高压直流输电
高压直流输电

第1章导论1.1高压直流输电概况1.1.1 交流输电还是直流输电?关于电能的输送方式,是采用直流输电还是交流输电,在历史上曾引起过很大的争论。
美国发明家爱迪生、英国物理学家开尔文都极力主张采用直流输电,而美国发明家威斯汀豪斯和英国物理学家费朗蒂则主张采用交流输电。
在早期,工程师们主要致力于研究直流电,发电站的供电范围也很有限,而且主要用于照明,还未用作工业动力。
例如,1882年爱迪生电气照明公司(创建于1878年)在伦敦建立了第一座发电站,安装了三台110伏“巨汉”号直流发电机,这是爱迪生于1880年研制的,这种发电机可以为1500个16瓦的白炽灯供电。
这一阶段发电、输电和用电均为直流电。
如1882年在德国建成的57km向慕尼黑国际展览会送电的直流输电线路(2kV,1.5kW);1889年在法国用直流发电机串联而得到高电压,从毛梯埃斯(Moutiers)到里昂(Lyon)的230km直流输电线路(125kV,20MW)等,均为此种类型。
但是随着科学技术和工业生产发展的需要,电力技术在通信、运输、动力等方面逐渐得到广泛应用,社会对电力的需求也急剧增大。
由于用户的电压不能太高,因此要输送一定的功率,就要加大电流(P=IU)。
而电流愈大,输电线路发热就愈厉害,损失的功率就愈多;而且电流大,损失在输电导线上的电压也大,使用户得到的电压降低,离发电站愈远的用户,得到的电压也就愈低。
直流输电的弊端,限制了电力的应用,促使人们探讨用交流输电的问题。
爱迪生虽然是一个伟大的发明家,但是他没有受过正规教育,缺乏理论知识,难以解决交流电涉及到的数学运算,阻碍了他对交流电的理解,所以在交、直流输电的争论中,成了保守势力的代表。
爱迪生认为交流电危险,不如直流电安全。
他还打比方说,沿街道敷设交流电缆,简直等于埋下地雷。
并且邀请人们和新闻记者,观看用高压交流电击死野狗、野猫的实验。
那时纽约州法院通过了一项法令,用电刑来执行死刑。
《高压直流输电》课件

研究高压直流输电线路和换流站对周边电磁环境的影响,制定相应的防护措施和标准,降低对环境和人体的影响。
研究高压直流输电在电网中的稳定运行机制,通过优化无功补偿、有功滤波等技术手段,提高系统的稳定性和可靠性。
高压直流输电系统的核心,负责将交流电转换为直流电或反之。
换流站
直流输电线路
接地极
用于传输直流电,通常采用架空线或海底电缆。
为系统提供参考地电位,并泄放多余的电流。
03
02
01
01
02
03
04
实现交流电与直流电相互转换的核心元件。
换流阀
用于调整电压等级,使换流站能与不同电压等级的电网连接。
变压器
用于滤除换流过程中产生的谐波,减少对周围环境的干扰。
《高压直流输电》PPT课件
目录
高压直流输电概述高压直流输电的基本原理高压直流输电系统的构成与设备高压直流输电的优缺点与关键技术问题高压直流输电的工程实例与展望
01
高压直流输电概述
Chapter
总结词
高压直流输电是一种利用高压直流电进行远距离传输的输电方式,具有输送容量大、损耗小、稳定性高等特点。
详细描述
总结词
换流技术是高压直流输电的核心技术之一,涉及到整流和逆变两个过程。
详细描述
在整流过程中,交流电源转换为直流电源,通过控制晶闸管或绝缘栅双极晶体管的开关状态实现。逆变过程则是将直流电源转换为交流电源,同样通过控制开关状态实现。换流技术的关键在于保证电流的稳定和减小谐波干扰。
VS
高压直流输电的损耗主要包括线路损耗和换流损耗,提高效率是重要目标。
高压直流输电术语

高压直流输电术语高压直流输电是一种将电能以直流形式从发电厂输送到用户的电力传输技术。
