数学中考总复习第28讲解直角三角形
新人教版 数学 九年级 上册 第28章 28.2 解直角三角形 教案

28.2.1 解直角三角形1.理解解直角三角形的意义和条件;(重点)2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)一、情境导入世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数.在上述的Rt △ABC 中,你还能求其他未知的边和角吗?二、合作探究探究点一:解直角三角形【类型一】利用解直角三角形求边或角已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形.(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长;(2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形. 解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c ,即c =acos B =3632=243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =33,∴∠A =30°,∴∠B =60°,∴c =2a =12 2.方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.变式训练:见《学练优》本课时练习“课堂达标训练” 第4题【类型二】 构造直角三角形解决长度问题 一副直角三角板如图放置,点C 在FD 的延长线上,A B ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长.解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×22=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM tan60°=43,∴CD =CM -MD =12-4 3. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 运用解直角三角形解决面积问题如图,在△ABC 中,已知∠C =90°,sin A =37,D 为边AC 上一点,∠BDC =45°,DC =6.求△ABC 的面积.解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解.解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37,设BC =3k ,则AB =7k (k >0),在Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,∴BC =CD =3k =6,∴k =2,∴AB =14.在Rt △ABC 中,AC =AB 2-BC 2=142-62=410,∴S △ABC =12AC ·BC =12×410×6=1210.所以△ABC 的面积是1210.方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点二:解直角三角形的综合【类型一】 +2,求底角的度数.解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.解:如图,在△ABC 中,AB =AC ,BC =2,∵周长为2+2,∴AB =AC =1.过A 作AD ⊥BC 于点D ,则BD =22,在Rt △ABD 中,cos ∠ABD =BD AB =22,∴∠ABD =45°,即等腰三角形的底角为45°.方法总结:求角的度数时,可考虑利用特殊角的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型二】 解直角三角形与圆的综合已知:如图,Rt △AOB 中,∠O =90°,以OA 为半径作⊙O ,BC 切⊙O 于点C ,连接AC 交OB 于点P .(1)求证:BP =BC ;(2)若sin ∠PAO =13,且PC =7,求⊙O 的半径. 解析:(1)连接OC ,由切线的性质,可得∠OCB =90°,由OA =OC ,得∠OCA =∠OAC ,再由∠AOB =90°,可得出所要求证的结论;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 和Rt △ACE 中,根据三角函数和勾股定理,列方程解答.解:(1)连接OC ,∵BC 是⊙O 的切线,∴∠OCB =90°,∴∠OCA +∠BCA =90°.∵OA =OC ,∴∠OCA =∠OAC ,∴∠OAC +∠BCA =90°,∵∠BOA =90°,∴∠OAC +∠APO =90°,∵∠APO =∠BPC ,∴∠BPC =∠BCA ,∴BC =BP ;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 中,∵sin ∠PAO =13,设OP =x ,AP =3x ,∴AO =22x .∵AO =OE ,∴OE =22x ,∴AE =42x .∵sin ∠PAO =13,∴在Rt △ACE 中CE AE =13,∴AC AE =223,∴3x +742x=223,解得x =3,∴AO =22x =62,即⊙O 的半径为6 2. 方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计1.解直角三角形的基本类型及其解法;2.解直角三角形的综合.本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.。
中考解直角三角形知识点整理复习

x tan 21°
8 3
x
;
B
D
第 19 题图
在
Rt△CEG 中, tan
CGE
CE GE
,则 GE
tan
CE CGE
x tan 37°
4 3
x
∵ EF FG EG,∴ 8 x 50 4 x . x 37.5 ,∴ CD CE ED 37.51.5 39 (米).
3
3
答:古塔的高度约是 39 米. ························ 6 分
a2 b2
a 由 Sin A=c,求∠A;∠B=90°-A,b=
c2 - a2
∠B=90°-A,a=b·Sin A,c=cosA
A bC 一
和
角 一锐角
锐角,对边 (如∠A,a)
∠B=90°-A,b=,c=
斜边,锐角(如 c,∠A)
∠B=90°-A,a=c·Sin A, b=c·cos A
2、测量物体的高度的常见模型
35º 40
CB
D
面 CD 有多长
º
(结果精确到 0.1m.参考数据:sin40º ≈,cos40º ≈,sin35º ≈,tan35º ≈
(2012)20.(8 分)
附历年真题标准答案:
(2007)19.(本小题满分 6 分)
解:过 C 作 AB 的垂线,交直线 AB 于点 D,得到 Rt△ACD 与 Rt△BCD.
