文艺复兴时期的欧洲数学
欧洲数学发展史

欧洲数学发展史
欧洲数学发展史可以追溯到古希腊时期,当时的数学家们开始研究几何学和代数学。
其中最著名的数学家是欧几里得,他的《几何原本》成为了欧洲数学的基础。
在中世纪,欧洲的数学发展受到了阻碍,因为教会认为数学是邪恶的,所以数学家们只能在私下里进行研究。
然而,文艺复兴时期的到来改变了这一切。
数学家们开始重新研究古希腊的数学理论,并且发展了新的数学分支,如微积分和解析几何。
17世纪是欧洲数学发展的黄金时期。
伟大的数学家牛顿和莱布尼茨发明了微积分,这个发明彻底改变了数学的面貌。
同时,欧洲的数学家们也开始研究概率论和统计学,这些分支对现代科学和工程学的发展产生了深远的影响。
18世纪和19世纪是欧洲数学发展的时期。
欧洲的数学家们开始研究更加抽象的数学理论,如群论和拓扑学。
这些理论对现代数学的发展产生了深远的影响,并且被广泛应用于物理学、工程学和计算机科学等领域。
20世纪是欧洲数学发展的新时期。
数学家们开始研究更加复杂的数学理论,如纯数学和数学物理学。
同时,计算机科学的发展也促进了数学的发展,数学家们开始研究计算机科学中的数学问题,并且开发了新的数学工具和算法。
总的来说,欧洲数学发展史是一个充满创新和发展的历史。
从古希腊时期的几何学到现代的数学物理学和计算机科学,欧洲的数学家们一直在不断地探索和发展数学理论,为现代科学和工程学的发展做出了巨大的贡献。
数学发展史各个时期(数学发展简史)

数学发展史各个时期(数学发展简史)人类进入原始社会,就需要数学了,从早期的结绳记事到学会记数,再到简单的加减乘除,这些都是人类日常生活中所遇到的数学问题。
数学是有等级的,就像自然数的运算是小学生的水平一样,超出了这个范围小学生就不能理解了。
像有未知数的运算小学生就无从下手一样,数学的发生发展也是从低级向高级进化的,人类最早理解的是算数,经过额一段时间的发展算数发展到了方程、函数,一级一级的进化,才发展到了现代的的数学。
人类数学的发展做出较大成就的是古希腊时期,奇怪的是古希腊对数的运算并不突出,反而是要到中学才能学到的几何学在古希腊就奠定了基础,学过几何的人对欧几里得不会陌生,欧几里得是古希腊人,数学家,被称为“几何之父”。
他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。
欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。
在古希腊教育中几何学占有相当重要的地位,柏拉图提倡的希腊六艺就包括几何,后来希腊文化衰落了,希腊被入侵,希腊图书馆的藏书被掠夺了,被阿拉伯人保存了。
有这么一个说法,是阿拉伯人对希腊语与拉丁语文献的保留,才让欧洲人得以返过来取经,找回“失落”的希罗文化。
其中包括柏拉图学说和欧几里得几何。
经过了中世纪的黑暗,欧洲找回了古希腊古罗马文化,才有了欧洲的文艺复兴。
在算术上,阿拉伯人对数学的贡献是现在人们最熟悉的1、2、……9、0十个数字,称为阿拉伯数字。
但是,在数学发展过程中,阿拉伯人主要吸收、保存了希腊和印度的数学,并将它传给欧洲。
阿拉伯人采用和改进了印度的数字记号和进位记法,也采用了印度的数学记号和进位记法,也采用了印度的无理数运算,但放弃了负数的运算。
代数这门学科名称就是由阿拉伯人发明的。
阿拉伯人还解出一些一次、二次方程,甚至三次方程我们数数的时候都是从1开始的,标准的0这个数字由古印度人在约公元5世纪时发明。
