化学元素周期表的发现与发展

合集下载

化学元素周期表的发现和应用

化学元素周期表的发现和应用

化学元素周期表的发现和应用化学元素周期表是化学界最重要的工具之一,它通过将元素按照一定规则排列,展示了元素的相关属性和特征。

本文将探讨化学元素周期表的发现历程以及其在科学研究、教育和工业应用中的重要性。

一、化学元素周期表的发现历程1. 迈尔和门德莱夫的探索在19世纪初,科学家迈尔和门德莱夫独立地开始研究元素的特性和化合物的组成。

迈尔通过对多种化合物中重量比例的分析,发现了一些规律性的变化,这为元素周期表的发现奠定了基础。

门德莱夫则提出了“三大定律”,即质量守恒定律、比例定律和等量交换定律,这些定律进一步深化了化学元素周期表的发现。

2. 存在于元素周期表的“周期性”英国科学家门德里夫爵士在1869年发现,将元素按照原子质量进行排列时,元素的性质会出现周期性变化。

他把这个观察结果表现在一张表中,这张表就是我们现在所熟知的元素周期表。

门德里夫根据元素的特性和性质,将它们划分为不同的组和周期,使元素的分类更加清晰和有序。

3. 后续的改进和发展随着科学研究的不断深入,元素周期表得到了不断的改进和发展。

科学家们发现,将元素按照原子序数(即元素核中原子的数量)排列,可以更好地反映元素的性质和周期变化。

同时,随着新元素的发现,元素周期表也不断扩充和完善,目前已经发现的元素共有118个。

二、化学元素周期表的应用1. 科学研究中的应用化学元素周期表为科学家们研究元素和化合物的性质、相互作用等提供了基础和指导。

通过元素周期表,科学家们可以对元素的化学行为进行预测和解释,有助于新物质的合成和发现。

此外,元素周期表也为研究化学反应、催化剂的设计等提供了理论支持。

2. 教育和学习中的应用化学元素周期表是化学教育中必不可少的教学工具。

通过学习周期表,学生们可以了解元素的性质、周期规律、元素间的关系等基础概念,进一步深入学习有机化学、配位化学、无机化学等领域的知识。

此外,通过元素周期表的学习,可以培养学生的逻辑思维和科学方法。

化学元素周期表的历史及发展

化学元素周期表的历史及发展

化学元素周期表的历史及发展化学元素周期表是指以元素原子核的核电荷数(即原子序数)为基础,将化学元素按其化学和物理性质排列的表格。

它是化学这门科学最为基础的工具之一,它的发展历程也是充满着探索和发现的历史。

元素周期表的雏形早在古代,人们就已经开始探索元素的本质了。

古希腊人提出了四大元素:水、土、火、风。

到了十七世纪,欧洲的化学家开始通过试验探索元素,研究它们的性质。

随着化学研究的不断深入,学者们逐渐发现了化学反应中的各种规律和法则。

1791年,法国化学家拉瓦锡提出了化学元素的概念。

1803年,英国化学家道尔顿提出了有利于表述化学元素的一种等价原子质量理论:同一元素的不同质氢电荷或等价原子对其它元素的贡献也是不同的。

1850年,德国化学家欧内斯特·荷尔德发现了气体的原子是受到压力影响的,这是描述元素的特性和附加特性(包括物理特性和化学反应性质)之间关系的首次实验。

同时,他发现一种“同族元素”(即有相似化学步骤致敬的元素),如氯和溴,钾和铷。

荷尔德是化学元素周期表的始创者。

化学元素周期表的发展形成化学元素周期表需要汇总所有已知元素的数据,包括元素的名称、符号、原子量、电子结构、元素的类别、物理性质和化学性质等。

人们将这些数据编制成表一,表一组织了许多元素,但它们没有被按照任何有意义的方法排列。

