数学必修五同步练习册答案

合集下载

高中数学必修5第2章2.5.2同步训练及解析

高中数学必修5第2章2.5.2同步训练及解析

人教A 高中数学必修5同步训练1.设数列{(-1)n -1·n }的前n 项和为S n ,则S 2011等于( )A .-2011B .-1006C .2011D .1006答案:D2.已知数列{1n (n +1)}的前n 项和为S n ,则S 9等于( ) A.910 B.710C.109D.107答案:A3.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数n 为__________. 答案:1204.求数列112,314,518,…,[(2n -1)+12n ]的前n 项和. 解:S n =112+314+518+…+[(2n -1)+12n ] =(1+3+5+…+2n -1)+(12+14+18+…+12n ) =(1+2n -1)·n 2+12[1-(12)n ]1-12=n 2+1-12n .一、选择题1.在等差数列{a n }中,已知a 1=2,a 9=10,则前9项和S 9=( )A .45B .52C .108D .54答案:D2.已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15=( )A .-29B .29C .30D .-30解析:选B.S 15=1-5+9-13+…+57=-4×7+57=29.3.数列9,99,999,9999,…,的前n 项和等于( )A .10n -1 B.10(10n -1)9-n C.109(10n -1) D.109(10n -1)+n 解析:选B.a n =10n -1,∴S n =a 1+a 2+…+a n=(10-1)+(102-1)+…+(10n -1)=(10+102+…+10n )-n =10(10n -1)9-n . 4.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .35 B .33C .31D .29解析:选C.设公比为q (q ≠0),则由a 2·a 3=2a 1知a 1q 3=2,∴a 4=2.又a 4+2a 7=52,∴a 7=14.∴a 1=16,q =12. ∴S 5=a 1(1-q 5)1-q =16[1-(12)5]1-12=31. 5.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析:选A.设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36,故当n =6时S n 取最小值,故选A. 6.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列{b n }={1a n a n +1}前n 项的和为( )A .4(1-1n +1) B .4(12-1n +1) C .1-1n +1D.12-1n +1 解析:选A.∵a n =1+2+3+…+n n +1=n (n +1)2n +1=n 2, ∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1). ∴S n =4(1-1n +1). 二、填空题7.已知a n =n +13n ,则数列{a n }的前n 项和S n =__________. 解析:S n =(1+2+…+n )+(13+132+…+13n ) =12(n 2+n +1-13n ). 答案:12(n 2+n +1-13n ) 8.若数列{a n }的通项公式a n =1n 2+3n +2,则数列的前n 项和S n =__________.解析:a n =1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2, S n =(12-13)+(13-14)+…+(1n +1-1n +2) =12-1n +2=n 2n +4. 答案:n 2n +49.已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1 (n 为正奇数),2n -1 (n 为正偶数),则a 9=________(用数字作答),设数列{a n }的前n 项和为S n ,则S 9=________(用数字作答).解析:a 9=29-1=256.S 9=(a 1+a 3+a 5+a 7+a 9)+(a 2+a 4+a 6+a 8)=1-451-4+4×(3+15)2=377. 答案:256 377三、解答题10.已知数列{a n }的通项a n =2·3n ,求由其奇数项所组成的数列的前n 项和S n .解:由a n =2·3n 得a n +1a n =2·3n +12·3n=3,又a 1=6, ∴{a n }是等比数列,其公比为q =3,首项a 1=6,∴{a n }的奇数项也成等比数列,公比为q 2=9,首项为a 1=6,∴S n =6(1-9n )1-9=34(9n -1). 11.已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n . 解:(1)∵{a n }是首项为a 1=19,公差为d =-2的等差数列,∴a n =19-2(n -1)=21-2n ,S n =19n +12n (n -1)×(-2)=20n -n 2. (2)由题意得b n -a n =3n -1,即b n =a n +3n -1,∴b n =3n -1-2n +21,T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12. 12.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2n -1,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .解:(1)证明:由a n +1=2a n +2n ,两边同除以2n ,得a n +12n =a n 2n -1+1.∴a n +12n -a n 2n -1=1,即b n +1-b n =1, ∴{b n }为等差数列.(2)由第(1)问得,a n 2n -1=120+(n -1)×1=n . ∴a n =n ·2n -1,∴S n =20+2×21+3×22+…+n ×2n -1.①∴2S n =21+2×22+…+(n -1)2n -1+n ·2n .②∴①-②得-S n =20+21+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n =(1-n )·2n -1. ∴S n =(n -1)·2n +1. 关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。