他们最早用黑点“·”表示零,后来逐渐变成了“0”。
【精品】文艺复兴时期数学发展的重要因素

【精品】文艺复兴时期数学发展的重要因素文艺复兴时期是欧洲历史上一个盛行文化、思想和艺术的时期,也是数学发展的重要阶段。
这一时期数学发展的重要因素主要包括文化传统的延续、人文主义思想的兴起以及数学思想的创新。
文艺复兴时期的欧洲受到文化传统的深刻影响。
古希腊、古罗马和阿拉伯世界的数学传统得到了广泛传承和发展。
伽利略、笛卡尔、费马等数学家在数学方面的创新研究都离不开对文化传统的继承和借鉴。
文艺复兴时期的数学家们通过对文化传统的深入研究,逐渐发现了古人们论证数学问题的精髓所在——严密的逻辑和证明方法。
这种传统在当时的数学界得到了广泛的传承和延续,促进了数学科学的进一步发展。
文艺复兴时期人文主义思想的兴起也是数学发展的重要因素。
人文主义认为人是自由、独立的主体,人的价值超越了物质利益的追求,这种思想体系强调人的主观能动性,对人类智慧的尊重和信仰,从而激发了人们对数学的热情和追求。
数学在这种思想影响下不仅仅成为了一门技术工具,更成为了一种哲学思考和文化追求。
人文主义思想的兴起,在文艺复兴时期推动了数学的创新和发展。
数学思想的创新也是文艺复兴时期数学发展的重要因素。
文艺复兴时期,人们开始从代数、几何、解析等方面进行广泛的探讨和研究,各类数学问题的分支学科逐渐形成。
一系列数学思想的创新被提出,例如牛顿万有引力定律、笛卡尔坐标系、阿贝尔群、欧拉公式等,这些创新激发了人们对数学研究的兴趣,推动了数学科学的进一步发展。
总之,文艺复兴时期数学发展的重要因素是多元的,既包括历史和文化传统的延续,也包括人类性质和人文主义思想的融合,更包括数学思想的创新和发展。
这些因素共同推动了数学科学的进一步繁荣和发展,为后世的数学研究奠定了坚实的基础。
文艺复兴时期的数学

文艺复兴时期的数学对外部世界进行研究的主要目的在于发现上帝赋予它的合理次序与和谐,而这些是上帝以数学语言透露给我们的。
Keplen文艺复兴时期(1400—1600),欧洲被几件事情深深地震憾了一下,其一是革命的影响十分广泛;其二是希腊著作大量进入欧洲,活板印刷的发明,加速了知识的传播。
此外罗盘和火药的引进使得远洋称为可能。
火药在十三世纪从中国引进,它改变了战争的方法和防御公式的设计,使得研究抛射体的运动变得很重要。
由于制造业、矿业、大规模的农业以及各种贸易的大量发展,一个新的经济时代开始了。
数学兴趣的复活几乎是随着希腊知识和生活准则的复活一起而来的结果,十五世纪,希腊的著作大量进入欧洲,Plato著作被大家所了解,知道了自然界是按照数学方式设计的,并且这个设计是非常和谐优美的内部真理。
教会是建立在权威之上的,它崇拜Aristotlc,并把怀疑以及伦理道德变化无常的情况下,数学是唯一被大家公认的真理体系,数学知识是确定无疑的,它给人们在沼泽地上提供了一个稳国的立足点;于是人们又把寻求真理的努力引向数学。
数学家和科学家也从神学的偏见中得到某种启示,它反复灌输这样一种观点,所有自然的现象不公相互关联而且还按照一个统盘的计划运转,那么,神学中上帝创造宇宙之说又怎么能够同寻找大自然的数学规律并行不饽呢?回答是提出一种新的教条,即:上帝是按数学方式设计了大自然的,把上帝推崇为一个至高无上的数学家,这就使得寻找大自然的数学规律一事成为称为一项合法的宗教活动。
这个理论鼓舞了十六、十七甚至一些十八世纪的数学家的工作。
