2x600KW沼气发电机组余热利用热工计算说明书
瓦斯发电余热热力计算

瓦斯发电余热热力计算瓦斯发电余热利用热力计算一.热电联供设计目的本设计利用瓦斯发电机组的余热,将冷水加热成热水,供洗浴、冬季取暖或其他生活用水,实现热电联供,使瓦斯燃烧热能得到充分利用,减少热能浪费,从而实现能源综合利用的目的。
根据实际测试结果表明,所燃瓦斯气只有36%的热量用来发电,约有38%的热量通过高温烟气排空。
如果采用热电联供,设计一套废气余热利用系统,充分利用高温烟气热量,可使所燃气体总热量65%得到应用。
二. 废气余热系统组成及原理废气余热系统主要由烟气——水热交换器、给水泵或热水循环泵、阀门仪表、保温输水管线组成。
该系统由以上部分组成一个循环系统,给水泵或热水循环泵作为动力源,利用烟气——水热交换器加热水介质,产生热水或蒸汽,供生产生活应用。
系统设计以淄柴2台500kW瓦斯气体发电机组余热为例,可以得到压力为1.0Mpa,水介质工作温度在95℃,流量为7093千克/小时循环热水,热交换量约为53万大卡/小时。
或者可以得到压力为5kgf/cm2的蒸汽747kg,热交换量约为47万大卡/小时。
三. 系统热力计算淄柴2台500kW瓦斯气体发电机组正常运转时,发电功率为480kW、排烟温度在500℃左右,则500kW机组的耗气总量为:480/3×(1+13)=2240m3/h烟气总重量为:2240×1.25=2800kg排气烟道气体的比热容为0.26kcal/kg·℃如果将水自20℃加热到95℃用来冬季供暖,则二台发电机组可利用排烟余热为:(500-120)×0.25×2800×2=532000kcal/h每小时可产生热水量为:532000÷(95-20)=7093kg按每平米冬季取暖需要热量70w计算,根据热量换算,1kw合860kcal/h,则供暖面积(每小时)为:(1)回收热量合千瓦数为:532000÷860=619kw;(2)供暖面积为:619×1000÷70=8842m2;二台发电机组可利用排烟余热产生5kgf/cm2蒸汽为:(500-170)×0.26×2800×0.98×2=470870kcal/h按进水温度20℃计算,蒸汽温度152℃,蒸汽的热焓650kcal/kg,则每小时可产生总蒸汽量为:470870÷(650-20)=747kg。
概论余热发电系统热力计算方法

概论余热发电系统热力计算方法摘要:本文介绍了预热发电系统的热力计算方法及其推导过程,可根据本文理解余热发电系统热力计算,有一定的参考价值。
关键词:余热发电;热力计算Abstract: This paper introduces the preheating thermodynamic calculation method of power system and the derivation process, according to understand the thermodynamic calculation of waste heat power generation system, this paper has certain reference value.Key words: Waste heat power generation; Thermodynamic calculation一、系统热力计算方法和步骤及其划元原则1 系统热力计算方法以热平衡和工质平衡理论为基础,以基本换热计算单元为热平衡范围,在考虑掠过换热器外部的废气与换热器内流过的工质之间换热效率的基础上,建立一系列包含热平衡范围内各项热收入与热支出项目的热平衡方程,以求解每个基本换热计算单元在换热过程中的某未知参数值。
2 系统划元原则系统划元系指将余热发电系统划分为一系列可计算的基本换热计算单元,单元内的换热过程可建立唯一热平衡方程,以求解该单元在换热过程中的某未知参数值。
系统中的汽轮机做功、蒸汽冷凝、热力除氧和高温水闪蒸等均已是基本换热计算单元;而余热锅炉内的热水器、省煤器、蒸发器、汽包和过热器等则需将其划分为各种类型的基本换热计算单元。
这些基本换热计算单元既可是上述独立换热单元,也可是独立换热单元的各种组合。