最新人教版高中数学(理)必修5(实验班)全册同步练习及答案优秀名师资料

最新人教版高中数学(理)必修5(实验班)全册同步练习及答案优秀名师资料

人教版高中数学(理)必修5(实验班)全册同步练习及答案人教版高中数学(理)必修5(实验班)全册同步练习及答案1.1.1 正弦定理一、选择题,,,ABCa,101(在中,,,,则 ( ) B,60C,45c,A( B( 103,10(31),C( D(103 10(31),,ABC2.在中,下列关系式中一定成立的是 ( )abA,sinabA,sinA( B(abA,sinabA,sinC( D(abc,,,,ABC,a,133. 在中,已知,,则 ( ) A,60sinsinsinABC,,8323926323A( B( C( D( 33322,ABC中,已知aBbAtantan,,则此三角形是 ( ) 4. 在A(锐角三角形 B(直角三角形C(钝角三角形 D(直角或等腰三角形,,,,,,,,,,,,,,,,,,AC,1AB,4,ABCABAC 5. 在锐角中,已知,,,则的值为( ) S,3,ABC,2,4,22A( B( C( D(,ABCbCa,4bc,,5AB6. 在中,,,分别为角,,的对边,且,, ac,ABCtantan33tantanBCBC,,, ,则的面积为 ( )333333A( B( C( D( 444二、填空题2π,ABCb,1c,37(在中,若,,C,,则a,________( 38(已知a,b,c分别是?ABC的三个内角A,B,C所对的边(若a,1,b,3,A,C,2B,则sinC,________(三、解答题,ABC9(根据下列条件,解.,b,4c,8 (1)已知,,,解此三角形; B,30,,b,2 (2)已知,,,解此三角形. B,45C,75,B25,ABCbCa,210. 在中,,,分别为内角A,B,的对边,若,,,,Caccos,425,ABCS求的面积.1.1.1正弦定理一、选择题D 3.B 4.D 5.B 6.C 1.B 2.二、填空题7(8. 11三、解答题,cBsin8sin309. 解:(1)由正弦定理得 sin1C,,,b4,,,cb,由知,得 30150,,CC,9022,从而, A,60acb,,,43,,(2)由ABC,+=180 得 A,60,abbAsin2sin60, ??a,,,6 ,sinsinABsinsin45B,bCsin2sin75 c,,,,31同理,sinsin45BB432cos2cos1B,,10. 解:由知 cos21B,,,,255420,,B,sin1cosBB,,, 又,得 5?,,,,,sinsin[()]sin()ABCBC,72 ,,,sincoscossinBCBC10acaCsin10,ABC,c,,在中,由知 sinsinACsin7A111048?,,,,,,SacBsin2. 227571.1.2 余弦定理一、选择题,ABC,ABC1(在中,已知,则的最小角为 ( ) a,8,b,43,c,13,,,,A( B( C( D(12344,ABC2(在中,如果,则角等于 ( ) A(a,b,c)(b,c,a),3bc0000A( B( C( D(3060120150,ABC3(在中,若,则其面积等于 ( ) a,7,b,3,c,82128A(12 B( C( D(63 2,ABCsin2sincosABC,,ABC4(在中,若,并有,那么(a,b,c)(b,c,a),3bc 是 ( )A(直角三角形 B(等边三角形C(等腰三角形 D(等腰直角三角形abc,,,,ABCb,1,5.在中,A,60,,,则 ( ) S,3,ABCsinsinsinABC,,8323926339A( B( C( D( 326336(某班设计了一个八边形的班徽(如右图),它由腰长为1,顶角为的四个等腰,三角形及其底边构成的正方形所组成,该八边形的面积为 ( )2sin2cos2,,,,sin3cos3,,,,A( B(2sincos1,,,,3sin3cos1,,,,C( D(二、填空题,ABC7(在中,三边的边长为连续自然数,且最大角是钝角,这个三角形三边的长分别为_______ .,ABCbCAB8. 在中,a,,c分别为角,,的对边,若,(3)coscosbcAaC,,cosA,则 .三、解答题0a、B、CS9(在?ABC中,已知,求及面积. b,5,c,53,A,30310(在?ABC中,a,b,c分别为角A,B,C的对边(已知:b,2,c,4,cosA,. 4(1)求边a的值;(2)求cos(A,B)的值(1.1.2余弦定理一、选择题1.B2.B3.D4.B5.B6.A二、填空题37( 238.3三、解答题9. 解由余弦定理,知220222,5,(53),2,5,53sin30,25a,b,c,2bccosA0a,5a,bB,A,30? 又??00C,180,A,B,120?112530sin5(53)sin30S,bcA,,,,22422210. 解:(1)a,b,c,2bccosA322,2,4,2×2×4×,8~?a,22. 437ab(2)?cosA,~?sinA,~,~ 44sinAsinB22214即,.?sinB,. sinB87452又?b<c~?B为锐角(?cosB,. 8?cos(A,B),cosAcosB,sinAsinB 352714112,×,×,. 4848161.1.3 正、余弦定理的综合应用一、选择题,ABCsin:sin:sin5:7:8ABC,1(在中,若,则的大小是 ( ) ,B,5,,2,A( B( C( D(6363 ,,ABCbCC2(在中,,,分别为角,,的对边,如果,,那么角ca,3ABB,30ac等于 ( ),,,,A( B( C( D(12010590751,ABC3(的两边长分别为2,3,其夹角的余弦值为,则其外接圆的半径为( ) 3 929292A( B( C( D( 9224813,ABCa,7,b,8,cosC,4(在中,若,则最大角的余弦是 ( ) 141111A(, B(, C(, D(, 5867,ABC,ABC,A5( 在中,满足条件,3sinA,cosA,1,AB,2cm,BC,23cm的面积等于( )33323A( B( C( D( 2Acb,2,ABCbC,ABCsin,AB6(在中, (,,分别为角,,的对边),则的形状ac22c 为 ( ) A(正三角形 B(直角三角形C(等腰直角三角形 D(等腰三角形二、填空题02,ABC3x,27x,32,0A,607(已知在中,,最大边和最小边的长是方程的BC两实根,那么边长等于________.222,ABCbCAB8(已知锐角的三边a,,c分别为角,,的对边,且()tanbcaA,,,3bc,则角A的大小_________.三、解答题,ABCbCABac9((2)coscosacBbC,,在中,,,分别为角,,的对边,且满足.B(1)求角的大小;ac,,4,ABC(2)若,,求的面积( b,71,ABCbC10(在中,,,分别为角A,B,的对边,已知. cos2C,,ac4sinC(1)求的值;a,22sinsinAC,b(2)当,时,求及的长( c1.1.3正、余弦定理的综合应用一、选择题A 3.C 4.C 5.C 6.B 1.C 2.二、填空题,7( 78.60三、解答题9. 解:(1)由正弦定理得a,2RsinA~b,2RsinB~c,2RsinC~代入(2a,c)cosB,bcosC~整理,得2sinAcosB,sinBcosC,sinCcosB~即2sinAcosB,sin(B,C),sinA. 又sinA>0~?2cosB,1~π由B?(0~π)~得B,. 3(2)由余弦定理得222b,a,c,2ac?cosB2,(a,c),2ac,2accosB.π将b,7~a,c,4~B,代入整理~得ac,3. 31333??ABC的面积为S,acsinB,sin60?,. 2241210. 解:(1)因为cos2C,1,2sinC,,~ 410所以sinC,?~ 410又0<C<π~所以sinC,. 4ac(2)当a,2,2sinA,sinC时,由正弦定理,~得c,4. sinAsinC162由cos2C,2cosC,1,,~且0<C<π得cosC,?. 442222由余弦定理c,a,b,2abcosC~得b?6b,12,0~解得b,6或26~,,b,6~b,26~所以,或, ,c,4~,c,4.1.2应用举例(二)一、选择题,,1. 在某测量中,设在的南偏东,则在的 ( ) ABBA3427,,,,,,A.北偏西 B. 北偏东 C. 北偏西 D. 南偏西342755335533,, 55332(台风中心从地以20 km/h的速度向东北方向移动,离台风中心30 km内的A 地区为危险区,城市在的正东40 km处,城市处于危险区内的时间为( ) BABA.0.5 hB.1 hC.1.5 hD.2 hCDCa,C3(已知、、三点在地面同一直线上,,从、两点测得的点DBDA仰角分别为、,则A点离地面的高AB等于 ,,,,(),( ),,,,,,,,acoscosacoscosasinsinasinsinA( B( C( D( sin(,,,)cos(,,,)sin( ,,,)cos(,,,)4.有一长为1公里的斜坡,它的倾斜角为20?,现要将倾斜角改为10?,则坡底要伸长( )A(1公里 B(sin10?公里 C(cos10?公里 D(cos20?公里,BAEABE5. 如右图,在某点处测得建筑物的顶端的仰角为,沿方向前进30 CAD米至处测得顶端的仰角为2θ,再继续前进103米至处,测得顶端A的仰角为4θ,则θ的值为 ( )A(15? B(10?C(5? D(20?6(一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60?,另一灯塔在船的南偏西75?西,则这只船的速度是每小时( )33A.5海里 B.5海里 C.10海里 D.10海里? 二、填空题,,12nmile AB5010(我舰在敌岛7南偏西相距的处,发现敌舰正由岛沿北偏西的10nmile h2方向以/的速度航行,我舰要用小时追上敌舰,则需要速度的大小为 .北 20m8(在一座高的观测台顶测得地面一水塔塔顶仰角为,,6045,塔底俯角为,那么这座塔的高为___ ____. A45? 三、解答题B15?C,9nmile 9(如图,甲船在处,乙船在处的南偏东方向,距A有并以AA45,20nmile h28nmile h/的速度沿南偏西方向航行,若甲船以/的速度航行用多15少小时能尽快追上乙船,10.在海岸AA处发现北偏东45?方向,距处(3,BA1)海里的处有一艘走私船,在处北偏西75?方向,CA距处2海里的处的我方缉私船,奉命以103海里/小时的速度追截走私船,此时走私船正以10海B里/小时的速度,从处向北偏东30?方向逃窜(问:缉私船应沿什么方向行驶才能最快截获走私船,并求出所需时间(1.2应用举例(二) 一、选择题1.A2.B3.A4.A5.A6.C二、填空题7(14nmile/h8. 20(1+3)m三、解答题9. 解:设用t h,甲船能追上乙船,且在C处相遇。

