ansys几何非线性+塑性+接触+蠕变

合集下载

ANSYS主要功能与模块

ANSYS主要功能与模块

ANSYS主要功能与模块(2012-12-24 13:37:26)转载▼标签:ansys功能分类:ansysansys模块杂谈ANSYS是世界上著名的大型通用有限元计算软件,它包括热、电、磁、流体和结构等诸多模块,具有强大的求解器和前、后处理功能,为我们解决复杂、庞大的工程项目和致力于高水平的科研攻关提供了一个优良的工作环境,更使我们从繁琐、单调的常规有限元编程中解脱出来。

ANSYS本身不仅具有较为完善的分析功能,同时也为用户自己进行二次开发提供了友好的开发环境。

ANSYS程序自身有着较为强大三维建模能力,仅靠ANSYS的GUI(图形界面)就可建立各种复杂的几何模型;此外,ANSYS还提供较为灵活的图形接口及数据接口。

因而,利用这些功能,可以实现不同分析软件之间的模型转换。

1. 结构分析1)静力分析 - 用于静态载荷. 可以考虑结构的线性及非线性行为。

●线性结构静力分析●非线性结构静力分析♦几何非线性:大变形、大应变、应力强化、旋转软化♦材料非线性:塑性、粘弹性、粘塑性、超弹性、多线性弹性、蠕变、肿胀等♦接触非线性:面面/点面/点点接触、柔体/柔体刚体接触、热接触♦单元非线性:死/活单元、钢筋混凝土单元、非线性阻尼/弹簧元、预紧力单元等2)模态分析 - 计算线性结构的自振频率及振形. 谱分析是模态分析的扩展,用于计算由于随机振动引起的结构应力和应变 (也叫作响应谱或PSD).3)谐响应分析 - 确定线性结构对随时间按正弦曲线变化的载荷的响应.4)瞬态动力学分析 - 确定结构对随时间任意变化的载荷的响应. 可以考虑与静力分析相同的结构非线性行为.5)谱分析6)随机振动分析等7)特征屈曲分析 - 用于计算线性屈曲载荷并确定屈曲模态形状. (结合瞬态动力学分析可以实现非线性屈曲分析.)8)专项分析: 断裂分析, 复合材料分析,疲劳分析2. 高度非线性瞬态动力分析(ANSYS/LS-DYNA)●全自动接触分析,四十多种接触类型●任意拉格郎日-欧拉(ALE)分析●多物质欧拉、单物质欧拉● 适应网格、网格重划分、重启动● 100多种非线性材料模式●多物理场耦合分析:结构、热、流体、声学●爆炸模拟,起爆效果及应力波的传播分析●侵彻穿甲仿真,鸟撞及叶片包容性分析,跌落分析●失效分析,裂纹扩展分析●刚体运动、刚体-柔体运动分析●实时声场分析● BEM边界元方法,边界元、有限元耦合分析●光顺质点流体动力(SPH)算法3. 热分析●稳态、瞬态温度场分析●热传导、热对流、热辐射分析●相变分析●材料性质、边界条件随温度变化4. 电磁分析●静磁场分析-计算直流电(DC)或永磁体产生的磁场●交变磁场分析-计算由于交流电(AC)产生的磁场●瞬态磁场分析-计算随时间随机变化的电流或外界引起的磁场●电场分析-用于计算电阻或电容系统的电场. 典型的物理量有电流密度、电荷密度、电场及电阻热等。

ANSYS非线性命令解析

ANSYS非线性命令解析

ANSYS非线性命令解析〔1ANSYS应用基于问题物理特性的自动求解控制方法,把各种非线性分析控制参数设置到合适的值。

如果用户对这些设置不满意,还可以手工设置。

下列命令的缺省设置已进行了优化处理:AUTOTS PRED MONITORDELTIM NROPT NEQITNSUBST TINTP SSTIFCNVTOL CUTCONTROL KBCLNSRCH OPNCONTROL EQSLVARCLEN CDWRITE LSWRITE这些命令及其设置在将在后面讨论。