与传统的交流输电相比,高压直流输电具有更高的效率、更远的距离和更小的输电损耗。
下面将从输电方式、输电特点和应用领域三个方面详细介绍高压直流输电术语。
一、输电方式1. 单线架空输电:高压直流输电可以通过架设单根输电线路来实现。
这种方式适用于输电距离短、地形平坦的场景。
单线架空输电需要考虑线路的安全性和稳定性,以及对环境的影响。
2. 铜氧化镍导体:高压直流输电线路中常使用铜氧化镍导体。
铜氧化镍导体具有良好的导电性能和导热性能,能够承受高温和高压。
此外,铜氧化镍导体还具有较小的电阻损耗和较高的机械强度。
3. 架空输电塔:高压直流输电线路需要架设输电塔来支撑输电线路。
架空输电塔通常由钢材制成,具有高强度和稳定性。
根据地形和线路距离的不同,输电塔的类型和形状也会有所不同。
二、输电特点1. 高电压:高压直流输电中,电压通常达到数百千伏或更高。
高电压可以减小输电线路的电流,降低线路损耗,提高输电效率。
同时,高电压也对输电线路的绝缘和安全性提出了更高的要求。
2. 低损耗:高压直流输电由于直流特性,输电线路的电阻损耗相对较低。
与交流输电相比,高压直流输电的线路损耗更小,能够减少能源的浪费,提高能源利用效率。
3. 远距离输电:高压直流输电相对于交流输电来说,具有更远的输送距离。
这是因为在长距离输电中,交流输电会产生较大的电阻损耗和电感损耗,而高压直流输电可以减小这些损耗。
三、应用领域1. 远距离输电:高压直流输电被广泛应用于远距离输电领域。
例如,海底电缆输电和跨国输电项目都采用高压直流输电技术。
通过高压直流输电,可以实现超长距离的电力传输,满足不同地区的用电需求。
2. 可再生能源输电:高压直流输电也逐渐应用于可再生能源输电领域。
由于可再生能源发电厂往往位于偏远地区,而用户集中在城市地区,高压直流输电可以有效地将可再生能源输送到用户,促进可再生能源的开发和利用。
高压直流输电

一、高压直流输电概述1.已投运的直流输电工程中,输送容量最大的是巴西的伊泰普直流输电工程,容量为6300MW,输电电压±600KV,线路长度806KM;输送电压等级最高的是前苏联的叶基巴斯利兹—欧洲中心的直流输电工程,容量为6000MW,电压±750KV,线路长达2414KM;2.直流输电的优点(1)线路造价低、年运行费用省;(2)没有运行稳定问题;(3)能限制短路电流;(4)调节速度快,运行可靠。
3.直流输电的缺点(1)环流装置价格昂贵;(2)消耗大量的无功功率;(3)产生谐波影响;(4)缺乏直流断路器;二、基本原理直流和交流线路不同,它只输送有功功率,而不输送无功功率。
一个换流站既可以作整流站,也可以做逆变站运行。
高压直流输电系统,就是将送端系统的高压交流电,经换流变压器变压,由换流器将高压交流转换成高压直流,通过直流输电线路输送到另一端换流站,再由换流器将将高压直流转换成高压交流,然后经过环流变压器与受端交流电网相连,将电能送至受端系统。
三、换流站电气主接线及电气设备1.换流站电气主接线两种方式:一种是换流单元串联而成;另一种是由换流单元并联而成。
绝大多数采用串联方式。
两端单极直流输电系统、两端双极直流输电系统;2.电气设备主接线中除了换流变压器、换流桥、平波电抗器、交流滤波器组、直流滤波器组、接地电极外,还包括交流断路器、同步调相机、避雷器、高频阻塞器、直流冲击波吸收电容器、直流电流互感器和直流电压互感器以及旁路隔离开关等。
换流器、换流变压器、平波电抗器和滤波器等看做是换流站特有的主要一次电气设备。
换流器,用于将交流电力变换成直流电力,或将直流电力逆变为交流电力。