高中数学必修5同步练习与单元测试课后作业附答案(36份)

高中数学必修5同步练习与单元测试课后作业附答案(36份)
(1)A处与D处的距离;
(2)灯塔C与D处的距离.
解(1)在△ABD中,∠ADB=60°,∠B=45°,由正弦定理得AD= = =24(nmile).
(2)在△ADC中,由余弦定理得
CD2=AD2+AC2-2AD·AC·cos30°,
解得CD=8 ≈14(nmile).
即A处与D处的距离为24nmile,
则a+b=9,a2+b2-2abcosα=17,
a2+b2-2abcos(180°-α)=65.
解得:a=5,b=4,cosα= 或a=4,b=5,cosα= ,
∴S▱ABCD=absinα=16.
二、填空题
7.甲船在A处观察乙船,乙船在它的北偏东60°的方向,两船相距a海里,乙船正向北行驶,若甲船是乙船速度的 倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.
10.某舰艇在A处测得遇险渔船在北偏东45°,距离为10nmile的C处,此时得知,该渔船沿北偏东105°方向,以每小时9nmile的速度向一小岛靠近,舰艇时速21nmile,则舰艇到达渔船的最短时间是______小时.
答案
解析设舰艇和渔船在B处相遇,则在△ABC中,由已知可得:∠ACB=120°,设舰艇到达渔船的最短时间为t,则AB=21t,BC=9t,AC=10,则(21t)2=(9t)2+100-2×10×9tcos120°,
B1B =A1B +A1B -2A1B1·A1B2·cos 45°
=202+(10 )2-2×20×10 ×
=200.
∴B1B2=10 .
因此,乙船速度的大小为
×60=30 (海里/小时).
答乙船每小时航行30 海里.
1.解三角形应用问题的基本思路是:

人教版高二数学必修5等比数列同步训练(带答案)-文档资料

人教版高二数学必修5等比数列同步训练(带答案)-文档资料

人教版高二数学必修5等比数列同步训练(带答案)为了帮助大家进行课后复习,查字典数学网整理了数学必修5等比数列同步训练,希望大家好好练习。

一、选择题1.数列{an}为等比数列的充要条件是()A.an+1=anq(q为常数)B.a2n+1=anan+20C.an=a1qn-1(q为常数)D.an+1=anan+2解析:各项都为0的常数数列不是等比数列,A、C、D选项都有可能是0的常数列,故选B.答案:B2.已知等比数列{an}的公比q=-13,则a1+a3+a5+a7a2+a4+a6+a8等于()A.-13B.-3C.13D.3解析:a1+a3+a5+a7a2+a4+a6+a8=a1+a3+a5+a7a1+a3+a5+a71q=1q= -3,故选B.答案:B3.若a,b,c成等比数列,其中0A.等比数列B.等差数列C.每项的倒数成等差数列D.第二项与第三项分别是第一项与第二项的n次幂解析:∵a,b,c成等比数列,且0答案:C4.(2019江西文)等比数列{an}中,|a1|=1,a5=-8a2,a5a2,则an=()A.(-2)n-1B.-(-2)n-1C.(-2)nD.-(-2)n分析:本题主要考查等比数列的基本知识.解析:a5=-8a2a2q3=-8a2,q3=-8,q=-2.又a5a2,即a2a2,q3=-8.可得a20,a10.a1=1,q=-2,an=(-2)n-1.故选A.答案:A5.在等比数列{an}中,已知a6a7=6,a3+a10=5,则a28a21=()A.23B.32C.23或32D.732解析:由已知及等比数列性质知a3+a10=5,a3a10=a6a7=6.解得a3=2,a10=3或a3=3,a10=2.q7=a10a3=23或32,a28a21=q7=23或32.故选C.答案:C6.在等比数列{an}中,a5a11=3,a3+a13=4,则a15a5=()A.3B.13C.3或13D.-3或-13解析:在等比数列{an}中,∵a5a11=a3a13=3,a3+a13=4,a3=1,a13=3或a3=3,a13=1,a15a5=a13a3=3或13.故选C. 答案:C7.(2019重庆卷)在等比数列{an}中,a2019=8a2019,则公比q的值为()A.2B.3C.4D.8分析:本题主要考查等比数列的通项公式.解析:由a2019=8a2019,可得a2019q3=8a2019,q3=8,q=2,故选A.答案:A8.数列{an}中, a1,a2,a3成等差数列,a2,a3,a4成等比数列,a3,a4,a5的倒数成等差数列,那么a1,a3,a5() A.成等比数列 B.成等差数列C.每项的倒数成等差数列D.每项的倒数成等比数列解析:由题意可得2a2=a1+a3,a23=a2a4,2a4=1a3+1a5a2=a1+a32,①a4=a23a2,②2a4=1a3+1a5.③将①代入②得a4=2a23a1+a3,再代入③得a1+a3a23=a5+a3a3a5,则a5a1+a3a5=a3a5+a23,即a23=a1a5,a1,a3,a5成等比数列,故选A.答案:A9.x是a、b的等差中项,x2是a2,-b2的等差中项,则a与b的关系是()A.a=b=0B.a=-bC.a=3bD.a=-b或a=3b解析:由已知得2x=a+b2x2=a2-b2 ①②故①2-②2得a2-2ab-3b2=0,a=-b或a=3b.答案:D10.(2009广东卷)已知等比数列{an}满足an0,n=1,2,,且a5a2n-5=22n(n3),则当n1时,log2a1+log2a3++log2a2n-1=()A.n(2n-1)B.(n+1)2C.n2D.(n-1)2解析:设等比数列{an}的首项为a1,公比为q,∵a5a2n-5=22n(n3),a1q4a1q2n-6=22n,即a21q2n-2=22n(a1qn-1)2=22n(an)2=(2n)2,∵an0,an=2n,a2n-1=22n-1,log2a1+log2a3++log2a2n-1=log22+log223++log222n-1=1+ 3++(2n-1)=1+2n-12n=n2,故选C.答案:C二、填空题11.已知等比数列{an}中,a3=6,a10=768,则该数列的通项an=________.解析:由已知得q7=a10a3=128=27,故q=2.an=a3qn-3=32n-2. 答案:32n-212.在1和100之间插入n个正数,使这(n+2)个数成等比数列,则插入的这n的数的积为________.解析:利用性质aman=apaq(其中m+n=p+q).设插入的n个数为a1,a2,,an,G=a1a2an,则G2=(a1an)(a2an-1)(a3an-2)(ana1)=(1100)n,G=10n,故填10n.答案:10n13.已知-9,a1,a2,-1四个实数成等差数列,-9,b1,b2,b3,-1五个实数成等比数列,则b2(a2-a1)=________.解析:∵-9,a1,a2,-1成等差数列,a2-a1=-1--94-1=83=d.又∵-9,b1,b2,b3,-1成等比数列,则b22=-9(-1)=9,b2=3.当b2=3时,由于-9与3异号,此时b1不存在,b2=-3,b2(a2-a1)=-8.答案:-814.若a,b,a+b成等差数列,a,b,ab成等比数列,且0 解析:a,b,a+b成等差数列有b=2a,a,b,ab成等比数列有b=a2,则有a=2,所以ab=8,0答案:{n|n8}三、解答题15.(2019全国卷Ⅰ文)记等差数列{an}的前n项和为Sn.设S3=12,且2a1,a2,a3+1成等比数列,求Sn.解析:设数列{an}的公差为d.依题设有2a1a3+1=a22,a1+a2+a3=12,a21+2a1d-d2+2a1=0,a1+d=4. 解得a1=1,d=3,或a1=8,d=-4.因此Sn=12n(3n-1),或Sn=2n(5-n).16.已知等差数列{an}的公差和等比数列{bn}的公比都是d,又知d1,且a1=b1,a4=b4,a10=b10.(1)求a1及d的值;(2)b16是不是{an}中的项?解析:(1)由a1=b1,a4=b4,a10=b10a1+3d=a1d3,a1+9d=a1d9. a11-d3=-3d,a11-d9=-9dd6+d3-2=0d1=1(舍去),d2=3-2=-32.所以d=-32,a1=-d=32,b1=32.(2)因为b16=b1d15=-32a1,如果b16是{an}中的项,则有-32a1=a1+(k-1)d.所以(k-1)d=-33a1=33d.所以k=34,即b16是{an}中的第34项.17.已知四个数成等比数列,其积为1,第二项与第三项之和为-32,求这四个数.解析:设这四个数分别为a,aq,aq2,aq3.则a4q6=1,①aq1+q=-32 ②由①得a2q3=1,即a2q2=由②得a2q2(1+q)2=94,③把a2q2=1q代入③得q2-14q+1=0,此方程无解.把a2q2=-1q代入③得q2+174q+1=0,解得q=-4或q=-14.当q=-4时,a=-18或a=18(舍);当q=-14时,a=8或a=-8(舍).这四个数分别是8,-2,12,-18或-18,12,-2,8.18.在各项均为负数的数列{an}中,已知2an=3an+1,且a2a5=827.(1)求证:{an}是等比数列,并求出通项公式.(2)试问-1681是否为该数列的项?若是,是第几项;若不是,请说明理由.解析:(1)∵2an=3an+1,an+1an=23,故数列{an}是公比q=23的等比数列.又a2a5=827,则a1qa1q4=827,即a21(23)5=(23)3,由于数列各项均为负数,则a1=-32,an=-32(23)n-1=-(23)n-2.(2)设an=-1681,由等比数列的通项公式得-1681=-(23)n-2,即(23)4=(23)n-2.根据指数的性质有4=n-2,n=6.因此-1681是这个数列的第6项.以上是数学必修5等比数列同步训练及答案的所有内容,请同学们好好利用,提高自己。