1869年,俄国化学家门捷列夫将元素按照所含电子数排列,并将它们分成六个组,称为“周期性体系”。

这个周期表在将来的研究过程中还经过了很多改进,到20世纪初,英国化学家门德列夫就提出了现代元素周期表的基本结构。

现代元素周期表将所有元素分为七个水平行和十八个垂直列,每列称为一族。

排在同一族的元素具有相似的化学性质。

在元素周期表的基础上,我们可以发现许多元素之间的趋势和规律,以及它们的物理和化学性质。

元素周期表的学术价值元素周期表的制定和发展对于推动了化学领域的发展和进步具有不可替代的作用。

它简化了化学的教学和学习,辅助学者更好地掌握化学知识,更快地了解化学元素的性质和分类。

化学元素周期表的发展历程与演变

化学元素周期表的发展历程与演变

化学元素周期表的发展历程与演变自古以来,人类一直对物质构成的探索充满着好奇心。

随着科学技术的不断发展,化学领域也迎来了巨大的飞跃。

而在这个领域里,元素周期表的贡献至关重要。

元素周期表是化学研究的重要工具,它将所有已知的元素按照一定规律排列,并将他们的性质体现出来。

下面我们来了解一下元素周期表的发展历程。

1. 普鲁士采掘大臣莫斯莱于1817年首次提出了元素周期表的思想。

他根据化合物成分的不同进行分类,并提出了对照表。

这是元素周期表的雏形。

2. 1829年,德国化学家勒鲁瓦发现了铝这种新元素,他的发现为元素周期表的形成奠定了基础。

此后,瑞典化学家莫尔增加了对元素化学性质的考虑,提出了新的表格。

这是元素周期表的第一个原型。

3. 1863年,俄国化学家门捷列夫利用已知的元素信息,画出了完整的元素周期表。

他按照原子量从小到大排列,并将相似的元素放在同一列中,这就是现在我们使用的元素周期表。

4. 在元素周期表形成的过程中,有不少化学家做出了重要贡献。

例如法国化学家拉沙得强调了元素周期性规律的重要性,美国化学家门淑尔发现了光谱线和原子的结合,确定了元素的位置。

5. 元素周期表的发展不止与化学界有关,还与不同领域的交流有着千丝万缕的联系。

在生物化学领域,对生命物质的研究促进了元素周期表对生物元素的理解。

物理学的发展也使得我们对元素的结构和特性有了更深入的理解。

6. 20世纪初,科学家们发现了新的元素,并将它们加入到元素周期表中。

这些元素的发现使得我们对元素周期表的了解更加全面,提出了新的问题和挑战。

7. 当今,元素周期表被广泛应用在不同领域中。

除了学术研究外,它还应用于冶金业、电子技术、环保、医药等领域,提供了有效的解决方案。

总的来说,元素周期表的演变历程充满曲折与挑战,但是这个工具所带来的重要性和影响力不容忽视。

它不断地以新的形式存在,为人类的探索和新一代的学者们提供了精准而深入的物质学知识,为我们对世界和生命的理解提供了重要的支持。

化学元素周期表的发现与发展

化学元素周期表的发现与发展

化学元素周期表的发现与发展化学元素周期表是描述和分类化学元素的重要工具,对化学科学研究和应用具有极大的价值。

本文将从历史的角度,介绍化学元素周期表的发现与发展过程。

1. 元素分类的起步在18世纪末19世纪初,化学家开始研究元素的性质和相互关系。

1808年,英国化学家道尔顿提出了原子理论,认为所有物质都由不可分割的小粒子组成。

随后,化学家们开始将已知的元素进行分类。

2. 前身——三法则19世纪中叶,化学家们发现了三种规律,为元素分类提供了基础。