现在的换流器都是由晶闸管组成的,每个晶闸管的额定电压可达1.5KV,额定电流1200A。
换流变压器,用于电压的变换和功率的传送。
交流断路器,用于将直流侧空载的换流站或者换流装置投入到交流电力系统或从其中切出。
高压直流输电

高压直流输电一、高压直流输电系统(HVDC)概述众所周知,电的发展首先是从直流开始的,但很快就被交流电所取代,并且在相当长的一段时间内,在发电、输电和用电各个领域,都是交流电一统天下的格局。
HVDC技术是从20世纪50年代开始得到应用的。
经过半个世纪的发展,HVDC技术的应用取得了长足的进步。
据不完全统计,目前包括在建工程在内,世界上己有近百个HVDC 工程,遍布5大洲20多个国家。
其中,瑞典在1954年建成投运的哥特兰(Gotland)岛HVDC 工程(20MW,100kV,90km海底电缆)是世界上第一个商业化的HVDC工程,由阿西亚公司(ASEA,今ABB集团)完成;拥有最高电压(±600kV)和最大输送容量(2 x 3150MW)的HVDC工程为巴西伊泰普(Itaipu)工程;输送距离最长(1700km)的HVDC 工程为南非英加——沙巴(1nga2Shaba)工程;电流最大的HVDC工程在我国:如三常、三广和贵广HVDC工程,额定直流电流均为3000A。
HVDC的发达地区在欧洲和北美,ABB和西门子等公司拥有最先进的HVDC技术,美国是HVDC工程最多的国家。
HVDC在我国是从20世纪80年代末开始应用的,起步虽然较晚,但发展很快。
目前包括在建工程在内,总输送容量已达18000MW以上,总输送距离超过7000km,该两项指标均已成为世界第一。
我国第一个HVDC工程是浙江舟山HVDC工程(为工业试验性工程),葛沪HVDC工程是我国第一个远距离大容量HVDC工程,三常HVDC工程是我国第一个输送容量最大(3000MW)的HVDC工程,灵宝(河南省灵宝县)背靠背HVDC工程是我国第一个背靠背HVDC工程。
我国已投运的HVDC工程见表1。
表1我国已投运的HVDC工程另外,2010年前后建成投运的HVDC工程有四川德阳——陕西宝鸡(1800 MW、±500 kV,550km)、宁夏银南——天津东(3000MW、±500kV,1200km)等;至2020年前后,还计划建设云南昆明——广东增城、金沙江水电基地一华中和华东HVDC工程以及东北——华北、华北——华中、华中——南方背靠背HVDC工程等十几个HVDC工程。
高压直流输电技术简析

高压直流输电技术简析高压直流输电技术是一种将电能以直流形式进行长距离传输的技术。
相比传统的交流输电技术,高压直流输电技术具有许多优势,如输电损耗小、输电距离远、电网稳定性高等。
本文将对高压直流输电技术进行简析,介绍其原理、应用和发展前景。
一、高压直流输电技术的原理高压直流输电技术是利用变流器将交流电转换为直流电,然后通过高压直流输电线路将直流电进行传输,最后再通过变流器将直流电转换为交流电。
这种技术的核心是变流器,它能够实现电能的双向转换,即将交流电转换为直流电,也可以将直流电转换为交流电。
二、高压直流输电技术的应用1. 长距离输电:高压直流输电技术适用于长距离输电,特别是在海底或山区等地形复杂的地方。
由于直流电的输电损耗较小,可以有效减少能源的浪费,提高输电效率。
2. 交流与直流互联:高压直流输电技术可以实现交流电与直流电的互联,使得不同电网之间可以进行互相补充,提高电网的稳定性和可靠性。
