19.(本小题满分12分)【解析】(Ⅰ)22 2()100(20204020) ()()()()60406040n ad bcKa b c da cb d-⨯⨯-⨯==++++⨯⨯⨯4004001002.778 2.7065760000⨯⨯=≈>………4分所以有90% 以上的把握认为“是否愿意外派与年龄有关”…………5分(Ⅱ)“x y<”包含:“0,1x y==”、“0,2x y==”、“0,3x y==”、“1,2x y==”、“1,3x y==”、“2,3x y==”六个互斥事件…………6分且0312334233664(0,1)400C C C CP x yC C===⨯=,03213342336612(0,2)400C C C CP x yC C===⨯=0330334233664(0,3)400C C C CP x yC C===⨯=,122133423366108(1,2)400C C C CP x yC C===⨯=12303342336636(1,3)400C C C CP x yC C===⨯=,21303342336636(2,3)400C C C CP x yC C===⨯=所以:412410836362001()4004002P x y+++++<===.…………12分20.(本小题满分12分)【解析】(Ⅰ)因为1BF x⊥轴,得到点2(,)bB ca--,…………2分所以22222213()21a abba a cca b c⎧==⎧⎪⎪⎪=⇒=⎨⎨+⎪⎪=⎩⎪=+⎩,所以椭圆C的方程是22143x y+=.…………5分(Ⅱ)因为1sin22(2)112sin2PAMPBNPA PM APMS PM PMS PN PNPB PN BPNλλλ∆∆⋅⋅∠⋅===⇒=>⋅⋅⋅∠……6分所以2PM PNλ=-u u u u r u u u r.由(Ⅰ)可知(0,1)P-,设MN方程:1y kx=-,1122(,),(,)M x y N x y,联立方程221143y kx x y =-⎧⎪⎨+=⎪⎩得:22(43)880k x kx +--=.即得122122843843k x x k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩(*) 又1122(,1),(,1)PM x y PN x y =+=+u u u u r u u u r ,有122x x λ=-, …………7分 将122x x λ=-代入(*)可得:222(2)1643k k λλ-=+. …………8分 因为12k >,有2221616(1,4)3434k k k =∈++, …………9分 则2(2)14λλ-<<且2λ>44λ⇒<<+ (没考虑到2λ>扣1分) ………11分 综上所述,实数λ的取值范围为(4,4+. …………12分 注:若考生直接以两个极端位置分析得出答案,只给结果2分.21.(本小题满分12分)(1)()f x 的定义域为(0)+∞,,2222()2x ax f x x a x x-+'=-+=,…….1分 令2()22g x x ax =-+,216a ∆=-,对称轴4a x =,(0)2g =, 1)当162-=∆a ≤0,即-4≤a ≤4时,)(x f '≥0于是,函数()f x 的单调递增区间为(0)+∞,,无单调递减区间.……………………………………2分2)当162-=∆a >0,即4a <-或4a >时,①若4a <-,则()0f x '>恒成立于是,()f x 的单调递增区间为(0)+∞,,无减区间.……………………3分②若4a >令()0f x '=,得1x =,2x =, 当12(0)()x x x ∈+∞U ,,时,()0f x '>,当12()x x x ∈,时,()0f x '<. 于是,()f x 的单调递增区间为1(0)x ,和2()x +∞,,单调递减区间为12()x x ,.…………4分 综上所述:当4a …时, ()f x 的单调递增区间为(0)+∞,,无单调递减区间.当4a >时,()f x 的单调递增区间为1(0)x ,和2()x +∞,,单调递减区间为12()x x ,. …………………………………………………………………………5分(2)由(1)知,若()f x 有两个极值点,则4a >,且1202a x x +=>,121x x =,1201x x ∴<<< 又211220x ax -+=Q ,1112()a x x =+,1202()3e a e +<<,1111133e x e x +<+<+,又101x <<,解得,1113x e<<……………………………………………7分 于是,22121211222()()()ln ()ln 2f x f x x x a x x ax x -=--+-+22121212)(2(ln l (n ))x x x x x x a =----+112122)2()(ln 2x x x x a a x x -⋅-=+- 11111))4l 11(n (x x x x x -⋅+=-+2112114ln x x x =+-……………………………………9分 令22()l 14n h x x x x =-+1(2x <<,则2232(1)()0x h x x --'=<恒成立,()h x ∴在11(,)3e 单调,故12()()f x f x -的取12分22.(本小题满分10分)解:(Ⅰ)曲线1C 的普通方程为4320;x y +-= ·············· 2分 曲线2C 的直角坐标方程为:2y x =. ··················· 5分(Ⅱ)1C 的参数方程的标准形式为32,5(42.5x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数)代入2y x =得 29801500,t t -+= ·························· 6分 设12,t t 是A B 、对应的参数,则121280500.93t t t t +==>, ·········· 7分 1212||11||||8.||||||||||15t t PA PB PA PB PA PB t t ++∴+===⋅ ··············· 10分23.(本小题满分10分)解:(Ⅰ)13,,21()2,1,23, 1.x xf x x xx x⎧≥⎪⎪⎪=--<<⎨⎪-≤⎪⎪⎩···················2分()9f x>等价于111,,1,22303929xx xxx x⎧⎧≤-≥-<<⎧⎪⎪⎨⎨⎨->⎩⎪⎪>->⎩⎩或或·············3分综上,原不等式的解集为{|33}.x x x><-或················5分(Ⅱ)||||2||.x a x a a-++≥Q·····················7分由(Ⅰ)知13 ()().22 f x f≥=所以32||2a≤,···························9分实数a的取值范围是33[,].44 -·····················10分。

相关文档
最新文档