分别是达布林金(Döbereiner)的三种类比律、诺斯特拉夫(Newlands)的八度律和门德莱耶夫(Mendeleev)的周期律。

3. 达布林金的三种类比律达布林金观察到一些具有相似性质的元素,他将这些元素组成了一组,这被称为质量三法则。

其中最著名的是他发现了三种类比律,它们分别是氯、溴和碘的类比,钙、锶和钡的类比,锂、钠和钾的类比。

4. 诺斯特拉夫的八度律诺斯特拉夫打破既定的元素分类模式,提出了八度律。

他认为元素的性质会每隔八个元素重复一次。

尽管八度律的规律性有限,但这是化学元素分类的重要进展。

5. 门德莱耶夫的周期律门德莱耶夫是化学元素周期表发展过程中最重要的贡献者之一。

他将已知的70多种元素按照其性质进行了分类,并基于这些性质提出了周期律。

门德莱耶夫预测了期未发现的元素的性质,并预测了一些元素的存在。

6. 化学元素周期表的完善随着科学技术的进步,越来越多的元素被发现和研究,化学元素周期表也在不断完善和调整。

随着元素周期表的进一步发展,新的元素不断被添加进去,已有元素的属性也得到了更新。

7. 现代化学元素周期表现代化学元素周期表根据门德莱耶夫的周期律进行排列,并加以修改和扩展。

元素周期表通常按照元素的原子序数从小到大排列,并根据元素的属性进行分组。

现代化学元素周期表一般包含18个竖排,称为主族元素和残余元素。

8. 元素周期表的应用化学元素周期表被广泛应用于科学研究、教学和工业生产。

化学元素周期表的发展历史

化学元素周期表的发展历史

化学元素周期表的发展历史化学元素周期表是化学领域中非常重要的一种工具,它的发展历史见证了人类对化学元素的认识和理解的不断深入。

以下是化学元素周期表的发展历史的知识点介绍:1.早期元素发现:早在古代,人们就已经开始发现并使用一些元素,如金、银、铜、锡、铅等。

到了17世纪和18世纪,随着化学的兴起,科学家们开始系统地研究元素,陆续发现了更多的元素。

2.门捷列夫的周期表:1869年,俄国化学家门捷列夫发表了第一个元素周期表。

他根据元素的原子量和化学性质,将已知元素排列成一个表格。

这个周期表初步展现了元素之间的关系,并预测了一些尚未发现的元素。

3.周期表的改进:在门捷列夫的周期表基础上,科学家们不断进行改进。

1913年,丹麦物理学家玻尔提出了玻尔模型,对原子的内部结构有了更深入的理解,为周期表的改进奠定了基础。

4.长式和短式周期表:随着元素种类的增加,周期表也不断演变。

目前常用的周期表有两种形式:长式和短式。

长式周期表将元素按照原子序数递增的顺序排列,短式周期表则将元素按照电子排布的规律排列。

5.周期表的现代结构:现代周期表共有7个周期和18个族。

周期表示元素原子的电子层数,族表示元素原子的最外层电子数。

周期表的这种结构反映了元素的原子结构和化学性质的周期性变化。

6.周期表的新元素:随着科学技术的不断发展,人类对元素的认识也在不断拓展。

截至2021年,周期表已知的元素达到118种,其中大部分是在20世纪发现的。

新元素的发现往往是通过粒子加速器等高精尖设备实现的。

7.周期表的应用:周期表在化学、物理学、材料科学等领域具有广泛的应用。

它不仅有助于科学家们预测元素的性质和反应,还有助于我们了解宇宙中元素的分布和地球资源的开发利用。

综上所述,化学元素周期表的发展历史见证了人类对化学元素的认识的不断深化,为我们了解元素的世界提供了重要的工具。