3. 可再生能源输电:随着可再生能源的快速发展,如风能、太阳能等,高压直流输电技术可以有效解决可再生能源的输电问题,将分散的可再生能源集中输送到用电地区,提高能源利用率。
三、高压直流输电技术的发展前景高压直流输电技术在能源领域具有广阔的应用前景。
随着能源需求的增加和能源结构的调整,高压直流输电技术将成为未来能源输送的重要手段。
目前,我国已经建成了多条高压直流输电线路,如长江三峡-上海、青海-河南等,这些线路的建设和运行经验为我国高压直流输电技术的发展提供了宝贵的经验。
未来,高压直流输电技术还将面临一些挑战和机遇。
一方面,随着技术的不断进步,高压直流输电技术的输电效率将进一步提高,输电损耗将进一步降低。
另一方面,随着可再生能源的快速发展,高压直流输电技术将成为可再生能源大规模开发和利用的重要手段。
总之,高压直流输电技术是一种具有广泛应用前景的技术。
它不仅可以实现长距离输电,提高能源利用效率,还可以实现交流与直流的互联,提高电网的稳定性和可靠性。
高压直流输电HVDC

2018年9月6日
11
直流输电工程的缺点
与高压交流输电相比较,直流输电具有以下
缺点: 1、换流站的设备较昂贵; 2、换流装置要消耗大量的无功功率; 3、产生谐波影响; 4、换流装置几乎没有过载能力,对直流系统 的运行不利; 5、缺乏高压直流开关;
2018年9月6日
12
6、直流输电利用大地或海水为回路带来了一
16
2018年9月6日
高压直流输电系统的经济优势:线损
2018年9月6日
17
高压直流输电系统的经济优势:环境
2018年9月6日
18
三、HVDC系统的组成
三相电源 换流站 输电电缆或者架空线 换流站 交流电网
2018年9月6日
19
HVDC系统的组成
高压直流输电的主要设备是两个换流站和直流输电 线。 两个换流站分别与两端的交流系统相连接。
HVDC的核心有两个:整流与逆变
2018年9月6日
20
HVDC系统的组成
换流站的主要设备包括换流器、换流变压器、平波 电抗器、交流滤波器、直流避雷器及控制保护设备 等。 换流器又称换流阀是换流站的关键设备,其功能是 实现整流和逆变。目前换流器多数采用晶闸管可控 硅整流管)组成三相桥式整流作为基本单元,称为换 流桥。一般由两个或多个换流桥组成换流系统,实 现交流变直流直流变交流的功能。
2018年9月6日
21
四、柔性直流输电
柔性直流输电的技术特点
柔性直流输电是以全控型电力电子器件、电压源换流器和新型调制
技术为突出标志的新一代直流输电技术,具有无需无功补偿和电网 支撑换相、占地面积和环境影响小等特点;
±800千伏特高压直流输电原理

近年来,随着能源互联网的不断发展,±800千伏特高压直流输电技术备受关注。
本文将从深度和广度两个方面,全面评估这一技术,并撰写一篇有价值的文章,以便读者更加深入地理解这一主题。
一、技术原理1.1 ±800千伏特高压直流输电的基本概念在电力输电领域,直流输电和交流输电各有优势和劣势。
直流输电具有输电损耗小、输电距离远等优点,因此被广泛应用于大距离、大功率的电力输送。
而±800千伏特高压直流输电技术,作为直流输电的一种重要形式,其基本原理在于通过将正负极之间的电压差维持在±800千伏,实现远距离、大容量的电力输送。
1.2 输电线路的构成和特点在±800千伏特高压直流输电技术中,输电线路是其核心组成部分。
该技术的输电线路通常由直流电源、换流站、传输线路、换流站和接收端设备组成。
其中,直流电源部分包括换流变压器、滤波器等设备,而传输线路则采用高压直流输电线路,这些设备共同构成了±800千伏特高压直流输电系统。
二、技术应用2.1 ±800千伏特高压直流输电在国内外的应用目前,±800千伏特高压直流输电技术已经在国内外得到了广泛应用。