所谓基本换热单元系最大可计算单元,以此单元为热平衡范围而建立的热平衡方程仅有一个因变量,或相邻换热单元的两个热平衡方程间有两个相关联的因变量,通过两方程的联立而求解出两个因变量。
河源电厂2×600MW机组供热机组的控制策略优化

河源电厂2×600MW机组供热机组的控制策略优化作者:李恩鹏来源:《科学导报·科学工程与电力》2019年第02期1.机组及其供热系统河源电厂一期2X600MW机组供热系统中,4段抽汽为供热主热源,再热冷段作为备用热源。
从电厂一期2X600MW机组每台机的再热冷段蒸汽管道止回阀后增加供热分支,在4段抽汽管道上增加供热分支,接到每台机组的压力匹配器。
每台机的压力匹配器还设置一个低温再热蒸汽的减压阀旁路,作为压力匹配器的备用供热管路。
每台机组低温再热蒸汽管道(额定负荷4.61Mpa,340.2℃)、4段抽汽管道(额定负荷1.0Mpa,379.4℃)根据设计分界处的参数要求,经压力匹配器或者减压器后的蒸汽参数不小于:1.7Mpa,298℃;每台机组最大供热能力120t/h。
厂区供热蒸汽母管到电厂围墙分界处的设计最大蒸汽流量200t/h。
在每台机组的压力匹配器后设置减温装置,保证到分界点的温度不超过285℃。
2 供热超(超)临界机组协调控制系统模型供热直流锅炉的协调控制对象模型可简化为一个四输入四输出系统,输入为汽轮机调节阀开度μT(%)、燃料量M(t)、给水流量W(t),压力匹配器调节阀开度U(%),输出为机组电负荷NE(MW)、机前压力PT(MPa)、分离器入口蒸汽温度θ(℃)或焓值H(kJ/kg)、供热负荷NH(MW),其相互间的耦合关系如图2所示。
燃料量增大,机组电负荷、压力、温度、供热负荷均增大;汽轮机调节阀开度增大,机组电负荷、供热负荷增大,压力、温度降低;给水流量增大,机组电负荷、压力、供热负荷增大,温度降低;压力匹配器调节阀开度增大,给水流量增大,机组电负荷、压力降低,供热负荷增大。
图2中实线为强相关关系,虚线为弱相关关系,在调节系统构建和参数配置时,为简化控制模型将忽略弱相关关系,而利用各强相关关系的不同系数配比来实现不同的协调控制策略。
通过分析纯凝机组在不同负荷下的热力特性发现,汽轮机进汽流量与机组发电负荷存在近似线性关系,对于供热机组,当安装压力匹配器后,进入汽轮机的蒸汽量与机组发电负荷同压力匹配器阀开度的乘积成正比关系,则汽轮机供热抽汽流量描述为:QH= K5·u·NE(1)式中:QH为供热抽汽流量,t/h;K5为固定压力匹配器调节阀开度下发电负荷折算抽汽流量的系数,t/(h·M W ·%)。
600MW原则性热力系统计算步骤

《热力发电厂》课程设计指导书(1)设计题目: 600MW 凝汽式机组全厂原则性热力系统设计计算一、课程设计的目的和任务本课程设计是《热力发电厂》课程的具体应用和实践,是热能工程专业的各项基础课和专业课知识的综合应用,其重点在于将理论知识应用于一个具体的电厂生产系统介绍实际电厂热力系统的方案拟定、管道与设备选型及系统连接方式的选择,详细阐述实际热力系统的能量平衡计算方法和热经济性指标的计算与分析。
完成课程设计任务的学生应熟练掌握系统能量平衡的计算,可以应用热经济性分析的基本理论和方法对各种热力系统的热经济性进行计算、分析,熟练掌握发电厂原则性热力系统的常规计算方法,了解发电厂原则性热力系统的组成。
二、计算任务1 .根据给定的热力系统数据,在 h - s 图上绘出蒸汽的汽态膨胀线(要求出图占一页);2 .计算额定功率下的汽轮机进汽量 D0,热力系统各汽水流量 D j;3 .计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组汽耗率、机组热耗率、绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率);4 .按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量标在图中(手绘图 A2 )。
汽水流量标注: D ×××,以 t/h 为单位三、计算类型:定功率计算采用常规的手工计算法。