数学模型
所用 应测数据
工具
α β x
h1
h
皮尺
αβ a
h x
侧倾 器
仰角α 俯角β 高度 a
俯角α 俯角β
高度
数量关系
九年级数学下册 第28章 锐角三角函数 28.2 解直角三角形课件1

(2)当梯子(tī zi)底端距离墙面2.4m时,梯子
B
与地面所成的角α等于多少(精确到1°)?
这时人能否安全使用这个梯子?
这个问题归结为:
在Rt△ABC中,已知AC=2.4m,斜边AB=6, 求锐 角α的度数?
A12/11/2021
C
第三页,共十三页。
探究 : (tànjiū)
B
在Rt△ABC中,
12/11/2021
第六页,共十三页。
巩固 练习 (gǒnggù)
1.在Rt△ABC中,∠C=90°,根据下列(xiàliè)条件解直角三角形 (1) a=30 ,b=20
(2) ∠B=72°, c=14
12/11/2021
第七页,共十三页。
12/11/2021
C
B
“斜而未倒”
AB=54.5m BC=5.2m
(2)锐角之间的关系:
∠ A+ ∠ B= 90º;
B
(3)边角之间的关系:
a
sinA=
c
tanA=
a b
12/11第五页,共十三页。
c a
A
bC
例1.在Rt△ABC中,∠C=90°,AC= ,B√C 2=
直角三角形.
,解√ 这6 个
例2.在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个(zhè ge) 直角三角形.(精确到0.1)
(1)根据(gēnjù)∠A= 75°,斜边AB=6,
你能求出这个三角形的其他元素吗?
(2)根据AC=2.4m,斜边AB=6,
你能求出这个三角形的其他(qítā)元素吗?
(3)根据∠A=60°,∠B=30°, 你能求出这个三角形的其他元素吗?
人教版数学九年级下册28 解直角三角形及其应用教案与反思

28.2 解直角三角形及其应用人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》原创不容易,【关注】店铺,不迷路!28.2.1 解直角三角形(第1课时)教学目标一、基本目标【知识与技能】1.了解什么叫解直角三角形.2.掌握解直角三角形的根据.3.能由已知条件解直角三角形.【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想.【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标【教学重点】解直角三角形的方法.【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P72~P73的内容,完成下面练习.【3min反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c.(1)两锐角互余,即∠A+∠B=90°;(2)三边满足勾股定理,即a2+b2=c2;(3)边与角关系sin A=cos B=ac,cos A=sin B=bc,tan A=ab,tan B=ba.3.Rt△ABC中,若∠C=90°,sin A=45,AB=10,那么BC=8,tan B=34.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2 巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是( A )A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为4 3.3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3 拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°∴MD=BMtan 60°=43,∴CD=CM-MD=12-4(3).【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P74~P75的内容,完成下面练习.【3min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tanα米.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2 巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约是多少?(精确到0.1m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°.∵在Rt△ACD中,CD=21m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3m.活动3 拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D 两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)【互动探索】要求AB,先求出AE与BE→解直角三角形:Rt△ADE、Rt△BCE.【解答】在Rt△ADE中,∵∠ADE=65°,DE=15米,∴tan∠ADE=AE DE,即tan65°=AE15≈2.1,解得AE≈31.5米.在Rt△BCE中,∵∠BCE=42°,CE=CD+DE=6+15=21(米),∴tan∠BCE=BE CE,即tan42°=BE21≈0.9,解得BE≈18.9米.∴AB=AE-BE=31.5-18.9≈13(米).即旗杆AB的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt△ADE、Rt△BCE,利用AB=AE-BE即可求出答案.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!第3课时利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i=坡面的铅直高度坡面的水平宽度=坡角的正切值.