所以文艺复兴时期的自然科学家被认为是神学家,用自然代替圣经作为他们的研究对象,其中的部分代表人物,如Kepler,Galileo,Pascal,Descartes,Newton,Leibniz等科学家们因为确信上帝在构造宇宙时已经把数学规律放在其中,所以他们坚持寻找自然现象背后的数学规律。
每一条自然规律的发现都被认为证明了上帝的智慧而并非研究者的智慧。
数学发展史上的四个高峰

数学发展史上的四个高峰
数学发展史上存在着许多重大的事件和里程碑式的发现,但是其中仍然有一些是无法被忽略的重要高峰。
下面将介绍数学发展史上的四个高峰。
第一高峰:古希腊数学
古希腊数学是数学发展史上的第一个高峰。
早在公元前6世纪,古希腊人就开始研究数学,并取得了一些重要的成果。
他们用几何学方法解决了很多数学问题,比如平方根和三角函数的计算。
古希腊人还开发了一套形式化的逻辑系统,这成为了现代数学的基础。
第二高峰:文艺复兴数学
文艺复兴时期,数学经历了第二个高峰。
在欧洲,数学家们开始对古希腊数学的成果进行研究,并进行了深入的发展。
他们开发了代数学、微积分学和概率论等重要分支,这些成果为现代科学的发展奠定了基础。
第三高峰:19世纪数学革命
19世纪是数学发展史上的第三个高峰。
这是由于当时许多重要的数学家在短时间内取得了很多重要的成果,这些成果大大推动了数学的发展。
比如高斯、欧拉和拉格朗日等人在代数和分析领域做出了很多突破性的贡献。
第四高峰:20世纪数学
20世纪是数学发展史上的最后一个高峰。
在这个时期,数学经历了巨大的变革和发展。
比如,20世纪初,G·庞加莱提出了拓扑学
的想法,这引发了一个新的分支的发展。
随后,数学家们还在计算机科学和数学物理学等领域做出了很多重要的发现,这些成果深刻地改变了数学的面貌。
欧洲文艺复兴对数学学科的发展影响

欧洲文艺复兴对数学学科的发展影响欧洲文艺复兴是一个标志性的时期,它涵盖了文化、艺术、科学和思想等诸多领域。
在这个时期,人们对古希腊和罗马文化的研究重新兴起,艺术家、思想家和科学家的努力使得欧洲文艺复兴成为欧洲历史上一个具有重要影响力的时期。
而在这个时期的数学学科领域,欧洲文艺复兴也发挥了巨大的影响,推动了数学的发展和改变了人们对数学的认知。
首先,欧洲文艺复兴时期的数学家们重新审视古希腊数学,重拾了欧几里得几何学的精髓。
欧几里得几何学在古代以其严谨的证明方法和优美的结论成为数学的典范,然而随着时间的推移,它逐渐被人们所遗忘。
文艺复兴时期的数学家们通过对古希腊数学著作的研究,重新发现了欧几里得几何学的独特之处。
他们开始重视几何学的证明过程,并且将其运用于实际问题的解决上。
这使得欧几里得几何学重新成为了数学的核心学科,对几何学的研究产生了深远的影响。
其次,欧洲文艺复兴时期的数学家们对代数学的研究也取得了突破性进展。
他们从古希腊数学中提取了一些代数方面的问题,并尝试着用几何学的方法来解决。
这使得代数学和几何学之间的联系得到了加强。
文艺复兴时期的数学家们还开始注意到方程解的数量和次数之间的关系,这对代数学的发展起到了积极的推动作用。
他们提出了一些代数方程的解法,使得代数学的研究更加完善,为未来的数学家们提供了宝贵的思路和工具。
此外,欧洲文艺复兴对数学学科的发展还加速了数学知识的传播和交流。
在这个时期,各国之间的交通和通讯逐渐发展起来,这使得数学家们能更加便捷地与其他数学家进行沟通和合作。
他们的思想和成果得以融合和交流,从而推动了数学知识的普及和全球化。
最后,欧洲文艺复兴时期的数学家们对数学教育的改革也产生了深远的影响。