参见《ANSYS Commands Reference》。

如果用户选择自己的设置而不是ANSYS的缺省设置,或希望用以前版本的ANSYS的输入列表,则可用/ SOLU 模块的SOLCONTROL ,OFF命令,或在/ BATCH 命令后用/ CONFIG ,NLCONTROL,OFF命令。

参见SOLCONTROL 命令的详细描述。

ANSYS对下面的分析激活自动求解控制单场的非线性或瞬态结构以及固体力学分析,在求解自由度为UX、UY、UZ、ROTX、ROTY、ROTZ 的结合时;单场的非线性或瞬态热分析,在求解自由度为TEMP时;注意-- 本章后面讨论的求解控制对话框,不能对热分析做设置。

用户必须应用标准的ANSYS求解命令或GUI来设置。

2.2 非线性静态分析步骤尽管非线性分析比线性分析变得更加复杂,但处理基本相同。

只是在非线形分析的过程中,添加了需要的非线形特性。

非线性静态分析是静态分析的一种特殊形式。

如同任何静态分析,处理流程主要由以下主要步骤组成:建模;设置求解控制;设置附加求解控制;加载;求解;考察结果。

2.2.1 建模这一步对线性和非线性分析基本上是一样的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,参考§4《材料非线性分析》,和§6.1《单元非线性》。

如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实<或对数>应变表示。

ANSYSMechanical的强大非线性分析能力

ANSYSMechanical的强大非线性分析能力

ANSYS/Mechanical的强大非线性分析能力(摘录并改编自《ANSYS Mechanical ─A Powerful Nonlinear Simulation Tool》,Grama R.Bhashyam,2002年9月)1 前言随着有限元算法理论、计算机硬件和软件技术、实际工业需求等的进步,现代CAE技术的应用已逐步由以线性模拟为主向以非线性模拟为主快速发展。

一个好的非线性CAE程序必须在这样一些技术领域有完美的解决方案:(1)有限元单元技术;(2)材料本构模型;(3)接触算法和装配分析;(4)针对大型复杂非线性问题的有效解算算法;(5)良好的应用程序组织结构(易用性和可靠性);等等。

本文概要讲述ANSYS/Mechanical程序的部分主要的和独特的非线性技术,以让大家有一个概略性的了解。

2 ANSYS单元技术:实现有效的分析仿真的基础早在1994年的5.3版本中,ANSYS就已经具备了一个功能强大、适应面宽的单元库。

为了适应复杂多变的材料本构和宽范围应用的需求,ANSYS公司随后集中技术力量开发了一组全新的单元(180系列单元),这些单元具有如下显著特点:✓功能丰富✓融合了最新的基础理论和最先进的算法✓柔性的单元构架传统的全积分等参实体单元应用范围很有限,在线性或非线性分析中,可能会发生严重的“锁定”等问题。

作为一个通用的分析工具,ANSYS的有限元单元面对的是一个范围非常宽广的应用范畴。

因而,180系列实体单元(182、183、185、186和187)综合采用了如下的一些全新的单元技术来保证其宽范围的应用需求:✓选择性降阶积分:避免低阶单元在分析近似不可压材料时发生体积锁定;✓增强应变列式:避免低阶单元的过刚(弯曲状态)、剪切和体积锁定(近似不可压材料);✓一致性降阶积分:更有效地避免在分析近似不可压材料时发生体积锁定,避免低阶单元在弯曲状态的体积锁定,采用沙漏控制避免降阶积分的零能模式;✓混合u-P列式:除位移外,将静水压力作为附加自由度,有基于罚函数和基于拉格郎日乘子等两种u-P列式,适用于近似不可压超弹材料、近似不可压弹塑性材料和完全不可压超弹材料等。