【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P76~P77的内容,完成下面练习.【3min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m 的形式.坡面与水平面的夹角叫做坡角,记作α,有i =h l=tan α. 2.一斜坡的坡角为30°,则它的坡度为1∶ 3.(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2 合作探究,解决问题活动1 小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD的长并与10海里比较→得出结论.【解答】如题图,过点A作AD⊥BC交BC的延长线于点D.在Rt△ABD中,∵tan∠BAD=BD AD ,∴BD=AD·tan55°.在Rt△ACD中,∵tan∠CAD=CD AD ,∴CD=AD·tan25°.∵BD=BC+CD,∴AD·tan55°=20+AD·tan25°,∴AD=20tan 55°-tan 25°≈20.79(海里).而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A距BC的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD,AD∥BC,路基顶宽BC=9.8m,路基高BE=5.8m,斜坡AB的坡度i=1∶1.6,斜坡CD的坡度i′=1∶2.5,求铁路路基下底宽AD的值(精确到0.1m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8m,i=1∶1.6,i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tanα=i=1∶1.6,tanβ=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2 巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为65米.2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C村村民欲修建一条水泥公路,将C村与区级公路相连.在公路A处测得C村在北偏东60°方向,沿区级公路前进500m,在B处测得C村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C作CD⊥AB,垂足落在AB的延长线上,CD即为所修公路,CD的长度即为公路长度.在Rt△ACD中,根据题意,有∠CAD=30°.∵tan∠CAD=CD AD,∴AD=CDtan 30°=3C D.在Rt△CBD中,根据题意,有∠CBD=60°.∵tan∠CBD=CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500m,∴3CD-33CD=500,解得CD≈433m.活动3 拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶3,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠CED=60°.∵AB的坡比为1∶3,∴∠ABE=30°,∴∠BAE =90°.∵AB =3米,∴AE =AB tan ∠ABE =3×33=3(米), ∴BE =2AE =23米.∵∠C =∠CED =60°,∴△CDE 是等边三角形.∵AC =6米,∴DE =CE =AC +AE =(6+3)米,∴BD =DE -BE =6+3-23=(6-3)(米).即浮漂D 与河堤下端B 之间的距离为(6-3)米.【互动总结】(学生总结,老师点评)本题既考查了解直角三角形,也考查了等边三角形的性质,根据已知条件构造出直角三角形及等边三角形是关键.环节3 课堂小结,当堂达标(学生总结,老师点评)⎩⎪⎨⎪⎧ 坡度与坡角⎩⎨⎧ 坡度的概念→通常写成比的形式坡角的概念→坡度越大,坡面就越陡方向角:指正北、正南方向线与目标方向线所形 成的角练习设计请完成本课时对应练习!【素材积累】 海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。
人教版九年级数学下册第二十八章28.2.1解直角三角形(教案)

今天我们在课堂上学习了《解直角三角形》这一章节,整体来看,学生们对于直角三角形的性质和三角函数的概念有了基本的理解。但在教学过程中,我也发现了一些问题。
首先,对于三角函数的定义和应用,部分学生仍然存在理解上的困难。在讲解时,我应该更加注重从直观的图形和生活实例出发,让学生能够更形象地理解三角函数的含义。今后,我打算多运用一些动态软件或实物模型来展示,帮助学生们形成直观的认识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“解直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形的基本概念、三角函数的定义及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.培养学生的数学应用意识,将解直角三角形的知识应用于生活实际,提高解决实际问题的能力;
4.培养学生的团队协作能力,通过小组讨论、合作探究,共同解决复杂问题,培养集体荣誉感;
5.培养学生的创新意识,鼓励学生在解决实际问题时,勇于提出新思路、新方法,激发学生的创新潜能。
三、教学难点与重点
1.教学重点
(1)直角三角形的定义及其性质:直角三角形的定义、勾股定理及其逆定理,这是解直角三角形的基础知识,需要学生熟练掌握。
中考解直角三角形知识点复习