在我国,±800千伏特高压直流输电已经在西北等地区实现了大规模的应用,为区域间的大容量输电提供了有效的技术支持;在国际上,类似的技术也被广泛应用于远距离、大容量的国际输电项目中,为全球能源互联网建设提供了有力的技术支撑。
2.2 技术的优势和挑战在实际应用中,±800千伏特高压直流输电技术具有诸多优势,如输电损耗小、占地面积少、造价低等,但同时也面临着技术难度大、设备成本高等挑战。
在实际应用中需要充分权衡其优势和挑战,以实现最佳的技术应用效果。
三、个人观点±800千伏特高压直流输电技术作为直流输电的一种重要形式,其在能源互联网建设中具有重要意义。
我认为,随着我国能源互联网的不断发展,±800千伏特高压直流输电技术将在未来得到更加广泛的应用,并为我国电力系统的高效、安全运行做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R 主电路
Id计算公式:
Id U d U d Rd (1)
整流站输送功率:
Pd U d I d
逆变站接受的功率:
(2)
(3)
R 主电路
P d U d I d
直流线损:
P Pd Pd (Ud Ud ) Id I2d R d
谐波及滤波器
直流输电系统中,由于换流器的非线性特性,在 交流系统和直流系统中将出现谐波电压和电流。而 交直流系统间的谐波相互渗透、相互影响,使得谐 波问题的研究变得异常复杂 在一些理想化的假设条件下,换流站网侧的三相电 流和直流侧电压中的谐波,其次数和特性比较规律, 它们统称为特征谐波 对于一个换流桥来说,在交流侧产生pn±1(p为脉 波数,n为正整数)次特征谐波,而在直流侧产生 pn次特征谐波。
偿装置。
交直流系统的相互作用
短路比与有效短路比
交流系统短路容量( MVA) SCR 直流换流器额定功率( MW) 交流系统短路容量( MVA) 容性无功补偿( MVAr) ESCR 直流换流器额定功率( MW)
无功问题
Id 3 cos cos Xc Vd 0
与低有效短路比系统有关的问题
作用:
减小注入直流系统的谐波
减小换相失败的几率
防止轻载时直流电流间断 限制直流短路电流峰值 0.27~1.5H (架空线) 12~200mH (电缆线)
参数:
T Xd
R 主电路
滤波器(Filter)
减小注入交、直流系统谐波的设备
种类:
交流滤波器, 直流滤波器
R 主电路
ห้องสมุดไป่ตู้
有源、无源滤波器
T valve 1~2
晶闸管(串)并联
T
均流
T
R 主电路
晶闸管( Thyristor )
特点: o 可控导通 o 单向导电 导通的充要条件: • 正向电压>0 • 控制电流脉冲
K
G
A
可靠关断的充要条件: • 正向电流<0 • 正向电压<0, 且持续一段时间
T thyristor 1~2
R 串联
T 基本原理
T T
T Xd
T F
T Qc
T L
T DL
HVDC的主要元件
换流器(converter)
将交流电转换成直流电,或者将直流电转换成交流 电的设备。 其中, 整流器(Rectifier)------将交流电转换成直流电 的换流器。
逆变器(Inverter)------将直流电转换成交流电的 换流器。
正 极 M 共阴极 V3 V5 桥臂/ 阀臂/ 阀
上半桥/
共阴极半桥
V1 A
B C
下半桥/ 共阳极半桥 V4 V6 V2 桥交流端
N
负 极
共阳极
图1.2 三相全波桥式换流电路原理图
单桥
Graetz桥
M
M 晶闸管
T thyristor