习题及方法:1.习题:门捷列夫是哪个国家的化学家?解题方法:通过查阅相关资料,可以得知门捷列夫是俄国的化学家。

化学元素周期表发现和演变历程概述

化学元素周期表发现和演变历程概述

化学元素周期表发现和演变历程概述化学元素周期表是研究化学的基础,它对于科学界、教育界和工业界都具有重要意义。

元素周期表的发现和演变历程是一段充满智慧和创新的历史。

本文将对这段历程进行概述,介绍元素周期表的发现、演变和现代化。

1. 元素周期表的起源元素周期表的起源可以追溯到18世纪末和19世纪初的化学研究。

当时的科学家开始认识到,化学物质是由一种或多种基本组成部分构成的,并试图对这些组成部分进行分类和系统化。

一开始,人们试图将化学元素按照它们的质量、化学性质和其他特征进行分类,但是这样的分类方法并不完善。

2. 近代元素周期表的发现1869年,俄国化学家德米特里·门捷列夫发表了《化学元素周期系统试论》,这是第一个现代意义上的元素周期表。

门捷列夫根据元素的原子质量和化学性质将元素分类,并将它们排列成一个周期性的表格。

门捷列夫的周期表为后来的研究和发展奠定了基础。

3. 周期表的演变随着科学家对元素的研究的深入,元素周期表也不断演变和完善。

20世纪初,质子和电子的发现为元素分类提供了新的线索。

亨利·莫塞里、威廉·拉文德和格伦·塞卡共同发现了质子数(即元素的原子序数)与元素的性质之间存在着规律性关系。

这些发现使得新的元素周期表能够更好地解释元素的性质和行为。

4. 莫尔规则和原子量20世纪初,西班牙化学家门德莱夫·莫尔提出了著名的莫尔规则。

莫尔规则指出,元素的性质与其原子序数(质子数)有密切关系。

这个规律改变了以往将元素按照原子质量进行分类的方式,转而将元素按照原子序数进行分类。

此外,莫尔还提出了一种新的单位,即原子量。

原子量是一个相对质量单位,以碳-12同位素为参照进行计算。

5. 考夫斯基的周期表1913年,英国化学家亨利·莫塞里的学生尤金·考夫斯基提出了一种新的元素周期表,在这个表中,元素按照它们的电子构型进行排列。

考夫斯基的周期表更加符合元素的化学性质和行为,成为近代元素周期表的又一里程碑。

化学元素周期表的历史和发展

化学元素周期表的历史和发展

化学元素周期表的历史和发展化学元素周期表是一张表格,用于将化学元素按照一定的规律排列。

周期表是化学中最基础、最重要的工具之一,它将多种元素分类并分组,有助于科学家更好地了解元素的特性。

元素周期表历史悠久,起初只是简单的表格,并非现在的形式。

早在古人类就已经开始使用矿物,如铜、铁、金等,后来又出现了以四个基础元素:火、土、水、气来描述自然界的物质,这都是元素周期表的雏形。

18世纪,瑞典化学家贝格曼首次提出,类似于性质重复的一些元素可以分类别出来,尝试着寻找元素之间的关联规律。

1829年,德国科学家多贝极力支持贝格曼的观点,并将一些相似的元素相互归类。

然而元素周期表的形式和理论并没有像现在这样清晰,直到1860年,俄罗斯化学家门捷列夫成功地整理元素周期表,创立了现代元素周期表。

他将原来的十几种元素变成了70多种,并且陈列的结构很有规律,根据原子量,把相似的元素放在了一起,这种简洁而实用的元素周期表至今仍在使用,并被称为门捷列夫周期表。

随后,在门捷列夫周期表的基础上,不断有学者加以改良扩充,例如英国化学家门德里夫于1864年提出了在周期表中留出空位的思想,他预言了今后还会有新的元素被发现,这一预测得以实现,直到2016年元素周期表上有118种元素。