中考解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半;3、直角三角形斜边上的中线等于斜边的一半4、勾股定理: 如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形;考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;3、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形;经典直角三角形:勾三、股四、弦五用它判断三角形是否为直角三角形的一般步骤是:1确定最大边不妨设为c ;2若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形其中c 为最大边; 若a 2+b 2>c 2,则此三角形为锐角三角形其中c 为最大边4. 勾股定理的作用:1已知直角三角形的两边求第三边; 2已知直角三角形的一边,求另两边的关系;3用于证明线段平方关系的问题; 4利用勾股定理,作出长为n 的线段 考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA,即b atan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值三角函数 30°45°60°sinα cos αtan α 1 cot α14、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A ; 2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4商弦切关系:tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,1正弦值随着角度的增大或减小而增大或减小;2余弦值随着角度的增大或减小而减小或增大;3正切值随着角度的增大或减小而增大或减小;4余切值随着角度的增大或减小而减小或增大 考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形; 2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为a,b,c 1三边之间的关系:222c b a =+勾股定理 2锐角之间的关系:∠A+∠B=90°3边角之间的关系:正弦sin,余弦cos,正切tan4 面积公式:h c 为c 边上的高考点五、解直角三角形 应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:1仰角:视线在水平线上方的角;俯角:视线在水平线下方的角;2坡面的铅直高度h 和水平宽度l 的比叫做坡度坡比;用字母i 表示,即hi l=;坡度一般写成1:m 的形式,如1:5i =等; 把坡面与水平面的夹角记作α叫做坡角,那么tan hi lα==; 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角;如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°;解直角三角形的基本类型及其解法公式总结2测量底部可以到达的物体的高度h =h 1+h 2=a 1tan α+tan β3测量底部不可到达的物体的高度1数学模型所用工具 应测数据 数量关系根据 理论 皮尺 侧倾器仰角α 俯角β 高度a tan α=x h 1 ,tan β=xah =a +h 1=a +a =a1+矩形的性质和直角三角形的边角关系俯角α 俯角β 高度 tan α=, tan β=xa∴x == ∴h =a -测量底部不可到达的物体的高度2数字模型 所用工具 应测距离 数量关系根据 原理皮尺侧倾器 仰角α, 仰角β 水平距离a 1 侧倾器高a 2tan α=xa h +11tan β=x h 1∴h 1=αββαtan tan tan tan 1-ah =a 2+h 1=a 2+αββαtan tan tan tan 1-a矩形的性质和直角三角形的边角关系仰角α 仰角β 高度atan α=, tan β= h =tan α=, tan β=、h =仰角α 仰角β 高度atan α=, tan β=h =第三部分 真题分类汇编详解2007-2012200719.本小题满分6分一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近参考数据:°≈925,°≈25, °≈910,°≈2200819.本小题满分6分在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米结果保留两个有效数字参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=200919.本小题满分6分在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰D DC BβC GEFhα β x h xaα βhAa x α βhaxαβ hx α β角37CGE ∠=°,已知测倾器高米,请你根据以上数据计算出古塔CD 的高度. 参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈ 201019.本小题满分6分小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.结果保留整数参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,解:201119.6分某商场准备改善原有楼梯的安全性能, 原来的40o 减至35o .已知原楼梯AB 长为5m,调整后的楼梯所占地 面CD 有多长结果精确到0.1m .参考数据:sin40o ≈,cos40o ≈≈,tan35o ≈ 201220.8分附历年真题标准答案:200719.本小题满分6分解:过C 作AB 的垂线,交直线AB 于点D,得到Rt△ACD 与Rt△BCD.