有限元分析软件ANSYS简介

有限元分析软件ANSYS简介

有限元分析软件ANSYS简介1、ANSYS程序自身有着较为强大三维建模能力,仅靠ANSYS的GUI(图形界面)就可建立各种复杂的几何模型;此外,ANSYS还提供较为灵活的图形接口及数据接口。

因而,利用这些功能,可以实现不同分析软件之间的模型转换。

“上海二十一世纪中心大厦”整体分析曾经由日本某公司采用美国ETABS软件计算,利用他们已经建好的模型,读入ANSYS并运行之,可得到计算结果,从而节省较多的工作量。

2、ANSYS功能(1)结构分析静力分析 - 用于静态载荷. 可以考虑结构的线性及非线性行为,例如: 大变形、大应变、应力刚化、接触、塑性、超弹及蠕变等.模态分析 - 计算线性结构的自振频率及振形. 谱分析是模态分析的扩展,用于计算由于随机振动引起的结构应力和应变 (也叫作响应谱或 PSD).谐响应分析 - 确定线性结构对随时间按正弦曲线变化的载荷的响应.瞬态动力学分析 - 确定结构对随时间任意变化的载荷的响应. 可以考虑与静力分析相同的结构非线性行为.特征屈曲分析 - 用于计算线性屈曲载荷并确定屈曲模态形状. (结合瞬态动力学分析可以实现非线性屈曲分析.)专项分析: 断裂分析, 复合材料分析,疲劳分析用于模拟非常大的变形,惯性力占支配地位,并考虑所有的非线性行为.它的显式方程求解冲击、碰撞、快速成型等问题,是目前求解这类问题最有效的方法. (2)ANSYS热分析热分析之后往往进行结构分析,计算由于热膨胀或收缩不均匀引起的应力. ANSYS功能:相变 (熔化及凝固), 内热源 (例如电阻发热等)三种热传递方式 (热传导、热对流、热辐射)(3)ANSYS电磁分析磁场分析中考虑的物理量是磁通量密度、磁场密度、磁力、磁力矩、阻抗、电感、涡流、能耗及磁通量泄漏等.静磁场分析 - 计算直流电(DC)或永磁体产生的磁场.交变磁场分析 - 计算由于交流电(AC)产生的磁场.瞬态磁场分析- 计算随时间随机变化的电流或外界引起的磁场电场分析用于计算电阻或电容系统的电场. 典型的物理量有电流密度、电荷密度、电场及电阻热等。

ansys级非线性分析蠕变

ansys级非线性分析蠕变

September 30, 2001 Inventory #001491 4-5
隐式和显式蠕变
... 蠕变背景
Training Manual
Advanced Structural Nonlinearities 6.0
• 当计算弹性、塑性和蠕变应变时, ANSYS使用附加的应变分量: 应力-应变 附加分量
cr e
应力相关性

Q RT
式中Q为激活能, R为普适气体常数, T为绝对温度。
– 蠕变应变通常也与应力有关, 尤其是位错蠕变。Norton 法则为:
cr n
对上述幂定律的常见修正如下:
cr eC
September 30, 2001 Inventory #001491 4-16
implicitcreepequationdescriptiontypetboptvaluestrainhardeningprimarytimehardeningprimarygeneralizedexponentialprimarygeneralizedgrahamprimarygeneralizedblackburnprimarymodifiedtimehardeningprimarymodifiedstrainhardeningprimarygeneralizedgarofalohyperbolicsinesecondaryexponentialformsecondarynortonsecondary10timehardeningboth11rationalpolynomialboth12generalizedtimehardeningprimary13usercreep100advancedstructuralnonlinearities60trainingmanual应变强化tbopt1第一阶段蠕变时间强化tbopt2第一阶段蠕变广义指数tbopt3第一阶段蠕变广义grahamtbopt4第一阶段蠕变advancedstructuralnonlinearities60trainingmanual广义blackburntbopt5第一阶段蠕变修正的时间强化tbopt6第一阶段蠕变修正的应变强化tbopt7第一阶段蠕变rtcradvancedstructuralnonlinearities60trainingmanual广义garofalotbopt8第二阶段蠕变指数形式tbopt9第二阶段蠕变10nortontbopt10第二阶段蠕变advancedstructuralnonlinearities60trainingmanual可用的隐式蠕变模型11时间强化tbopt11第一阶段第二阶段12有理多项式tbopt12第一阶段第二阶段13广义时间强化tbopt13第一阶段蠕变1211ptcptcrteadvancedstructuralnonlinearities60trainingmanual练习请参考附加练习题