随着现代化学的发展和技术的进步,元素周期表也在不断补充、完善。

例如,在化学常数中,随着原子序数的增加,元素的一些物理特性也呈现出一定的周期性规律,像电性与核能量的规律等。

总的来说,元素周期表的历史演变体现了人类对自然界的认知和探索,是科学发展史上的里程碑。

元素周期表的发展不仅提高了人们对于物质的认识水平,同时对人类发掘自然资源、设计新功能材料、开发新冶金、研制新工艺等领域都有着积极的推动作用。

化学元素周期表的发现与发展历程

化学元素周期表的发现与发展历程

化学元素周期表的发现与发展历程化学元素周期表是现代化学的基础,也是化学界最重要的成就之一。

它呈现了元素的周期性和规律性,为科学家们研究元素和化学反应提供了重要的工具和理论基础。

本文将介绍元素周期表的发现和发展历程。

1.元素分类的起源最初,古代化学家将元素根据它们的化学性质分为金属和非金属。

这是基于对元素外观、导电性和反应性等最初的观察和实验得出的结论。

然而,随着对元素性质研究的不断深入,人们意识到金属和非金属之间的界限并不清晰,需要更精确的分类方法。

2.道尔顿的原子理论约瑟夫·道尔顿是首位提出原子理论并将化学元素分类的科学家。

他认为所有的物质都是由小粒子—原子组成的,而且元素的不同性质是由原子的质量和组合方式决定的。

道尔顿根据元素的原子质量将它们分为几个组,这是第一个类似于元素周期表的分类法。

3.贝格曼的化学亲缘性表瑞典化学家贝格曼是首位尝试根据元素的化学亲缘性分类的科学家。

他根据元素的反应性将它们排列在一张表上,并观察到了某种规律。

虽然这个表格并没有像现代元素周期表那样连续地排列元素,但它显示了元素之间的某种联系和周期性。

4.门捷列夫的周期表俄国化学家门捷列夫是第一个成功构建元素周期表的科学家。

他根据元素原子质量的递增规律,将元素按照它们的化学性质分为几个周期和类别。

门捷列夫还预测了一些元素的存在,并预测了一些元素的性质。

他的周期表被认为是现代元素周期表的基础。

5.门捷列夫-托夫滋的改进门捷列夫的周期表存在一些缺陷,瑞典化学家托夫滋在他的基础上进行了改进。

托夫滋重新排列了元素,并将它们按照电子排布的规律进行了分类。

这一改进使得周期表更加完善和准确,对后来的研究产生了重要影响。

6.后续的发展随着科学技术的进步和对元素性质的深入研究,元素周期表也在不断发展。

科学家们通过实验和理论预测发现了新的元素,并完善了周期表的排列方式。

现今的元素周期表包含118个元素,其中一些是人工合成的。

总结起来,化学元素周期表的发现和发展历程经过了多位科学家的努力和贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学元素周期表的发现与发展摘要:化学元素周期表是人类研究化学的一个里程碑,揭示了化学元素间的内在联系。

在元素周期律的指导下,利用元素之间的一些规律性知识来分类学习物质的性质,就使化学学习和研究变得有规律可循。

现在,化学家们已经能利用各种先进的仪器和分析技术对化学世界进行微观的探索,并正在探索利用纳米技术制造出具有特定功能的产品,使化学在材料、能源、环境和生命科学等研究上发挥越来越重要的作用。

关键字:本文就化学元素周期表的起源,归路,意义,以及发展历史等角度全面的了解化学元素周期表。

这个化学史上重要的成就,同时帮助我们更好的学习化学,理解化学元素的本质联系。

1.起源简介化学元素周期表现代化学的元素周期律是1869年俄国化学家德米特里·伊万诺维奇·门捷列夫首创的(周期表中101位元素“钔”由此而来)。

门捷列夫将元素按照相对原子质量由大到小依次排列,并将化学性质相近的元素放在一个纵列,制出了第一张元素周期表,揭示了化学元素间的内在联系,使其构成了一个完整的体系,成为化学发展史上的重要里程碑之一。

1913年英国科学家莫色勒利用阴极射线撞击金属产生X射线,发现原子序数越大,X射线的频率就越高,因此他认为原子核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序数)排列,经过多年元素周期表修订后才成为当代的周期表。