高中数学必修5第1章1.2.1同步训练及解析

高中数学必修5第1章1.2.1同步训练及解析

人教A 高中数学必修5同步训练1.某次测量中,若A 在B 的南偏东40°,则B 在A 的( )A .北偏西40°B .北偏东50°C .北偏西50°D .南偏西50°答案:A2.已知A 、B 两地间的距离为10 km ,B 、C 两地间的距离为20 km ,现测得∠ABC =120°,则A 、C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D.由余弦定理可知:AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC .又∵AB =10,BC =20,∠ABC =120°,∴AC 2=102+202-2×10×20×cos 120°=700.∴AC =107.3.在一座20 m 高的观测台测得对面一水塔塔顶的仰角为60°,塔底的俯角为45°,观测台底部与塔底在同一地平面,那么这座水塔的高度是________m.解析:h =20+20tan 60°=20(1+3) m.答案:20(1+3)4.如图,一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°.求此时船与灯塔间的距离.解:BC sin ∠BAC =AC sin ∠ABC, 且∠BAC =30°,AC =60,∠ABC =180°-30°-105°=45°.∴BC =30 2.即船与灯塔间的距离为30 2 km.一、选择题1.在某次测量中,在A 处测得同一方向的B 点的仰角为60°,C 点的俯角为70°,则∠BAC 等于( )A .10°B .50°C .120°D .130°解析:选D.如图,∠BAC 等于A 观察B 点的仰角与观察C 点的俯角和,即60°+70°=130°.2.一艘船以4 km/h 的速度沿着与水流方向成120°夹角的方向航行,已知河水流速为2 km/h ,则经过 3 h ,该船的实际航程为( )A .215 kmB .6 kmC .221 kmD .8 km解析:选B.v 实=22+42-2×4×2×cos 60°=2 3.∴实际航程=23×3=6(km).故选B.3. 如图所示,D ,C ,B 在同一地平面的同一直线上,DC =10 m ,从D ,C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高度AB 等于( )A .10 mB .5 3 mC .5(3-1) mD .5(3+1) m解析:选D.在△ADC 中,AD =10·sin 135°sin 15°=10(3+1)(m). 在Rt △ABD 中,AB =AD ·sin 30°=5(3+1)(m).4.我舰在敌岛A 处南偏西50°的B 处,且AB 距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,则速度大小为( )A .28海里/小时B .14海里/小时C .14 2 海里/小时D .20海里/小时解析:选B.如图,设我舰在C 处追上敌舰,速度为v ,则在△ABC 中,AC =10×2=20(海里),AB =12海里,∠BAC =120°,∴BC 2=AB 2+AC 2-2AB ·AC cos 120°=784,∴BC =28海里,∴v =14海里/小时.5.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,则B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时解析:选B.设t 小时后,B 市处于危险区内,则由余弦定理得:(20t)2+402-2×20t×40cos 45°≤302.化简得:4t2-82t+7≤0,∴t1+t2=22,t1·t2=74.从而|t1-t2|=(t1+t2)2-4t1t2=1.6.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点测得塔顶的仰角分别为45°、30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是() A.1002米B.400米C.2003米D.500米解析:选D.由题意画出示意图,设高AB=h,在Rt△ABC中,由已知BC=h,在Rt△ABD中,由已知BD=3h,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD·cos∠BCD,得3h2=h2+5002+h·500,解之得h=500(米),故选D.二、填空题7.一树干被台风吹断,折断部分与残存树干成30°角,树干底部与树尖着地处相距5米,则树干原来的高度为________米.答案:10+5 38.如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的__________.解析:由题意可知∠ACB=180°-40°-60°=80°.∵AC=BC,∴∠CAB=∠CBA=50°,从而所求为北偏西10°.答案:北偏西10°9.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107 海里,20分钟后测得海盗船距观测站20海里,再过________分钟,海盗船即可到达商船.解析:如图,设开始时观测站、商船、海盗船分别位于A、B、C处,20分钟后,海盗船到达D处,在△ADC中,AC=107,AD=20,CD=30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =400+900-7002×20×30=12. ∴∠ACD =60°,在△ABD 中由已知得∠ABD =30°.∠BAD =60°-30°=30°,∴BD =AD =20,2090×60=403(分钟). 答案:403三、解答题10.如图,A 、B 两点都在河的对岸(不可到达),在河岸边选定两点C 、D ,测得CD =1000米,∠ACB =30°,∠BCD =30°,∠BDA =30°,∠ADC =60°,求AB 的长.解:由题意知△ACD 为正三角形,所以AC =CD =1000米.在△BCD 中,∠BDC =90°,所以BC =CD cos ∠BCD=1000cos 30°=200033米. 在△ACB 中,AB 2=AC 2+BC 2-2AC ·BC ·cos 30°=10002+200023-2×1000×200033×32=10002×13,所以AB =100033米. 11.如图,地面上有一旗杆OP ,为了测得它的高度,在地面上选一基线AB ,测得AB=20 m ,在A 处测得点P 的仰角为30°,在B 处测得点P 的仰角为45°,同时可测得∠AOB =60°,求旗杆的高度(结果保留1位小数).解:设旗杆的高度为h ,由题意,知∠OAP =30°,∠OBP =45°.在Rt △AOP 中,OA =OP tan 30°=3h . 在Rt △BOP 中,OB =OP tan 45°=h . 在△AOB 中,由余弦定理,得AB 2=OA 2+OB 2-2OA ·OB cos 60°,即202=(3h )2+h 2-23h ×h ×12.解得h2=4004-3≈176.4.∴h≈13(m).∴旗杆的高度约为13 m.12.一商船行至索马里海域时,遭到海盗的追击,随即发出求救信号.正在该海域执行护航任务的海军“黄山”舰在A处获悉后,即测出该商船在方位角为45°距离10海里的C 处,并沿方位角为105°的方向,以9海里/时的速度航行.“黄山”舰立即以21海里/时的速度前去营救.求“黄山”舰靠近商船所需要的最少时间及所经过的路程.解:如图所示,若“黄山”舰以最少时间在B处追上商船,则A,B,C构成一个三角形.设所需时间为t小时,则AB=21t,BC=9t.又已知AC=10,依题意知,∠ACB=120°,根据余弦定理,AB2=AC2+BC2-2·AC·BC cos∠ACB.∴(21t)2=102+(9t)2-2×10×9t cos 120°,∴(21t)2=100+81t2+90t,即360t2-90t-100=0.∴t=23或t=-512(舍).∴AB=21×23=14(海里).即“黄山”舰需要用23小时靠近商船,共航行14海里.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。