ANSYS软件提供的分析类型

ANSYS软件提供的分析类型

1.结构静力分析用来求解外载荷引起的位移、应力和力。

静力分析很适合求解惯性和阻尼对结构的影响并不显著的问题。

ANSYS程序中的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、蠕变、膨胀、大变形、大应变及接触分析。

2.结构动力学分析结构动力学分析用来求解随时间变化的载荷对结构或部件的影响。

与静力分析不同,动力分析要考虑随时间变化的力载荷以及它对阻尼和惯性的影响。

ANSYS可进行的结构动力学分析类型包括:瞬态动力学分析、模态分析、谐波响应分析及随机振动响应分析。

3.结构非线性分析结构非线性导致结构或部件的响应随外载荷不成比例变化。

ANSYS程序可求解静态和瞬态非线性问题,包括材料非线性、几何非线性和单元非线性三种。

4.动力学分析ANSYS程序可以分析大型三维柔体运动。

当运动的积累影响起主要作用时,可使用这些功能分析复杂结构在空间中的运动特性,并确定结构中由此产生的应力、应变和变形。

5.热分析程序可处理热传递的三种基本类型:传导、对流和辐射。

热传递的三种类型均可进行稳态和瞬态、线性和非线性分析。

热分析还具有可以模拟材料固化和熔解过程的相变分析能力以及模拟热与结构应力之间的热-结构耦合分析能力。

6.电磁场分析主要用于电磁场问题的分析,如电感、电容、磁通量密度、涡流、电场分布、磁力线分布、力、运动效应、电路和能量损失等。

还可用于螺线管、调节器、发电机、变换器、磁体、加速器、电解槽及无损检测装置等的设计和分析领域。

7.流体动力学分析ANSYS流体单元能进行流体动力学分析,分析类型可以为瞬态或稳态。

分析结果可以是每个节点的压力和通过每个单元的流率。

并且可以利用后处理功能产生压力、流率和温度分布的图形显示。

另外,还可以使用三维表面效应单元和热-流管单元模拟结构的流体绕流并包括对流换热效应。

8.声场分析程序的声学功能用来研究在含有流体的介质中声波的传播,或分析浸在流体中的固体结构的动态特性。

这些功能可用来确定音响话筒的频率响应,研究音乐大厅的声场强度分布,或预测水对振动船体的阻尼效应。

ANSYS讲义非线性分析

ANSYS讲义非线性分析
F1
t1
t2
时间 t
XJTU
自动时间步(续)
• 自动时间步算法是 非线性求解控制 中包含的多种算法的一种。
(在以后的非线性求解控制中有进一步的讨论。) • 基于前一步的求解历史与问题的本质,自动时间步算法或者增加
或者减小子步的时间步大小。
XJTU
5) 输出文件的信息
在非线性求解过程中,输出窗口显示许多关于收敛的信息。输出 窗口包括:
子步
时间 ”相关联。
“时间
两个载荷步的求解 ”
XJTU
在非线性求解中的 “ 时间 ”
• 每个载荷步与子步都与 “ 时间 ”相关联。 子步 也叫时间步。
• 在率相关分析(蠕变,粘塑性)与瞬态分析中,“ 时间 ”代表真实 的时间。
• 对于率无关的静态分析,“ 时间 ” 表示加载次序。在静态分析中, “ 时间 ” 可设置为任何适当的值。