设BD =x 海里,在Rt△BCD 中,tan∠CBD=CDBD,∴CD=x ·°.在Rt△ACD 中,AD =AB +BD =60+x 海里,tan∠A=CDAD,∴CD= 60+x ·°. ∴x·°=60+x·°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近. …………………………6′ 200819.本小题满分6分解:设CD 为x ,在Rt△BCD 中, 6.18==∠αBDC ,∵CDBCBDC =∠tan ,∴x BDC CD BC 34.0tan =∠⋅=. ········· 2′ 在Rt△ACD 中, 5.64==∠βADC , ∵CDACADC =∠tan ,∴x ADC CD AC 1.2tan =∠⋅=. ∵BC AC AB -=,∴x x 34.01.22-=. 1.14x ≈. 答:CD 长约为米. 200919.本小题满分6分B CD A CG EDBAF B37° 48°DC A 第19题图40o 35o ADBC解:由题意知CD AD ⊥,EF AD ∥, ∴90CEF ∠=°,设CE x =,在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CE CGE GE ∠=,则4tan tan 373CE x GE x CGE ===∠°∵EF FG EG =+,∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=米.答:古塔的高度约是39米. ························ 6分 201019.本小题满分6分解:设CD = x .在Rt △ACD 中,tan37ADCD︒=, 则34AD x =,∴34AD x =. 在Rt△BCD 中,tan48° = BD CD,则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分201119.本小题满分6分 201220.8分第19题图。
人教版数学九年级下册28.2解直角三角形第二课时利用仰角和俯角解直角三角形说课稿
2.引导发现法:引导学生通过观察、分析、归纳,自主发现直角三角形中边角关系的规律,培养学生的探究能力。
3.互动讨论法:组织学生进行小组讨论,通过生生互动,促进学生之间的交流与合作,共同解决问题。
4.实践应用法:通过设计实际测量问题,让学生在实践中运用所学知识,提高学生的应用能力。
选择这些方法的理论依据是,情境创设法能够激发学生的学习兴趣,引导发现法能够培养学生的探究能力和思维能力,互动讨论法能够促进学生之间的交流与合作,实践应用法则能够将理论知识与实际相结合,提高学生的实际应用能力。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.通过引入生活中的实际例子,如测量高楼的高度、观察物体的俯仰角度等,让学生感受到数学知识的实用性和趣味性。
2.设计互动性强的小组讨论和实践活动,让学生在合作中学习,通过解决问题来体验成功的喜悦。
3.创设竞争性的学习环,如课堂小测验、解题比赛等,激发学生的好胜心,提高学习积极性。
3.教师反馈:对学生的表现和作业进行点评,指出优点和需要改进的地方,并提供具体的建议。
(五)作业布置
课后作业的布置情况如下:
1.布置一些与仰角和俯角相关的练习题,要求学生在规定时间内完成,以巩固课堂所学知识。
2.设计一个实际测量项目,让学生在课后进行实际操作,测量某个物体的高度,并将过程和结果写成报告。
1.创设情境:通过展示一张城市天际线的图片,引导学生观察并提问:“你们注意到建筑物的角度了吗?我们如何测量这些高度?”
人教版九年级下册数学第28章 锐角三角函数 利用解直角三角形解含方位角、坡角(坡度)的应用
感悟新知
知1-练
1. 如图,海中有一个小岛A,它周围8nmile内有暗礁. 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏
东60°方向上,航行12nmile到达D点,这时测得小 岛A在北偏东30° 方向上.如果渔船不改 变航线继续向东航行, 有没有触礁的危险?
感悟新知
解:如图,过点A作AC⊥直线BD,垂足为点C.
C.200D3.300
3
感悟新知
知识点 2 用解直角三角形解坡角问题
探究
B
一、如图是某一大坝的横断面:
坡面AB的垂直高度与 水平宽度AE的长度之 比是α的什么三角函数?
Aα
E
知2-练
C
D
tan
BE 坡面AB与水平面的夹角叫做坡角.
AE
感悟新知
坡度的定义:
知2-练
坡面的垂直高度与水平宽度之比
B
叫做坡度,记作i.
感悟新知
例1 如图, 一艘海轮位于灯塔P的北 偏东65°方向,距离灯塔 80nmile的A处,它沿正南方向 航行一段时间后,到达位于灯
塔P的南偏东34°方向上的B处. 这时,B处距离灯塔P有多远 (结果取整数)?
北 65°
P 34°
知1-练
A
C
B
感悟新知
解:如图,在Rt△APC中, PC=PA•cos(90°-65°) =80×cos25° ≈72. 505. 在Rt△BPC中,∠B=34°,
第二十八章锐角三角函数
28.2解直角三角形及其应用
第6课时利用解直角三 角形解含方位角、坡角 (坡度)的应用
学习目标
1 课时讲解 用解直角三角形解方位角问题
用解直角三角形解坡角(或坡度) 问题
九年级数学人教版下册第二十八章锐角三角函数 解直角三角形及其应用 解直角三角形课件
=20,解这个直角三角形(结果保留小数点后一位).
解: A = 9 0 º - B = 9 0 º - 3 5 º = 5 5 º ,A
∵ tanB=b ,
c
b
a
20
∴ a = tan bB = tan 20 35°≈ 28. 6 . C
35° a
B
二、探究新知
∵ sinB=b , c
A. b=a·tan A
B. b=c·sin A
C. b=c·cos A
D. a=c·cos A
四、课堂训练
3.如图,在菱形 ABCD 中,AE⊥BC 于点 E,EC=4, sin B= 4 ,则菱形的周长是( C ).