高中数学必修5第3章3.2.1同步训练及解析

高中数学必修5第3章3.2.1同步训练及解析

人教A 高中数学必修5同步训练1.若16-x 2≥0,则( )A .0≤x ≤4B .-4≤x ≤0C .-4≤x ≤4D .x ≤-4或x ≥4答案:C2.不等式(x -2)(2x +1)>0的解集是( )A .(-12,2)B .(-2,12) C .(-∞,-2)∪(12,+∞) D .(-∞,-12)∪(2,+∞) 答案:D3.二次函数y =x 2-4x +3在y <0时x 的取值范围是__________.答案:{x |1<x <3}4.解不等式0≤x 2-x -2≤4.解:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2≥0,x 2-x -2≤4, 解x 2-x -2≥0,得x ≤-1或x ≥2;解x 2-x -2≤4,得-2≤x ≤3.所以原不等式的解集为{x |x ≤-1或x ≥2}∩{x |-2≤x ≤3}={x |-2≤x ≤-1或2≤x ≤3}.一、选择题1.下面所给关于x 的几个不等式:①3x +4<0;②x 2+mx -1>0;③ax 2+4x -7>0;④x 2<0.其中一定为一元二次不等式的有( )A .1个B .2个C .3个D .4个答案:B2.不等式x (2-x )>3的解集是( )A .{x |-1<x <3}B .{x |-3<x <1}C .{x |x <-3或x >1}D .∅解析:选D.将不等式化为标准形式x 2-2x +3<0,由于对应方程的判别式Δ<0,所以不等式x (2-x )>3的解集为∅.3.若集合A ={x |(2x +1)(x -3)<0},B ={x |x ∈N *,x ≤5},则A ∩B 是( )A .{1,2,3}B .{1,2}C .{4,5}D .{1,2,3,4,5}解析:选B.A ={x |-12<x <3},B ={1,2,3,4,5}, ∴A ∩B ={1,2},故选B.4.不等式组⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0的解集是( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}解析:选C.原不等式组等价于: ⎩⎨⎧ x 2<1x (x -3)<0⇔⎩⎨⎧-1<x <10<x <3⇒0<x <1. 5.二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( )A .{x |x >3或x <-2}B .{x |x >2或x <-3}C .{x |-2<x <3}D .{x |-3< x <2}解析:选C.二次函数的图象开口向下,故不等式ax 2+bx +c >0的解集为{x |-2<x <3}. 6.若0<t <1,则不等式(x -t )(x -1t )<0的解集为( )A .{x |1t <x <t }B .{x |x >1t 或x <t }C .{x |x <1t 或x >t }D .{x |t <x <1t }解析:选D.∵0<t <1,∴1t >1,∴t <1t∴(x -t )(x -1t )<0⇔t <x <1t .二、填空题7.函数y =x 2-2x -8的定义域为__________.解析:由题意知x 2-2x -8≥0,∴x ≥4或x ≤-2,∴定义域为{x |x ≥4或x ≤-2}.答案:{x |x ≥4或x ≤-2}8.当a <0时,关于x 的不等式(x -5a )(x +a )>0的解集是________.解析:∵a <0,∴5a <-a ,由(x -5a )(x +a )>0得x <5a 或x >-a .答案:{x |x <5a 或x >-a }9.已知x =1是不等式k 2x 2-6kx +8≥0(k ≠0)的解,则k 的取值范围是________. 解析:由题意,k 2-6k +8≥0,解得k ≥4或k ≤2.又k ≠0,∴k 的取值范围是k ≥4或k ≤2且k ≠0.答案:(-∞,0)∪(0,2]∪[4,+∞)三、解答题10. 求下列关于x 的不等式的解集:(1)-x 2+7x >6;(2)x 2-(2m +1)x +m 2+m <0.解:(1)∵-x 2+7x >6,∴-x 2+7x -6>0,∴x 2-7x +6<0,∴(x -1)(x -6)<0.∴1<x <6,即不等式的解集是{x |1<x <6}.(2)x 2-(2m +1)x +m 2+m <0,因式分解得(x -m )[x -(m +1)]<0.∵m <m +1,∴m <x <m +1.即不等式的解集为{x |m <x <m +1}.11.已知方程ax 2+bx +2=0的两根为-12和2. (1)求a 、b 的值;(2)解不等式ax 2+bx -1>0.解:(1)∵方程ax 2+bx +2=0的两根为-12和2, 由根与系数的关系,得⎩⎨⎧-12+2=-b a -12×2=2a , 解得a =-2,b =3.(2)由(1)知,ax 2+bx -1>0变为-2x 2+3x -1>0,即2x 2-3x +1<0,解得12<x <1. ∴不等式ax 2+bx -1>0的解集为{x |12<x <1}. 12.求不等式ax +1<a 2+x (a ∈R )的解集.解:将原不等式化为(a -1)x <a 2-1.①当a -1>0,即a >1时,x <a +1.②当a -1<0,即a <1时,x >a +1.③当a -1=0,即a =1时,不等式无解.综上所述,当a >1时,不等式的解集为{x |x <a +1};当a <1时,不等式的解集为{x |x >a +1};当a =1时,不等式的解集为∅.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。

数学必修五同步练习册答案

数学必修五同步练习册答案
&
槡 (34") %*#34")34"* -"#$)"#$* #*)). 槡 槡槡 槡 +!&!&- )). !!&&# **!
*&&# ")% "*#( ")% "*# (
槡 ("'#+(("#$'# **! 由 得槡 槡 槡即 "#"$)#"#$$*#"#+$' )"# !&$# *+ " 槡 槡 # *$+# )$! 又 槡 即槡 槡 &"-$# *,! *$-$# *,!($#!" 槡 槡 # *+# )!
&
")#!&)'&"#$!"&)'#"#$+*&'("
& & & &
)!+
*+!!

" "#$)
#"#$$*
! "#$%
#
槡 槡 槡又 或 # +-!
& & &
"#$+*("#$*# *+! &$$"(*#+ *+!
当 时 槡 解 为锐角 槡 "'#!+)'
")#!)'&"#$"!)'#"#$+*&'("#