为便于计算,凡对回热系统有影响的外部系统,如辅助热力系统中的锅炉连续排污利用系统、对外供热系统等,应先进行计算。
因此全厂热力系统计算应按照“先外后内,由高到低”的顺序进行。
计算的基本公式是热平衡式、物质平衡式和汽轮机功率方程式,具体步骤如下:1、整理原始资料根据给定的原始资料,整理、完善及选择有关的数据,以满足计算的需要。
(1)将原始资料整理成计算所需的各处汽、水比焓值,如新蒸汽、抽汽、凝气比焓。
加热器出口水、疏水、带疏水冷却器的疏水及凝汽器出口水比焓,再热热量等。
沼气发电工程余热综合利用方案介绍

沼气发电工程余热综合利用方案介绍沼气作为可再生能源,越来越受到重视,并得到广泛应用。
沼气不仅有助于温室效应的减轻和生态良性循环,而且可替代部分石油、煤炭等化石燃料,成为解决能源与环境问题的重要途径。
此外,沼气发电工程中产生的余热也具有很高的利用价值。
一、余热利用现状以畜禽养殖场的沼气发电工程为例,沼气燃烧后的能量分配为:发电约占33%,排烟约占32%,高温水约占19%,低温水约占6%,其他能量损失约占10%。
理论上讲,发电机组90%的余热都可以有效利用,但我国多数沼气发电机组余热的利用率极低,只有少数沼气发电厂的余热用于满足自身生产工艺的热量需求或为建筑供暖,其余沼气发电厂的余热都被排到空气中。
余热直接排空不仅浪费了宝贵的能源,而且还会造成环境的热污染。
二、余热的产生过程我国沼气发电工程主要采用燃气内燃机的形式,而且大多数机组采用双燃料内燃机。
实际生产中,沼气在机组内燃烧产生的电力,通过变压器输出。
冷却水余热送入发酵罐满足发酵的实际需要,烟气的余热通过安装在烟道出口的烟气—水换热器回收。
沼气发电厂余热产生的原理如图1所示。
图1、余热产生的原理图三、余热利用方式沼气发电机的余热利用分为两部分:一是排烟的余热利用;二是发电机自身冷却热量的利用。
常见的余热利用方式有四种:1)热水型。
利用发电机的余热可以产生90℃甚至更高温度的热水。
这种形式在需要供暖的北方地区可以使用、2)烟气型。
利用烟气的余热配合吸收式制冷机组,可以提供冷源负荷。
3)蒸汽型。
利用烟气的余热可以产生饱和蒸汽或者过热蒸汽,但是沼气发电机组的容量较小,蒸汽的产量较小。
4)发电型。
利用发电机的余热,配合螺杆膨胀动力机发电。
四、余热利用联供系统沼气发电机在发电的同时,烟气温度一般在550℃左右。
通过余热回收技术,将燃气内燃机中的润滑油、中冷器、缸套水和烟气排放中的热量充分回收利用,用于冬季采暖以及生活热水。
夏季可与溴化锂吸收式制冷剂连接,作为空调制冷。
潍柴电力原装 600kW 柴油发电机组技术说明书

潍柴电力原装600kW柴油发电机组技术说明书潍柴重机股份有限公司产品名称潍柴电力原装柴油发电机组机组品牌潍柴(原装)机组型号WPG825/B7机组产地山东·潍坊柴油机品牌潍柴柴油机型号6M33D725E310柴油机产地山东·潍坊发电机品牌潍柴发电机型号WHA-750-4/0.4智能控制器品牌潍柴智能控制器型号WHC6120断路器电动开关机组尺寸(mm)3810×1600×2075机组重量(kg)4980二、输出功率描述2.1主用功率(基本功率PRP)定义:在商定的运行条件下,并按制造商规定的维修间隔和方法实施维护保养,发电机组能每年运行时间不受限制地为可变负载持续供电的最大功率。
2.2备用功率(限时运行功率LTP)定义:在商定的运行条件下,并按制造商规定的维修间隔和方法实施维护保养,发电机组每年供电达500h的最大功率。
本项目潍柴机组功率按照此功率进行标定。
三、规范性引用文件潍柴柴油发电机组的设计、制造符合下列标准:GB/T20136-2006《内燃机电站通用试验方法》JB/T50054-1999《内燃机电站可靠性考核评定方法》JB/T10303-2001《工频柴油发电机组技术条件》GB/T2820-2008《往复式内燃机驱动的交流发电机组》系列标准JB/T6755-1993《柴油发电机组成套开关设备》JB/T8194-2001《内燃机电站术语》四、环境条件4.1机组的功率标定条件a)绝对大气压力,PX:100kPa(或海拔高度0米);b)环境温度,Tr:298K(25℃);c)空气相对湿度Φr:30%。