5 A.10 B.20 C.40 D.28
A
D
B
EC
四、课堂训练
4.如图,已知 AC=4,求 AB 和 BC 的长.
一般地,由直角三角形中的已知元素,求出其余未知元 素的过程,叫做解直角三角形.
二、探究新知
(1)在直角三角形中,除直角外还有哪几个元素? (2)结合右图说一说这几个元素之间有哪些关系? (3)知道这几个元素中的几个,就可以求其余元素? 解:(1)在 Rt△ABC 中除直角外还有五个元素,三边: AB,AC,BC 或 a,b,c 两锐角:∠A ,∠B.
∴ c= sin bB = sin 23 05°≈ 34. 9. 注意:选取函数关系求值时尽可能用原始数据,减少因 为近似产生的累积误差.
二º,∠B=72º,c=14,解这个
直角三角形. A
解: A = 9 0 º - 7 2 º = 1 8 º ,
, B
二、探究新知
在 Rt△ABC 中,∠C=90º,a=30,b=20.解这个直 角三角形. 在 Rt△ACD 中,
人教版九年级数学下册第二十八章《28.2解直角三角形》优秀教学案例
3.强调解直角三角形的注意事项。讲解在解直角三角形时,需要注意的问题,避免学生在解题过程中出现错误。
在讲授新知时,我会讲解解直角三角形的基本方法,让学生掌握解直角三角形的基本步骤和方法。然后,我会结合实例,演示解直角三角形的过程,让学生学会如何运用方法解决问题。最后,我会强调解直角三角形的注意事项,避免学生在解题过程中出现错误。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,增强他们的自信心。
2.培养学生面对困难时,积极思考、勇于挑战的精神。
3.培养学生尊重事实、严谨治学的态度,提高他们的价值观。
在教学过程中,我会注重培养学生的学习兴趣,通过鼓励和表扬,增强他们的自信心。同时,我会要求学生在面对困难时,积极思考、勇于挑战,培养他们的精神。在教学过程中,我会注重培养学生的价值观,让他们明白尊重事实、严谨治学的重要性。
在导入新课时,我会利用生活情境引入新课,激发学生的学习兴趣。然后,我会提问引导学生思考,让他们回顾已学的锐角三角函数知识。最后,我会播放微视频,直观展示解直角三角形的过程,帮助学生形象地理解解直角三角形的概念和方法。
(二)讲授新知
1.讲解解直角三角形的基本方法。通过讲解,让学生掌握解直角三角形的基本步骤和方法。
2.鼓励学生自主探究,培养他们的自主学习能力。引导学生运用已学的锐角三角函数知识,解决实际问题。
3.创设问题情境,提高学生的解决问题的能力。通过设计具有现实意义的题目,让学生在解决问题的过程中,巩固解直角三角形的方法。
在教学过程中,我会引导学生发现问题的本质,激发他们的思维能力。我会鼓励学生自主探究,培养他们的自主学习能力。同时,我会创设问题情境,提高学生的解决问题的能力,让他们在实际问题的解决中,巩固解直角三角形的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28讲 解直角三角形了解直角三角形的定义,掌握边角之间的关系,并考点一 锐角三角函数定义 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,C .sin A=∠A 的对边斜边=a c ;cos A =∠A 的邻边斜边=bc ;tan A =∠A 的对边邻边=ab .考点二 特殊角的三角函数值考点三 解直角三角形1.直角三角形的边角关系: 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,C .(1)三边之间的关系:a 2+b 2=c 2; (2)锐角之间的关系:∠A +∠B =90°;(3)边角之间的关系:sin A =a c ,cos A =b c ,tan A =a b ,sin B =b c ,cos B =a c ,tan B =ba.2.解直角三角形的几种类型及解法:(1)已知一条直角边和一个锐角(如a ,∠A ),其解法为:∠B =90°-∠A ,c =asin A,b =atan A(或b =c 2-a 2); (2)已知斜边和一个锐角(如c ,∠A ),其解法为:∠B =90°-∠A ,a =c ·sin A ,b =c ·cos A (或b =c 2-a 2);(3)已知两直角边a ,b ,其解法为:c =a 2+b 2,由tan A =ab,得∠A ,∠B =90°-∠A ;(4)已知斜边和一直角边(如c ,a ),其解法为:b =c 2-a 2,由sin A =ac,求出∠A ,∠B=90°-∠A .考点四 解直角三角形的应用1.仰角与俯角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角;当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.2.坡角与坡度:坡角是坡面与水平面所成的角;坡面的铅直高度与水平宽度的比称为坡度(或坡比),常用i 表示,也就是坡角的正切值,坡角越大,坡度越大,坡面越陡.1.