最终结果偏离平衡。
u 位移
XJTU
1) Newton-Raphson 法
ANSYS 使用Newton-Raphson平衡迭代法 克服了增量
求解的问题。 在每个载荷增量步结束时,平衡迭代驱 使解回到平衡状态。
载荷
F
4 3 2
1
u 位移
一个载荷增量中全 Newton-Raphson 迭代 求解。(四个迭代步如 图所示)
XJTU
非线性分析的应用(续)
宽翼悬臂梁的侧边扭转失 稳
一个由于几何非线性造 成的结构稳定性问题
XJTU
非线性分析的应用(续)
橡胶底密封 一个包含几何非线 性(大应变与大变 形),材料非线性 (橡胶),及状态 非线性(接触的例 子。
XJTU
非线性分析的应用(续)

ANSYS结构非线性分析指南(一至三章)

ANSYS结构非线性分析指南(一至三章)

ANSYS结构非线性分析指南(一到三章)屈服准则概念:1.理想弹性材料物体发生弹性变形时,应力与应变完全成线性关系,并可假定它从弹性变形过渡到塑性变形是突然的。

2.理想塑性材料(又称全塑性材料)材料发生塑性变形时不产生硬化的材料,这种材料在进入塑性状态之后,应力不再增加,也即在中性载荷时即可连续产生塑性变形。

3.弹塑性材料在研究材料塑性变形时,需要考虑塑性变形之前的弹性变形的材料这里可分两种情况:Ⅰ.理想弹塑性材料在塑性变形时,需要考虑塑性变形之前的弹性变形,而不考虑硬化的材料,也即材料进入塑性状态后,应力不再增加可连续产生塑性变形。

Ⅱ.弹塑性硬化材料在塑性变形时,既要考虑塑性变形之前的弹性变形,又要考虑加工硬化的材料,这种材料在进入塑性状态后,如应力保持不变,则不能进一步变形。

只有在应力不断增加,也即在加载条件下才能连续产生塑性变形。

4.刚塑性材料在研究塑性变形时不考虑塑性变形之前的弹性变形。

这又可分两种情况:Ⅰ.理想刚塑性材料在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。

Ⅱ.刚塑性硬化材料在研究塑性变形时,不考虑塑性变形之前的弹性变形,但需要考虑变形过程中的加工硬化材料。

屈服准则的条件:1.受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。

2.受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。

在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。

它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为)=Cf(σij又称为屈服函数,式中C是与材料性质有关而与应力状态无关的常数,可通过试验求得。

屈服准则是求解塑性成形问题必要的补充方程。

1.1 什么是结构非线性在日常生活中,经常会遇到结构非线性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