4.2机组在下列条件下,应能输出额定功率:a)海拔高度≤1000米;b)环境温度≤40℃;c)空气相对湿度Φr:≤90%。
4.3机组在下列条件下,应能输出规定功率(允许修正功率)并可靠地工作:a)海拔高度不超过3000m;b)环境温度:下限值-25℃,上限值50℃;c)空气相对湿度:最湿月平均最高相对湿度为95%(25℃)五、发电机组的主要技术规格机组型号WPG825/B7额定功率/容量(kW/kVA)600/750备用功率/容量(kW/kVA)660/825额定电压(V)400/230额定频率(Hz)50额定电流(A)1083额定功率因数0.8(滞后)额定转速(r/min)1500相数及接法三相四线、星形接法冷却方式闭式循环强制水冷启动方式DC24V电启动调压方式自动励磁方式无刷励磁绝缘等级H防护等级IP23控制方式手动、自动散热水箱设计温度(℃)≤45六、发动机的主要技术规格机组型号WPG825/B7柴油机品牌潍柴型号6M33D725E310功率(kW)725额定转速(r/min)1500型式L型、高压共轨进气方式增压中冷冲程数4气缸数6燃油系统高压共轨泵调速方式电控ECU调速缸径/行程(mm)150/185排气量(L)19.6机油容量(L)60.5防冻液容量(L)127启动方式DC24V电启动冷却方式闭式循环强制水冷曲轴旋转方向逆时针(面向飞轮端)七、发电机的主要技术规格机组型号WPG825/B7发电机发电机品牌潍柴型号WHA-750-4/0.4额定功率(kW)600额定转速(r/min)1500额定频率(Hz)50额定电压(V)400/230额定电流(A)1083额定功率因数0.8(滞后)波形正弦波相数及接法三相四线、星形接法、励磁方式无刷励磁调压方式自动绝缘等级/温升等级H防护等级IP23八、机组的主要性能指标8.1机组的主要性能指标(一)性能参数单位运行极限值电压稳定电压偏差δUst%≤±1瞬态电压偏差突减100%负载δU+dyn%≤+20突加负载δU-dyn%≤-15电压恢复时间s≤5电压不平衡度δU%1空载电压调整范围%不小于95~105频率频率降δfst%≤3稳态频率带βf%≤0.5瞬态频率偏差突减100%负载δf+dyn%≤+12突加负载δf--dyn%≤-10频率恢复时间s≤38.2机组的主要性能指标(二)机组型号WPG825/B7经济性指标发动机经济燃油消耗率(g/kW.h)≤198机油消耗率(g/kW.h)≤0.3环境污染限值振动单振幅幅值机组在空载、半载、满载运行时,其振动单振幅幅值≤0.5mm满载时踞机组1米处噪音(dB(A))≤100“三漏”要求机组无漏油、漏水、漏气、漏电等现象可靠性大修时间20000h 平均无故障时间1000h九、机组的主要控制功能控制屏安装潍柴控制器和电动开关,机组控制系统可以选择手动/自动模式对机组实现启停。
600MW机组性能计算说明书

厂级监控信息系统(SIS)性能计算与耗差分析计算说明书南京科远自动化集团股份有限公司2008年6月目录1. 目的 (1)2. 相关标准及参考文件 (1)3. 性能计算汽轮机热平衡图 (1)4. 机组性能计算基本原理及公式 (1)4.1. 热平衡式 (1)4.2. 物质平衡式 (4)4.3. 汽轮机功率方程式 (4)5. 测点值的预处理 (5)5.1. 压力测点的预处理 (5)5.2. 门杆漏汽、轴封漏汽流量的处理 (6)5.3. 冗余测点的预处理 (7)6. 需要的手工录入量 (7)7. 水、蒸汽焓值的计算 (8)7.1. 水焓值计算 (8)7.1.1. 给水、主凝结水焓(kJ/kg) (8)7.1.2. 疏水焓(kJ/kg) (8)7.1.3. 除氧器出口给水焓(kJ/kg) (9)7.1.4. 凝汽器凝结水焓(kJ/kg) (9)7.1.5. 减温水焓(kJ/kg) (10)7.2. 蒸汽焓计算 (10)7.2.1. 主蒸汽焓(kJ/kg) (10)7.2.2. 高压缸排汽焓(kJ/kg) (11)7.2.3. 再热器进口蒸汽焓(kJ/kg) (11)7.2.4. 再热器出口蒸汽焓(kJ/kg) (11)7.2.5. 中压缸进汽焓(kJ/kg) (12)7.2.6. 