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( ).A .sin A =32 B .tan A =12 C .cos B =32D .tan B = 3 2.在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( ).A .12B .22C .32D .333.如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cos B =45,则AC =__________.4.首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75,3≈1.73)规律-方法探究一、锐角三角函数的定义【例1】 在△ABC 中,∠C =90°,sin A =45,则tan B =__________.A .43B .34C .35D .45解析:∵sin A =45,∴BC AB =45,于是设BC =4a ,AB =5A .在Rt △ABC 中,由勾股定理,可得AC =3A .∴tan B =AC BC =3a 4a =34.故选B .答案:B求锐角三角函数值时,必须牢记锐角三角函数的定义,解题的前提是在直角三角形中;如果题目中无直角时,我们必须想法构造一个直角三角形.二、特殊角的三角函数值【例2】 计算:|-2|+2sin 30°-(-3)2+(tan 45°)-1.解:原式=2+2×12-3+1-1=1.牢记特殊角的三角函数值,理解绝对值、负整数指数的意义是解题的关键. 三、解直角三角形【例3】 如图,在△ABC 中,∠C =90°,点D ,E 分别在AC ,AB 上,BD 平分∠ABC ,DE ⊥AB ,AE =6,cos A =35.求(1)DE ,CD 的长;(2)tan ∠DBC 的值.解:(1)∵DE ⊥AB ,∴∠DEA =90°.在Rt △AED 中,cos A =AE AD ,即6AD =35. ∴AD =10.根据勾股定理得DE =AD 2-AE 2=102-62=8.又∵DE ⊥AB ,DC ⊥BC ,BD 平分∠ABC ,∴DC =DE =8.(2)∵AC =AD +DC =10+8=18,在Rt △ABC 中,cos A =AC AB ,即18AB =35,∴AB =30.根据勾股定理得BC =AB 2-AC 2=302-182=24.∴在Rt △BCD 中,tan ∠DBC =DC BC =824=13.解这类问题主要是综合运用勾股定理、锐角三角函数定义、直角三角形的两个锐角互为余角.解题时应尽量使用原始数据,能用乘法算就尽量不用除法.四、解直角三角形在实际中的应用【例4】 如图,在一次数学课外实践活动中,要求测教学楼的高度AB .小刚在D 处用高1.5 m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40 m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB .解:在Rt △AFG 中,tan ∠AFG =AGFG,∴FG =AG tan ∠AFG =AG3.在Rt △ACG 中,tan ∠ACG =AGCG,∴CG =AGtan ∠ACG=3AG .又CG -FG =40,即3AG -AG3=40,∴AG =20 3.∴AB =203+1.5(米).答:这幢教学楼的高度AB 为(203+1.5)米.利用解直角三角形的知识解决实际问题时,其步骤是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题). (2)根据条件的特点,适当选用锐角三角函数去解直角三角形.为建设“宜居宜业宜游”山水园林式城市,内江市正在对城区沱江河段进行区域性景观打造.如图,某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A ,再在河这边沿河边取两点B ,C ,在点B 处测得点A 在北偏东30°方向上,在点C 处测得点A 在西北方向上,量得BC 长为200米,请你求出该河段的宽度.(结果保留根号)知能优化训练1.(2012四川乐山)如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sin B 的值为( ).A .12B .22C .32D .12.(2011山东日照)在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A =ba.则下列关系式中不成立...的是( ).A .tan A ·cot A =1B .sin A =tan A ·cos AC .cos A =cot A ·sin AD .tan 2A +cot 2A =1 3.(2012湖南株洲)数学实践探究课中,老师布置同学们测量学校旗杆的高度.小民所在的学习小组在距离旗杆底部10米的地方,用测角仪测得旗杆顶端的仰角为60°,则旗杆的高度是__________米.4.(2012山东济宁)在△ABC 中,若∠A ,∠B 满足⎪⎪⎪⎪cos A -12+⎝⎛⎭⎫sin B -222=0,则∠C =__________.5.