他们提倡数学的应用和实践,并试图将数学教育融入到课堂中。
他们撰写了一系列的数学教材,将数学的学习方法和技巧推广给更多的人。
这为后来数学教育的改革奠定了基础,使得数学成为一门更加实用和广泛被应用的学科。
5、欧洲文艺复兴时的数学

5、欧洲⽂艺复兴时的数学欧洲⽂艺复兴时期的数学●从15世纪中期到16世纪末,这段时期在欧洲称为⽂艺复兴时期。
●在这⼀时期,欧洲,特别是西欧,出现了思想⼤解放、⽣产⼤发展、社会⼤进步的喜⼈景象,科学⽂化技术,其中包括数学,也随之开始复苏并逐步繁荣起来。
●从此欧洲的数学开始⾛到世界的前列,并长期成为世界数学发展的中⼼。
⼀、欧洲中世纪的回顾1、5世纪,罗马⼈占领了希腊本⼟后,他们依靠强权与军队来维持⾃⼰对异族的统治,热衷于创⽴所谓“实业家的⽂化”,为其统治者豪华奢侈的⽣活服务。
他们对抽象思维毫不关⼼,数学研究仅限于简单的⼏何和测量。
2、另⼀⽅⾯,这⼀时期⼜是基督教绝对统治的时期,为了达到在精神上⿇痹奴⾪的⽬的,基督教竭⼒宣扬“今⽣忍辱负重,来⽣进⼊天堂”的谬论,⽤死后的幸福⽣活来欺骗被统治者,要他们安于被奴役的痛苦命运。
3、圣经是这⼀时期⼈们唯⼀能够学习、研究的“百科全书”。
4、7世纪,在英格兰的北部出现了⼀位博学多才的神学家,这就是被称为“英格兰⽂化之⽗”的⽐德。
在数学⽅⾯,⽐德曾写过⼀些算术著作,研究过历法及指头计算⽅法。
当时,对耶酥复活期的推算是教会讨论最热烈的课题之⼀,据说,这位⽐德⼤师就是最先求得复活节的⼈。
5、⾃然现象进⾏理性的探讨,英国的哲学家培根可以说是这种理性探讨的先驱。
●培根是英格兰的⼀个贵族,曾在⽜津⼤学和巴黎⼤学任教,会多种语⾔,对当时⼏乎所有的知识都感兴趣,号称“万能博⼠”。
●他提倡科学,重视现实,反抗权威。
他认为,数学的思想⽅法是与⽣俱来的,并且是与⾃然规律相⼀致的。
●在他看来,数学是⼀切科学的基础,科学真理之所以是珍贵的,是因为它们是在数学的形成中被反映出来的,即⽤数学数量和尺度刻画的。
6、意⼤利数学家列昂纳多·斐波那契(约1170—1250),(1)曾在埃及、叙利亚、希腊以及西西⾥岛等地游历,在这些地⽅,他获得了许多数学知识,对印度—阿拉伯计算⽅法的实⽤性尤为欣赏。
5、欧洲文艺复兴时的数学

欧洲文艺复兴时期的数学●从15世纪中期到16世纪末,这段时期在欧洲称为文艺复兴时期。
●在这一时期,欧洲,特别是西欧,出现了思想大解放、生产大发展、社会大进步的喜人景象,科学文化技术,其中包括数学,也随之开始复苏并逐步繁荣起来。
●从此欧洲的数学开始走到世界的前列,并长期成为世界数学发展的中心。
一、欧洲中世纪的回顾1、5世纪,罗马人占领了希腊本土后,他们依靠强权与军队来维持自己对异族的统治,热衷于创立所谓“实业家的文化”,为其统治者豪华奢侈的生活服务。
他们对抽象思维毫不关心,数学研究仅限于简单的几何和测量。
2、另一方面,这一时期又是基督教绝对统治的时期,为了达到在精神上麻痹奴隶的目的,基督教竭力宣扬“今生忍辱负重,来生进入天堂”的谬论,用死后的幸福生活来欺骗被统治者,要他们安于被奴役的痛苦命运。
3、圣经是这一时期人们唯一能够学习、研究的“百科全书”。
4、7世纪,在英格兰的北部出现了一位博学多才的神学家,这就是被称为“英格兰文化之父”的比德。
在数学方面,比德曾写过一些算术著作,研究过历法及指头计算方法。
当时,对耶酥复活期的推算是教会讨论最热烈的课题之一,据说,这位比德大师就是最先求得复活节的人。
5、自然现象进行理性的探讨,英国的哲学家培根可以说是这种理性探讨的先驱。