常见的元素周期表为长式元素周期表。

在长式元素周期表中,元素是以元素的原子序数排列,最小的排行最先。

表中一横行称为一个周期,一纵列称为一个族,最后有两个系。

除长式元素周期表外,常见的还有短式元素周期表,螺旋元素周期表,三角元素周期表等。

道尔顿提出科学原子论后,随着各种元素的相对原子质量的数据日益精确和原子价(化合价)概念的提出,就使元素相对原子质量与性质(包括化合价)之间的联系显露出来。

德国化学家德贝莱纳就提出了“三元素组”观点。

他把当时已知的54种元素中的15种,分成5组,每组的三种元素性质相似,而且中间元素的相对原子质量等于较轻和较重的两个元素相对原子质量之和的一半。

例如钙、锶、钡,性质相似,锶的相对原子质量大约是钙和钡的相对原子质量之和的一半。

法国矿物学家尚古多提出了一个“螺旋图”的分类方法。

他将已知的62种元素按相对原子质量的大小顺序,标记在绕着圆柱体上升的螺旋线上,这样某些性质相近的元素恰好出现在同一母线上。

这种排列方法很有趣,但要达到井然有序的程度还有困难。

另外尚古多的文字也比较暧昧,不易理解,虽然是煞费苦心的大作,但长期未能让人理解。

英国化学家纽兰兹把当时已知的元素按相对原子质量大小的顺序进行排列,发现无论从哪一个元素算起,每到第八个元素就和第一一个元素的性质相近。

这很像音乐上的八度音循环,因此,他干脆把元素的这种周期性叫做“八音律”,并据此画出了标示元素关系的“八音律”表。

显然,纽兰兹已经下意识地摸到了“真理女神"的裙角,差点就揭示元素周期律了。

不过,条件限制了他做进一步的探索,因为当时相对原子质量的测定值有错误,而且他也没有考虑到还有尚未发现的元素,只是机械地按当时的相对原子质量大小将元素排列起来,所以他没能揭示出元素之间的内在规律。

他的“八音律”在英国化学学会上受到了嘲弄,主持人以不无讥讽的口吻问道:“你为什么不按元素的字母顺序排列?那样,也许会得到更加意想不到的美妙效果。

”德国化学家迈耶尔借鉴了德贝莱纳、纽兰兹等人的研究成果,从化合价和物理性质方面人手,去探索元素间的规律。

在他的《近代化学理论》一书中,刊登了元素周期表,表中列出了28个元素,他们按相对原子质量递增的顺序排列,一共分成六族,并给出了相应的原子价是4、3、2、1、1、2。

1868年,发表了第二张周期表,增加了24个元素和9个纵行,并区分了主族和副族。

迈耶尔的第三张元素周期表发表于1870年,他采用了竖式周期表的形式,并且预留了一些空位给有待发现的元素,但是表中没有氢元素。

可以说,迈耶尔已经发现了元素周期律。

2.详细解读周期表化学元素周期表的编排显示出不同元素的化学性质的周期性,在周期表中,元素按原子序(即原子核内的质子数目)递增次序排列,并分为若干列和栏,在同一行中的称为同一周期,根据量子力学,周期对应着元素原子的电子排布,显示出该原子的已装填电子层数目。