(2011广东湛江)如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向36海里处.另一艘军舰N 位于军舰M 的正西方向,与雷达站P 相距182海里,求:(1)军舰N 在雷达站P 的什么方向?(2)两军舰M ,N 的距离.(结果保留根号)1.在Rt △ABC 中,∠C =90°,sin A =45,则cos B 的值等于( ).A .35B .45C .34D .552.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ).A .53米B .10米C .15米D .103米 3.如图所示,在数轴上点A 所表示的数x 的范围是( ).A .32sin 30°<x <sin 60°B .cos 30°<x <32cos 45°C .32tan 30°<x <tan 45°D .32cot 45°<x <cot 30°4.如图,在梯形ABCD 中,AD ∥BC ,AC ⊥A B ,AD =CD ,cos ∠DCA =45,BC =10,则AB 的值是( ).A .3B .6C .8D .9 5.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于__________.6.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan ∠BAE =125,则河堤的高BE 为__________米.7.一轮船以每小时20海里的速度沿正东方向航行,上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B 处(如图),上午9时行至C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是__________海里.(结果保留根号)8.如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30 m,则电梯楼的高BC为__________米(精确到0.1).(参考数据:2≈1.414,3≈1.732)9.某商场为缓解我市“停车难”的问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5 m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮则认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果(结果用三角函数表示).参考答案基础自主导学自主测试1.D 2.B 3.54.解:如图,过A作AD⊥CB,垂足为点D.在Rt△ADC中,∵CD=36,∠CAD=60°.∴AD=CDtan 60°=363=123≈20.76(米).在Rt△ADB中,∵AD ≈20.76,∠BAD =37°. ∴BD =AD ×tan 37°≈20.76×0.75=15.57≈15.6(米). 答:气球应至少再上升15.6米.规律方法探究变式训练 解:如图所示,过点A 作AD ⊥BC 于点D .据题意,∠ABC =90°-30°=60°,∠ACD =45°. ∴∠CAD =45°,∴∠ACD =∠CAD , ∴AD =CD ,∴BD =BC -CD =200-AD .在Rt △ABD 中,tan ∠ABD =ADBD,∴AD =BD ·tan ∠ABD =(200-AD )·tan 60°=3(200-AD ). ∴AD +3AD =2003(米).∴AD =20033+1=(300-1003)米.答:该河段的宽度为(300-1003)米.知能优化训练中考回顾 1.C 2.D3.103 4.75°5.解:如图,过点P 作PQ ⊥MN ,交MN 的延长线于点Q . (1)在Rt △PQM 中,由∠MPQ =60°, 得∠PMQ =30°,又PM =36,∴PQ =12PM =12×36=18(海里).在Rt △PQN 中,cos ∠QPN =PQ PN =18182=22,∴∠QPN =45°,即军舰N 在雷达站P 的东南方向(或南偏东45°方向). (2)由(1)知Rt △PQN 为等腰直角三角形, ∴PQ =NQ =18(海里). 在Rt △PQM 中,MQ =PQ ·tan ∠QPM =18·tan 60°=183(海里),∴MN =MQ -NQ =183-18(海里). 答:两军舰的距离(183-18)海里. 模拟预测1.B 2.A 3.D 4.B 5.126.127.20 3 8.82.09.解:小亮说法正确. 在△ABD 中,∠ABD =90°,∠BAD =18°,BA =10,∴tan ∠BAD =BDBA,∴BD =10×tan 18°,∴CD =BD -BC =10×tan 18°-0.5. 在△ABD 中,∠CDE =90°-∠BAD =72°. ∵CE ⊥ED ,∴sin ∠CDE =CECD,∴CE =CD ×sin ∠CDE =(10×tan 18°-0.5)×sin 72°(m). 答:限制高度CE 约为(10×tan 18°-0.5)×sin 72° m.。