电压:5.5~9kV 电流:1.2~3.5kA
A
A
• 桥臂组成方式: 晶闸管串联 • 桥臂特点: 均压
换流变压器(Converter Transformer)
向换流器提供适当等级的不接地三相电压源设备
作用:
使HVDC系统建立自己的对地参考点 减小注入系统的谐波 Y0/Y, Y0/△, Y0/Y/△
R 主电路
特点:
接线方式: 噪声大
短路电抗大: 15~20%
T T
平波电抗器(Smoothing Reactor)
谐波及滤波器
各种各样的不对称,如不等间隔的触发脉冲、母线 电压不对称和相间换相电抗的不对称,将产生额外 的谐波,即“非特征谐波”
目前抑制谐波最广泛采用的方法是装设滤波器。近年来,
随着电力电子技术的发展,出现了新型谐波补偿装置— —有源电力滤波器。这种滤波器即使在谐波频率迅速变 化时,也能产生相应的补偿电流,并可根据需要对无功 功率进行动态补偿。这是一种非常理想、很有前途的补
故障
换相失败:在换相电压反向(具有足够的去 游离裕度)之前未能完成换相的故障 换相失败不是由于阀的误操作引起的,而是 外部条件引起的。换相失败对于逆变器来说 更为普遍,往往在大直流电流低交流电压等 扰动时发生。仅当触发电路故障时,整流器 才会发生换相失败
R 主电路
直流线路(DC Line)
种类:
架空线路 电缆线路
T Line
交流断路器(Breaker)
使HVDC完全退出运行
R 主电路
二、HVDC的基本原理
从交流系统Ⅰ向交流系统Ⅱ输电时,换流 站Ⅰ把交流系统Ⅰ送来的三相交流功率变换成直 流功率。通过直流输电线路把直流功率输送到换 流站Ⅱ,再由换流站Ⅱ将直流功率转换成交流功 率,送入交流系统Ⅱ 。这个过程称作HVDC。 此时换流站Ⅰ为整流站,换流站Ⅱ为逆变站。
高压直流输电
HVDC
HVDC的主要元件和基本原理
一、主要元件
换流站I
平波电抗器
换流站II 换 流 变压器 Vd II
交流系 统II
交流母线 换 流 变压器 Vd I 交流 系统 I 断路器
直 流 滤波器
交流母线
直流线路 无功补 偿设备 交 流 滤波器 桥I
桥II
交 流 滤波器
无功补 偿设备
图1.1 HVDC原理图
3
X c Id
逆变侧
Vd 3 2
Vl cos( )
3
X c Id
HVDC系统的控制
一、直流系统的控制要求具有下列基本功能:
1、减小由于交流系统电压的变化而引起的直流电流波动。 2、限制最大直流电流,防止换流器受到过载损害;限制 最小直流电流,避免电流间断而引起过电压。 3、尽量减小逆变器发生换相失败的概率。 4、适当地减小换流器所损耗的无功功率。 1.5 、正常运行时,直流电压保持在额定值水平,使得当 输送给定功率时线路的功率损耗适当。 二、基本控制方式 整流器采用定电流控制和α 限制控制 逆变器采用恒定熄弧角(CEA)控制和电流控制
(4)
二、HVDC的基本原理 描述整流器工作方式的几个角度:
=触发延迟角 =熄弧延迟角=
=叠弧角(换相角)
+
描述逆变器工作方式的几个角度:
=触发超前角= -
=熄弧超前角= -
=叠弧角=
-
=
-
二、HVDC的基本原理
换流方程
整流侧
Vd 3 2
Vl cos( )
无源滤波器: 单调谐滤波器 双调谐滤波器 高通滤波器
无功补偿设备(Reactive Power Campensitor)
作用:
提供换流器所需要的无功功率,减小换流器与系统 的无功交换。
换流器吸收无功功率: 30~50%Pd (整流器)
40~60%Pd (逆变器)
种类:
无源类: 电容器 有源类: (同步)调相机,SVC