●培根是英格兰的一个贵族,曾在牛津大学和巴黎大学任教,会多种语言,对当时几乎所有的知识都感兴趣,号称“万能博士”。
●他提倡科学,重视现实,反抗权威。
他认为,数学的思想方法是与生俱来的,并且是与自然规律相一致的。
●在他看来,数学是一切科学的基础,科学真理之所以是珍贵的,是因为它们是在数学的形成中被反映出来的,即用数学数量和尺度刻画的。
6、意大利数学家列昂纳多·斐波那契(约1170—1250),(1)曾在埃及、叙利亚、希腊以及西西里岛等地游历,在这些地方,他获得了许多数学知识,对印度—阿拉伯计算方法的实用性尤为欣赏。
(2)1202年,斐波那契综合阿拉伯和希腊资料著成一部重要著作《算经》(Liber Abaci,亦译作《算盘书》),这部著作共15章,主要介绍算术与代数,内容十分丰富,包括:印度—阿拉伯数码的读法与写法;整数与分数的计算;平方根与立方根的求法;线性方程组和二次方程的解法等,给出了数学在实物交易、合股、比例法和测量几何中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国四大发明在欧洲 火药:14世纪传入欧洲 造纸:13世纪传入欧洲 印刷术:14世纪传入欧洲 指南针:12世纪传入欧洲
马克思《机器、自然力和科学 的应用》:火药、指南针、印 刷术 —— 这是预告资产阶级 社会到来的三大发明。……总 的说来变成了科学复兴的手 段,变成对精神发展创造必要 前提的最强大的杠杆。 1482年第一个印刷版
先驱: 阿基米德 1544年斯蒂弗尔(德, 1587-1567)《综 合算》
选择非常接近1的数作为底数a. 比尔吉:a=1.0001 纳皮尔:a=0.9999999
x a y ( a 2)
1620年冈特(英,1581-1626) 制成第一把对数尺
3, 2, 1 , 0,1, 2, 3, 4, 5, 6
对数
产生背景及条件
十五、十六世纪,天文学的研 究蓬勃地开展起来,解决计算大 数字的困难成了当时最紧迫的课 题。
1585年史蒂文(荷,
1548-1620)
《十进算术》
——系统探讨十进制记数及其运算 纳皮尔 (苏格兰,1550-1617年)
理论,并提倡用十进制小数来书 写分数,还建议度量衡及币制中 也广泛采用十进制。
文明背景
哥白尼(波,1473-1543年) (委内瑞拉,1973)
文艺复兴时期的欧洲数学
代数学
对数 三角学 射影几何
代数学
方程的根式解,16世 纪意大利数学最重要的 成就 发现三次方程的代数 解法(1515, 1535, 1539, 1548)
塔塔利亚 (意,1499-1557年)
1519年麦哲伦(葡,
1480-1521)环球航行
文明背景
航海探险
哥伦布在瓜纳阿尼岛登陆(1492)
文明背景
天文学的革命-宗教革命,思想解放
托勒密(埃及,90-165年) 宗教神学的宇宙观:上帝创造了地球,地 球是宇宙的中心。 哥白尼(波,1473-1543年) 日心说:《天体运行论》(1543) 布鲁诺(意,1548-1600) 宇宙观:《论无限宇宙及世界》(1584)
对数
德国天文学家约翰.维纳(14681528) 不足: 只能够做与偶数及1/2的整数幂有 关的计算,不能做其它数的运算。 需要使两个数列的数间距足够小。
cos(A B) cos(A B) sin Asin B 2
1614年纳皮尔《奇妙对数规则的说明》 1620年比尔吉《算术与几何级数表》 解决方法