人教版高中数学(理)必修5(实验班)全册同步练习及答案

人教版高中数学(理)必修5(实验班)全册同步练习及答案

人教版高中数学(理)必修5(实验班)全册同步练习及答案1.1.1 正弦定理一、选择题1.在ABC ∆中,10a =,60B =,45C =,则c = ( )A .10B .1)C .1)D .2.在ABC ∆中,下列关系式中一定成立的是 ( ) A .sin a b A > B .sin a b A = C .sin a b A <D .sin a b A ≥3. 在ABC ∆中,已知60A =,a =sin sin sin a b cA B C++=++ ( )A B D .4. 在ABC ∆中,已知22tan tan a B b A =,则此三角形是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .直角或等腰三角形5. 在锐角ABC ∆中,已知4AB = ,1AC = ,ABC S ∆=,则AB AC的值为( )A .2-B .2C .4±D .2±6. 在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,且4a =,5b c +=,tan tan tan B C B C += ,则ABC ∆的面积为 ( )A ..34二、填空题7.在ABC ∆中,若1b =,c =C =2π3,则a =________.8.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.三、解答题9.根据下列条件,解ABC ∆.(1)已知4b =,8c =,30B =,解此三角形; (2)已知45B =,75C =,2b =,解此三角形.10. 在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,若2a =,4C π=,cos25B =, 求ABC ∆的面积S .1.1.1正弦定理一、选择题1.B2.D3.B4.D5.B6.C 二、填空题 7.1 8. 1三、解答题9. 解:(1)由正弦定理得sin 8sin30sin 14c B C b ===由c b >知30150C << ,得90C =从而60A = ,a ==(2)由180+=A B C + 得60A =∵sin sin a b A B = ∴sin 2sin 60sin sin 45b A a B ===同理sin 2sin 751sin sin 45b C c B ===10. 解:由2cos 2cos12B B =-知43cos 2155B =⨯-=又0B π<<,得4sin 5B ==sin sin[()]sin()A B C B C π∴=-+=+sin cos cos sin 10B C B C =+= 在ABC ∆中,由sin sin a c A C =知sin 10sin 7a C c A == 111048sin 222757S ac B ∴==⨯⨯⨯=.1.1.2 余弦定理一、选择题1.在ABC ∆中,已知13,34,8===c b a ,则ABC ∆的最小角为 ( ) A .3π B .4π C .4π D .12π 2.在ABC ∆中,如果bc a c b c b a 3))((=-+++,则角A 等于 ( )A .030B .060C .0120D .01503.在ABC ∆中,若8,3,7===c b a ,则其面积等于 ( ) A .12 B .221C .28D .36 4.在ABC ∆中,若bc a c b c b a 3))((=-+++,并有sin 2sin cos A B C =,那么ABC ∆是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形5.在ABC ∆中,60A = ,1b =,ABC S ∆,则sin sin sin a b cA B C++=++ ( )A B D 6.某班设计了一个八边形的班徽(如右图),它由腰长为1,顶角为α的四个等腰三角形及其底边构成的正方形所组成,该八边形的面积为 ( )A .2sin 2cos 2αα-+B .sin 3αα+C .3sin 1αα+D .2sin cos 1αα-+ 二、填空题7.在ABC ∆中,三边的边长为连续自然数,且最大角是钝角,这个三角形三边的长分别为_______ .8. 在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,若)cos cos c A a C -=,则cos A = .三、解答题9.在△ABC 中,已知030,35,5===A c b ,求C B a 、、及面积S .10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.已知:b =2,c =4,cos A =34.(1)求边a 的值;(2)求cos(A -B )的值.1.1.2余弦定理一、选择题1.B2.B3.D4.B5.B6.A 二、填空题 7.8.三、解答题9. 解 由余弦定理,知A bc c b a cos 2222-+=2530sin 3552)35(5022=⨯⨯-+= ∴5=a 又∵b a =∴030==A B ∴00120180=--=B A C432530sin )35(521sin 210=⨯⨯==A bc S10. 解:(1)a 2=b 2+c 2-2bc cos A=22+42-2×2×4×34=8,∴a =2 2.(2)∵cos A =34,∴sin A =74,a sin A =bsin B , 即2274=2sin B .∴sin B =148.又∵b <c ,∴B 为锐角.∴cos B =528. ∴cos(A -B )=cos A cos B +sin A sin B =34×528+74×148=11216.1.1.3 正、余弦定理的综合应用一、选择题1.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是 ( )A .6π B .56π C .3πD .23π2.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,如果c =,30B =,那么角C等于 ( ) A .120B .105C .90D .753.ABC ∆的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D . 4.在ABC ∆中,若1413cos ,8,7===C b a ,则最大角的余弦是 ( ) A .51- B .61- C .71- D .81-5. 在ABC ∆中,A ∠满足条件cm BC cm AB A A 32,2,1cos sin 3===+,ABC ∆的面积等于 ( )A .3B .CD 6.在ABC ∆中,2sin22A c b c-= (a ,b ,c 分别为角A ,B ,C 的对边),则ABC ∆的形状为 ( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 二、填空题7.已知在ABC ∆中,060A =,最大边和最小边的长是方程0322732=+-x x 的两实根,那么BC 边长等于________.8.已知锐角ABC ∆的三边a ,b ,c 分别为角A ,B ,C 的对边,且222()tan b c a A +-,则角A 的大小_________.三、解答题9.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,且满足(2)cos cos a c B b C -=.(1)求角B 的大小;(2)若b =4a c +=,求ABC ∆的面积.10.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,已知1cos 24C =-. (1)求sin C 的值;(2)当2a =,2sin sin A C =时,求b 及c 的长.1.1.3正、余弦定理的综合应用一、选择题1.C2.A3.C4.C5.C6.B 二、填空题 7.78.60三、解答题9. 解:(1)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C , 代入(2a -c )cos B =b cos C ,整理,得2sin A cos B =sin B cos C +sin C cos B , 即2sin A cos B =sin(B +C )=sin A . 又sin A >0,∴2cos B =1,由B ∈(0,π),得B =π3. (2)由余弦定理得 b 2=a 2+c 2-2ac ·cos B =(a +c )2-2ac -2ac cos B .将b =7,a +c =4,B =π3代入整理,得ac =3.∴△ABC 的面积为S =12ac sin B =32sin60°=334.10. 解:(1)因为cos2C =1-2sin 2C =-14,所以sin C =±104, 又0<C <π,所以sin C =104.(2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4. 由cos2C =2cos 2C -1=-14,且0<C <π得cos C =±64. 由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0, 解得b =6或26,所以⎩⎨⎧ b =6,c =4,或⎩⎨⎧b =26,c =4.1.2应用举例(二)一、选择题1. 在某测量中,设A 在B 的南偏东3427' ,则B 在A 的 ( ) A.北偏西3427'B. 北偏东5533'C. 北偏西5533'D. 南偏西5533'2.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为( )A.0.5 hB.1 hC.1.5 hD.2 h3.已知D 、C 、B 三点在地面同一直线上,DC a =,从C 、D 两点测得A 的点仰角分别为α、()βαβ>,则A 点离地面的高AB 等于 ( ) A .)sin(sin sin βαβα-a B .)cos(sin sin βαβα-a C .)sin(cos cos βαβα-a D . )cos(cos cos βαβα-a4.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长 ( )A .1公里B .sin10°公里C .cos10°公里D .cos20°公里5. 如右图,在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30米至C 处测得顶端A 的仰角为2θ,再继续前进103米至D 处,测得顶端A 的仰角为4θ,则θ的值为 ( )A .15°B .10°C .5°D .20°6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°西,则这只船的速度是每小时( )A.5海里B.53海里C.10海里D.103海里° 二、填空题7.我舰在敌岛A 南偏西50 相距12n mile 的B 处,发现敌舰正由岛沿北偏西10 的方向以10n mile /h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 .8.在一座20m 高的观测台顶测得地面一水塔塔顶仰角为60 ,塔底俯角为45 ,那么这座塔的高为___ ____.三、解答题°9.如图,甲船在A处,乙船在A处的南偏东45 方向,距A有9n mile并以/h的速度航行用多20n mile/h的速度沿南偏西15 方向航行,若甲船以28n mile少小时能尽快追上乙船?10.在海岸A处发现北偏东45°方向,距A处(3-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A处2海里的C处的我方缉私船,奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,从B处向北偏东30°方向逃窜.问:缉私船应沿什么方向行驶才能最快截获走私船?并求出所需时间.1.2应用举例(二)一、选择题1.A2.B3.A4.A5.A6.C 二、填空题 7.14nmile/h8. 20(1+3)m三、解答题9. 解:设用t h ,甲船能追上乙船,且在C 处相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)#5&'
!
&
槡槡 解析设 则 由正&
(!**+!! ")## "*#*#! &
弦定理得"#)$'*##"*#$'#*"#$)#'34"##"*#$'#
& & &
由 为锐角三角形得 *3)4'"##"*#$'#"#$##*'#!*3)4"'##*!
& & &
%)*'