中压缸排汽焓(kJ/kg) (12)7.2.7. 各级回热抽汽焓(kJ/kg) (12)7.2.8. 低压缸排汽焓(kJ/kg) (13)7.2.9. 高压缸理想排汽焓(kJ/kg) (13)7.2.10. 中压缸理想排汽焓(kJ/kg) (13)8. 单元机组性能计算 (14)8.1. 锅炉经济指标计算 (14)8.1.1. 锅炉蒸发量(t/h) (14)8.1.2. 空预器漏风系数 (14)8.1.3. 再热器压损(%) (14)8.1.4. 化学不完全燃烧损失(%) (15)8.1.5. 机械不完全燃烧损失(%) (15)8.1.6. 锅炉散热损失(%) (15)8.1.7. 灰渣物理热损失(%) (16)8.1.8. 排烟过量空气系数 (16)8.1.9. 排烟热损失(%) (17)8.1.10. 锅炉反平衡热效率(%) (17)8.1.11. 锅炉热负荷(GJ/h) (18)8.1.12. 锅炉吸热量(GJ/h) (18)8.2. 汽机经济指标计算 (18)8.2.1. 给水量(t/h) (18)8.2.2. #1高加抽汽量(t/h) (19)8.2.3. #2高加抽汽量(t/h) (19)8.2.4. 锅炉冷再热蒸汽量(t/h) (20)8.2.5. 汽机汽耗率(kg/kW.h) (20)8.2.6. 汽机热耗量(GJ/h) (21)8.2.7. 汽机热耗率(kJ/kW.h) (21)8.2.8. 高压缸内效率(%) (22)8.2.9. 中压缸内效率(%) (22)8.2.10. 汽轮发电机组绝对电效率(%) (22)8.2.11. 汽机绝对内效率(%) (23)8.2.12. 凝结水过冷度(℃) (23)8.2.13. 加热器上端差(℃) (23)8.2.14. 加热器下端差(℃) (24)8.3. 机组技术经济指标计算 (24)8.3.1. 功率因数(无量纲) (24)8.3.2. 机组发电效率(%) (25)8.3.3. 机组综合厂用电功率(MW) (25)8.3.4. 机组综合厂用电率(%) (25)8.3.5. 机组供电效率(%) (26)8.3.6. 机组发电标准煤耗率(g/kW.h) (26)8.3.7. 机组供电标准煤耗率(g/kW.h) (27)8.3.8. 机组发电标准煤耗量(t/h) (27)8.3.9. 机组发电原煤耗量(t/h) (27)8.3.10. 机组供电燃料成本(¥/MW.h) (28)8.3.11. 机组供电毛利润(万¥/ h) (28)8.3.12. 小机进汽焓(kJ/kg) (28)8.3.13. 小机排汽干度 (29)8.3.14. 小机排汽焓(kJ/kg) (29)8.3.15. 小机理想排汽焓(kJ/kg) (30)8.3.16. 小机功率(MW) (30)8.3.17. 小机效率(%) (30)9. 全厂性能计算 (31)9.1. 全厂发电功率(MW) (31)9.2. 全厂负荷率(%) (31)9.3. 全厂综合厂用电功率(MW) (31)9.4. 全厂综合厂用电率(%) (32)9.5. 全厂发电煤耗率(g/kW.h) (32)9.6. 全厂供电煤耗率(g/kW.h) (32)9.7. 全厂标煤耗量(t/h) (33)9.8. 全厂原煤耗量(t/h) (33)10. 机组耗差分析计算 (33)10.1. 可控耗差 (34)10.1.1. 排汽压力耗差(g/kW.h) (34)10.1.2. 排烟含氧量耗差(g/kW.h) (35)10.1.3. 主汽温耗差(g/kW.h) (36)10.1.4. 主汽压耗差(g/kW.h) (37)10.1.5. 再热汽温耗差(g/kW.h) (37)10.1.6. 排烟温度耗差(g/kW.h) (38)10.1.7. 过热器减温水量耗差(g/kW.h) (39)10.1.8. 再热器减温水耗差(g/kW.h) (40)10.1.9. 飞灰含碳量耗差(g/kW.h) (41)10.1.10. 补水率耗差(g/kW.h) (41)10.1.11. 给水温度耗差(g/kW.h) (42)10.1.12. 凝汽器过冷度耗差(g/kW.h) (43)10.1.13. 