沿着周期表向下,周期的长度逐渐上升,并按元素的电子排布划分出s区元素、p区元素、d区元素和f区元素。

而同一栏中的则称为同一族,同一族的元素有着相似的化学性质。

在印刷的周期表中,会列出元素的符号和原子序数。

而很多亦会附有以下的资料,以元素X 为例:A:质量数(Mass number) ,即在数量上等于原子核(质子加中子)的粒子数目。

Z:原子序数,即是质子的数目。

由于它是固定的,一般不会标示出来。

e:净电荷,正负号写在数字后面。

n:原子数目,元素在非单原子状态(分子或化合物)时的数目。

除此之外,部份较高级的周期表更会列出元素的电子排布、电负性和价电子数目。

元素读音第一周期元素:1 氢(qīng) 2 氦(hài)元素周期表正确金属汉字写法第二周期元素:3 锂(lǐ) 4 铍(pí) 5 硼(péng) 6 碳(tàn) 7 氮(dàn) 8 氧(yǎng) 9 氟(fú) 10 氖(nǎi)第三周期元素:11 钠(nà) 12 镁(měi) 13 铝(lǚ) 14 硅(guī) 15 磷(lín) 16 硫(liú) 17 氯(lǜ) 18 氩(yà)第四周期元素:19 钾(jiǎ) 20 钙(gài) 21 钪(kàng) 22 钛(tài) 23 钒(fán) 24 铬(gè) 25 锰(měng) 26 铁(tiě) 27 钴(gǔ) 28 镍(niè) 29 铜(tóng) 30 锌(xīn) 31 镓(jiā) 32 锗(zhě) 33 砷(shēn) 34 硒(xī) 35 溴(xiù) 36 氪(kè)第五周期元素:37 铷(rú) 38 锶(sī) 39 钇(yǐ) 40 锆(gào) 41 铌(ní) 42 钼(mù) 43 锝(dé) 44 钌(liǎo) 45 铑(lǎo) 46 钯(bǎ) 47 银(yín) 48 镉(gé) 49 铟(yīn) 50 锡(xī) 51 锑(tī) 52 碲(dì) 53 碘(diǎn) 54 氙(xiān)第六周期元素:55 铯(sè) 56 钡(bèi) 57 镧(lán) 58 铈(shì) 59 镨(pǔ) 60 钕(nǚ) 61 钷(pǒ) 62 钐(shān) 63 铕(yǒu) 64 钆(gá) 65 铽(tè) 66 镝(dī) 67 钬(huǒ) 68 铒(ěr) 69 铥(diū) 70 镱(yì) 71 镥(lǔ) 72 铪(hā) 73 钽(tǎn) 74 钨(wū) 75 铼(lái) 76 锇(é) 77 铱(yī) 78 铂(bó) 79 金(jīn) 80 汞(gǒng) 81 铊(tā) 82 铅(qiān) 83 铋(bì) 84 钋(pō) 85 砹(ài) 86 氡(dōng)第七周期元素:87 钫(fāng) 88 镭(léi) 89 锕(ā) 90 钍(tǔ) 91 镤(pú) 92 铀(yóu) 93 镎(ná) 94 钚(bù) 95 镅(méi) 96 锔(jú) 97 锫(péi) 98 锎(kāi) 99 锿(āi) 100 镄(fèi) 101 钔(mén) 102 锘(nuò) 103 铹(láo) 104 鈩(lú) 105 (dù) 106 (xǐ) 107 (bō) 108 (hēi) 109 䥑(mài) 110 鐽(dá) 111 錀(lún) 112 鎶(gē)[暂定]元素的外壳电子壳层结构外围电子层排布,元素附注为元素的电子壳层结构的电子组态(最外层电子的基态以及数量),s 、p、d、f 标记轨道角动量在z 轴方向上投影的磁量子数。

例如1s1,前面的1表示壳层数,s表示轨道量子数为0的量子态(基态的简并态之一),后面的1表示最外层电子的数目(是电子自旋态以及pauli原理决定的)。

3.递进循环1 原子半径(1)除第1周期外,其他周期元素(稀有气体元素除外)的原子半径随原子序数的递增而减小;(2)同一族的元素从上到下,随电子层数增多,原子半径增大。

注意:原子半径在IVB族及此后各副族元素中出现反常现象。

从钛至锆,其原子半径合乎规律地增加,这主要是增加电子层数造成的。

然而从锆至铪,尽管也增加了一个电子层,但半径反而减小了,这是与它们对应的前一族元素是钇至镧,原子半径也合乎规律地增加(电子层数增加)。

然而从镧至铪中间却经历了镧系的十四个元素,由于电子层数没有改变,随着有效核电荷数略有增加,原子半径依次收缩,这种现象称为“镧系收缩”。

镧系收缩的结果抵消了从锆至铪由于电子层数增加到来的原子半径应当增加的影响,出现了铪的原子半径反而比锆小的“反常”现象。

2元素变化规律(1)除第一周期外,其余每个周期都是以金属元素开始逐渐过渡到非金属元素,最后以稀有气体元素结束。

(2)每一族的元素的化学性质相似3元素化合价(1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外),皆呈阶梯式变化。

(2)同一主族的元素的最高正价、负价均相同。

(3) 所有单质都显零价。

4单质的熔点(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增。

5元素的金属性与非金属性(1)同一周期的元素电子层数相同。

因此随着核电荷数的增加,原子越容易得电子,从左到右金属性递减,非金属性递增;(2)同一主族元素最外层电子数相同,因此随着电子层数的增加,原子越容易失电子,从上到下金属性递增,非金属性递减。

6最高价氧化物和水化物的酸碱性元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。

相关文档
最新文档