1450年,德意志人古腾堡(右一) 发明了金属活字印刷术
欧几里得的《原本》
文明背景
航海探险-开阔了视野
1487年迪亚士(葡,
1450-1500)到好望角
1497年达•伽马(葡,
1469-1524)到印度海 岸
1492年哥伦布(西,
1451-1506)到美洲
哥伦布(西,1451-1506年) (智利,1992)
代数学
米兰大教堂
代数学
代数学之父:1591年《分析引论》 第一次有意识地使用系统的代数字母 和符号。把符号性代数称作“类的算术”, 认为代数运算施行于事物的类或形式,算 术运算施行于具体的数。 1615年《论方程的整理与修正》 二次、三次和四次方程的解法、韦达定理 1646年《韦达文集》
代数学
人文主义的代表人物 、 百科全书式的学者 1545年《大术》 三次、四次方程的解法 邦贝利(意, 1526-1573)在1572年 引进虚数 根与系数的关系(韦达、牛顿)
卡尔丹 (意,1501-1576年)
代数基本定理(吉拉德、高斯)
欧洲中世纪最大的教堂,可供 4 万人举行宗教活动,建于 1386- 1485 年,有一个高达 107米的尖塔,出于 公元 15世纪意大利建筑巨匠伯鲁诺列 斯基之手。
•
文艺复兴期常 用数学符号
符号代数的作用
F.克莱因曾说过:“符号常 常比发明他们的数学家更 能推理。” 代数的产生、符号的使用 大大增强了数学家的逻辑 能力。
克莱因 (1849 ~1925)
张奠宙《数学史选讲》:建立 一套简明有效的符号体系,可 以使代数书写表达更加方便, 运算过程更加清晰.推演思路 更加精炼。 使推理程序机械化 减少解题工作量 约减思维 揭示本质 方便传播
达芬奇 蒙那丽莎
达芬奇 最后的晚餐
达芬奇的科学草图
自旋机器设计图 人体比例图 机械与船建构草图 胃与消化系统草图
米开朗基罗 大卫
拉斐尔 雅典学院
文明背景
• 人文主义-思想大解放 人文主义 • 提倡人权、反对神权,提倡个性自由、 反对宗教禁锢,赞颂世俗生活、反对来 世观念和禁欲主义。
文明背景
三角学
1464年雷格蒙塔努斯《论各种三角形》 —— 对三角学做出完整、独立的阐述 ——三角学广泛传播 韦达(法,1540-1603年) —— 1579年《应用于三角形的数学定律 》 (三角公式)
雷格蒙塔努斯 (德,1436-1476年)
—— 1615年《截角术》 平面三角与球面三角系统化,把解平面直 角三角形和斜三角形的公式汇集在一起。
韦达 (法,1540-1603年)
——符号系统的建立使代数成为一门科学
——韦达后,笛卡儿、莱布尼兹、欧拉等完善。
代数符号发展的三个阶段
• 第一阶段称为文词代数。这时的代数内容,完全 是用文字词句来叙述的,一个问题及其解答写出 来就是一篇论说文。 • 第二阶段为简字代数或半符号式代数。这种代数 的特点就是把代数中的某些量或词用简缩的字母 或记号表示。 • 第三阶段就是符号代数。其主要特点就是系统地 引入字母和符号表示数和许多基本数学概念以及 它们的运算关系。文艺复兴时期,现代数学的许 多符号由欧洲各国的数学家零星陆续引入并改进。 大约至17世纪中叶,系统的符号代数基本上形成。
文艺复兴时期的欧洲数学
主讲:李清
文明背景
文明背景
文艺复兴:复兴古典学术和艺术
但丁(意,1265-1321)的
《神曲》
意大利文艺复兴盛期三杰
达•芬奇(1452-1519) 米开朗琪罗(1475-1564) 拉斐尔(1483-1520)
达 · 芬奇(意, 1452-1519年) (摩纳哥,1969)