高加端差耗差(g/kW.h) (44)10.1.14. 低加端差耗差(g/kW.h) (44)10.1.15. 厂用电率耗差(g/kW.h) (45)10.1.16. 小机进汽量耗差(g/kW.h) (45)10.2. 不可控耗差 (46)10.2.1. 再热蒸汽压损耗差(g/kW.h) (46)10.2.2. 高压缸内效率耗差(g/kW.h) (47)10.2.3. 中压缸内效率耗差(g/kW.h) (48)10.3. 耗差引起的经济损失计算 (48)11. 附录 (49)11.1. 符号对照表 (49)11.2. 输入测点对照表 (55)1.目的本说明书给出了性能计算与耗差分析的详细计算公式,1000MW机组的性能计算与耗差分析可参考之。
600MW凝汽式机组全厂原则性热力系统计算

600MW凝汽式机组全厂原则性热力系统计算凝汽式发电机组是一种常见的发电装置,通过在燃烧室中燃烧燃料,从而产生高温高压的燃气。
这些燃气经过涡轮机的推动,从而驱动发电机发电。
在这个过程中,燃气能量被转化为机械能,然后转化为电能。
在全厂原则性热力系统计算中,我们需要计算凝汽式发电机组全厂的能量转换过程,以及各组件的能量损失情况。
下面是一个示例的计算步骤:1.燃气流程:首先,我们需要计算燃气在燃烧室中的燃烧过程。
这个过程中,燃料和空气混合在一起,产生高温高压的燃气。
我们需要计算燃气的热输入、质量流量以及热力特性。
2.涡轮机流程:接下来,我们需要计算涡轮机的工作过程。
涡轮机通过燃气的压力和温度来驱动转子转动,从而转化为机械能。
我们需要计算转子的转速以及转动功。
3.发电机流程:涡轮机转动的机械能需要通过发电机转化为电能。
我们需要计算发电机的效率以及电能产生的功率。
4.蒸汽循环流程:在涡轮机工作后,燃气经过凝汽器冷却成为水蒸汽。
然后,水蒸汽被再次加热,在高温高压下再次进入涡轮机。
我们需要计算蒸汽循环的效率以及各组件的能量损失。
5.辅助系统:除了核心的凝汽式发电机组,还有很多辅助系统,如冷却水系统、泵站等。
我们需要计算这些系统的能量损失以及效率。
在进行以上计算时,我们需要使用一些基本的热力学公式和参数。
例如,燃气的热输入可以通过燃料的高位发热值和燃料消耗量计算得到。
涡轮机的转速可以通过流量和进口出口压力计算得到。
发电机的效率可以通过实验测量或者理论计算得到。
总结起来,凝汽式机组全厂原则性热力系统计算是一个包括燃气流程、涡轮机流程、发电机流程、蒸汽循环流程以及辅助系统的计算过程。
通过对这些过程的能量转换和损失进行计算,可以评估凝汽式机组的热力性能,并提供相应的改进和优化建议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2台600KW沼气发电机组
热工计算说明书
一、沼气发电机组余热利用数据计算
沼气在空气中完全燃烧的公式:
CH4 + O2 = CO2 + H2O + Q1
沼气在空气中不完全燃烧的公式
CH4 + O2 = CO + H2O + Q2
1、烟气部分的余热利用计算
新泉600KW沼气发电机组在运行时,其尾气温度为520℃,设定余热回收的尾气在利用后的温度为180℃,沼气发电机组的尾气流量为2800m³/ h , 平均尾气的密度按照1.25kg/m³计算:每小时总的尾气质量为:2800 * 1.25 = 3500 kg / h
550℃时尾气的比热容为:0.28 kcal/(kg.℃)
每台发电机组可利用的尾气余热为:
Q = C * M * △T
计算可得:Q = 33.32 万kcal
两台机组的热量:33.32 * 2 = 66.64万kcal (777.5KW)
2、缸套水余热利用:
沼气发电机组中,缸套水所携带的热量为总热量的32%,所以600KW缸套水的热量为:600KW,利用率70%, 那么热量计算的500 * 75% =375KW
两台机组:375 * 2 =750KW
从1和2可知,所以利用的能量为:
777.5KW + 750KW = 1527.5 KW = 1.5275MW 3、如果管道等能量损失5%,那么可以利用的热量为:1.5275* 95% = 1.451125MW
满足设计要求。