除去蠕变,这个模型的结果可靠性是不错的。

作了一系列接触问题,通过试验验证符合的很好。

模型解释:(1)一个弹性结构受压(接触)变形,到发生塑性变形。

(2)拿开压缩板,结构回弹,但不会回到原始位置。

(3)这时计算蠕变,释放掉应力。

(4)再压弹性结构到开始压缩位置。

比较这四步的接触力。

结果:第二,三步当然没有接触力,(若没有应力释放,第一、第四步接触力应一样,)有了应力释放,第四步接触力比第一步减小。

这个模型中的蠕变没用太好。

用的是隐式6号蠕变方程,蠕变是时间和应力的函数,参数是乱定的(应力释放太快)。

想请教有关蠕变方面的资料,尤其是材料蠕变方程选用及参数方面的资料。

/prep7
!------------CuSn8----------
ET,1,182,,,3
mp,ex,1,115e9
mp,prxy,1,0.3
r,1,0.3
TB,BKIN,1
TBDA TA,1,470E6,0
tm=100
*SET,C1,1.5625E-14&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;!ASSIGN VALUE
*SET,C2,1.5&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;!ASSIGN V ALUE
*SET,C3,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;!ASSIGN V ALUE
*SET,C4,0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;!ASSIGN V ALUE
TB,CREEP,1,,,6&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;!ACTIV ATE DA TA TABLE
TBDA TA,1,C1,C2,C3,C4&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;!DEFINE DATA FOR TABLE
!-----------contact-----------------
ET,9,169
ET,10,171
R,9,,,0.1,0.1,,
!RMORE,,,1.0E20,0.0,1.0,
!RMORE,0.0,0,1.0,0,0,0.5
!RMORE,,,1.0,0.0
MP,MU,9,0.0
!----------------geometry
k,,2
k,,2,0.2
k,,,0.2
k,,-0.2
k,,-0.2,1.2
k,,,1
k,,2,1.2
k,,1,1
k,,1.25,1
k,,2,1
L,8,9,
k,,1.5,1.2
k,,1.75,1.45
L, 1, 2 L, 1, 4 L, 4, 5 L, 5, 11
larc,7,12,11,0.25 larc,11,12,7,0.25
L, 7, 10 L, 10, 9 L, 8, 6 L, 6, 3 L, 3, 2
LFILLT,11,10,0.3, ,
!*
LFILLT,4,5,0.5, ,
!*
LFILLT,11,12,0.3, ,
!*
LFILLT,4,3,0.5, ,
FLST,2,16,4 FITEM,2,12 FITEM,2,15 FITEM,2,11 FITEM,2,13
FITEM,2,10
FITEM,2,1
FITEM,2,9
FITEM,2,8
FITEM,2,7
FITEM,2,6
FITEM,2,5
FITEM,2,14
FITEM,2,4
FITEM,2,16
FITEM,2,3
FITEM,2,2
AL,P51X
rect,1,3,1.45+0.001,1.5
type,1
mat,1
esize,0.05
amesh,all
!---------contact------------ alls
type,10
mat,9
real,9
lsel,s,,,6,7
nsll,s,1
esln,s,0
esurf,all
type,9
mat,9
real,9
lsel,s,,,17
nsll,s,1
esln,s,0
esurf,all
!------boundary
lsel,s,,,3
nsll,,1
d,all,ux
d,all,uy
lsel,s,,,19
nsll,,1
cp,11,uy,all
cplgen,11,ux
*get,nmin,node,,num,min d,nmin,ux
ksel,s,,,10
nslk
*get,ndis,node,,num,min
fini
/solu
antype,static
nlgeom,on
autots,on
alls
save
rate,off
time,1e-8
d,nmin,uy,-0.3
nsub,20
outres,all,all
solve
*get,rf1,node,nmin,rf,fy *get,dis1,node,ndis,u,y
time,2e-8
d,nmin,uy,0.0
nsub,20
outres,all,all
solve
*get,rf2,node,nmin,rf,fy
*get,dis2,node,ndis,u,y
!BFUNIF,TEMP,90
rate,on
TIME,tm
!NSUBST,10
OUTPR,BASIC,10 ! PRINT BASIC SOLUTION FOR EVERY 10TH SUBSTEP OUTRES,ESOL,1 ! STORE ELEMENT SOLUTION FOR EVERY SUBSTEP SOLVE
*get,rf3,node,nmin,rf,fy
*get,dis3,node,ndis,u,y
rate,off
time,tm+1e-8
d,nmin,uy,-0.3
nsub,20
outres,all,all
solve
*get,rf4,node,nmin,rf,fy
*get,dis4,node,ndis,u,y
/EOF
time,11
d,nmin,uy,-0.0
nsub,20
outres,all,all
solve
*get,rf11,node,nmin,rf,fy
*get,dis11,node,ndis,u,y
/eof
fini
/post1
*get,rf2,node,nmin,rf,fy fini
/eof。

相关文档
最新文档