&'#*##5&'*&'##
+!
为正三角形 &%10/
( ")/1#!6&'-%&'- &
基础达标 5&'-!#+&'%!")1/#!*&'-!!
设 则 槡 在 中由正弦 解析由 得 '/#2 )/# +,2 %)1/
&
& &
!./.
& *!/.!
)5*5'#!9*9+ )#+&'
定理得 槡 由正弦定理得 "#1$+/&'#"#$!+*,&'2-! 在 中 槡 %0/' 2#0/"#$!#1/"#$!
$*#"*%+*-*"+34"*!
&
又 要点突破 $*#"+("*%+*-"+#"+
& &
教材导学 ("-+*#&("#+!
&
% 6!). 6!)#!!!%!
(!
!
*
又& "*#%&'( ")#%&'! 拓展训练
当 即 时 取最大 34"*##-! ##5&' 7!8* %7!9*
值 !+
& &
解 由 且 %!
!
"'-
")
#
*

"'% ") #-
& &
当 即 或 时 &
"*()#
(
-**

& &
取最小值 &
槡 ("#$)#"#$ (-**
#
* *
34"**
-"#$**

槡 槡 槡 (1/#
+
#
+!
槡 槡 解析 槡 *"#$!% +34"! 2"#$!%"
& &
*#%&''#5&'!
"5$5+#"#$)
& & &
5"#$*5"#$'#
! *
5
*+5!:!9
+9*!
& & +!/.!
&
&4# !*$+"#$)#
+* (
! *
.*0
+0
槡其中 槡 槡 或 (1/'
解析由正弦定理得 设 *!/.!
%"#($#++ "#*&&
槡 槡 !,
! (
*
#
!) (
槡!)
槡 ("#$)#""+#$'#
( *
#
6!)!
故 为锐角 &"#+(")#"' ")

槡 槡槡 (34")# !,"#$*)# !,
!) 6
*
#
2 6

(34")
-'#34")34"'%"#$)"#$'#
得到 "#$*'
"* ,*
%$,**
#+,**
("*
%$*
#+*(
%)*'
& & &
!
数解学由探已究知得 设 或 舍去
"' #5&'") #+&'"* #%&'
& &
( "'# %
&
)%

则 槡 "/0'#! "0/'#5&'-!!
& &
($#
*
(4%)*'
#
!*"+#*
&
槡 (34") %*#34")34"* -"#$)"#$* #*)). 槡 槡槡 槡 +!&!&- )). !!&&# **!
*&&# ")% "*#( ")% "*# (
槡 ("'#+(("#$'# **! 由 得槡 槡 槡即 "#"$)#"#$$*#"#+$' )"# !&$# *+ " 槡 槡 # *$+# )$! 又 槡 即槡 槡 &"-$# *,! *$-$# *,!($#!" 槡 槡 # *+# )!
& &
&
解析由正弦定理得 +!()'!!

"#$ * #$"#"$) #
& &
槡槡槡槡又 (
*0
+ *#
(+
**!
$#"(*#)(*#()'!
& & & & &
证明设 则 &
(!

"#"$)#"#$$*#"#+$'#,,$&
"#$)#
& &
代入 "
,
"#$*#
$ ,
"#$'
#
+ ,
!
& "#$*) %"#$** # &
Hale Waihona Puke -!+"#*$
"# *+$
*$* "*
-!:
*$* (5$*
-!:
2 *
!
+!;.!
$34"'%+34"*#""#$)
*!
正弦定理可得"#$*34"'%"#$'34"*#"#$)"#$) &
故 故三角形为直角三角形 *"#$*%'#"#$*)*"#$)#"#$*)*"#$)
#!
& &
! "3*4"#"$**#$3*4"#"$)) "#*3"#$)$#*3"#$*3
& &
-")-"*#5&'("#$'#"#$5&'#!!
& )!
"#$) % "#$* #
& & &
"#$)3"#4$"))%"#$*3"#4$"**#34")%34"*
& &
("#$)-34")#34"*-"#$*
解由题意得 即 槡 槡注意
!-3"#4$"*)#*""##$$*'
"#$)34"*%34")"#$* 34")"#$*
34"*
到 是锐角三角形故 #*""##$$*'34""#)$"'#$*#*""##$$*'(34")#!*!
又 解析由正弦定理知 ")(&(
")#
+
!
又 又知 所以 故 "#"$)#"#+$'
参考答案及解题思路
第一章!解三角形
!! 正 弦 定 理 和 余 弦 定 理
第!课时!正弦定理!
自学导引 略! 要点突破
教材导学
& 为直角三角形!
& &
拓展训练
& & & & &
相关文档
最新文档