变频器中常用的控制方式

合集下载

变频器的工作原理与控制方式

变频器的工作原理与控制方式

变频器的工作原理与控制方式变频器(Variable Frequency Drive,缩写为VFD),又称为交流调速器(AC Drive),是一种用于调节交流电机转速的电子装置。

它通过改变输入电压的频率和幅值来控制电机的转速。

变频器工作原理主要涉及开关技术、PWM调制技术、电机驱动理论等方面内容,下面将详细介绍。

一、变频器的工作原理1.开关技术变频器利用开关电子器件(如晶体管、IGBT等)来实现对输入电源的开关控制。

通过不断开关电路,形成等效于几十千赫兹至几千千赫兹的高频方波,从而形成理想的正弦波输出。

2.PWM调制技术PWM(Pulse Width Modulation)调制技术是指通过改变开关装置的导通时间和关断时间,以一定占空比形式控制开关管工作的方式。

在变频器中,PWM技术可以实现加减压、变频和控制电机的转速。

3.电机驱动理论变频器通过改变输入电压的频率和幅值来调节电机的转速。

在工作过程中,通过改变开关器件导通时间和关断时间,将输入电压的频率调节到所需的频率范围,实现对电机转速的精准控制。

二、变频器的控制方式1.V/f控制方式V/f控制方式(Voltage/frequency ratio control)是一种常用的变频器控制方式。

它通过传感器检测电机当前的转速,并根据转速信号和预设的转速曲线进行比较,计算所需输出频率,并根据预设的V/f比值进行控制,实现对电机速度的调节。

2.向量控制方式向量控制方式(Vector Control)又称矢量控制方式,是一种高性能的变频器控制方式。

它通过传感器检测电机当前的转速、转矩和位置等信息,并根据这些信息进行精确计算和控制,实现对电机速度、转矩和位置等的准确控制。

3.矢量控制方式矢量控制方式(Direct Torque Control,缩写为DTC)是一种高性能的变频器控制方式。

它通过传感器检测电机当前的转速、转矩等信息,并根据转速、转矩的变化率进行预测和计算,在每个采样周期内调节电机的转速和转矩,实现对电机的精确控制。

变频器的控制方式

变频器的控制方式

变频器的控制方式1 引言我们通常意义上讲的低压变频器,其输出电压一般为220~650v、输出功率为0.2~400kw、工作频率为0~800hz左右,变频器的主电路采用交-直-交电路。

根据不同的变频控制理论,其模式主要有以下三种:(1)v/f=c的正弦脉宽调制模式(2)矢量控制(vc)模式(3)直接转矩控制(dtc)模式针对以上三种控制模式理论,可以发展为几种不同的变频器控制方式,即v/f控制方式(包括开环v/f控制和闭环v/f控制)、无速度传感器矢量控制方式(矢量控制vc的一种)、闭环矢量控制方式(即有速度传感器矢量控制vc 的一种)、转矩控制方式(矢量控制vc或直接转矩控制dtc)等。

这些控制方式在变频器通电运行前必须首先设置。

2 v/f控制方式2.1 基本概念我们知道,变频器v/f控制的基本思想是u/f=c,因此定义在频率为fx时,ux的表达式为ux/fx=c,其中c为常数,就是“压频比系数”。

图1中所示就是变频器的基本运行v/f曲线。

由图1可以看出,当电动机的运行频率高于一定值时,变频器的输出电压不再能随频率的上升而上升,我们就将该特定值称之为基本运行频率,用fb 表示。

也就是说,基本运行频率是指变频器输出最高电压时对应的最小频率。

在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz或 60hz。

同时与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax表示。

当电动机的运行频率超过基本运行频率fb后,u/f不再是一个常数,而是随着输出频率的上升而减少,电动机磁通也因此减少,变成“弱磁调速”状态。

基本运行频率是决定变频器的逆变波形占空比的一个设置参数,当设定该值后,变频器cpu将基本运行频率值和运行频率进行运算后,调整变频器输出波形的占空比来达到调整输出电压的目的。

因此,在一般情况下,不要随意改变基本运行频率的参数设置,如确有必要,一定要根据电动机的参数特性来适当设值,否则,容易造成变频器过热、过流等现象。

变频器常用的几种控制方式

变频器常用的几种控制方式

变频器常用的几种控制方式Prepared on 22 November 2020变频器常用的几种控制方式变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

1、变频器简介变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。

变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

2、变频器中常用的控制方式非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

变频器的控制方法

变频器的控制方法

变频器的控制方法变频器是一种能够控制交流电动机转速的设备,通常用于工业生产中的电机调速和节能控制。

它通过改变电机输入的电压和频率,使电机达到所需的转速。

变频器的控制方法有多种,下面将详细介绍几种常见的控制方法。

1. 简单开关控制方法简单开关控制方法是变频器最基本的控制方式,通过控制电机的开/关状态来实现转速控制。

这种方法的控制精度较低,转速调节范围也较有限,适用于一些对转速要求不高的应用。

2. 转矩控制方法转矩控制方法是通过调节变频器输出的电压和频率来实现对电机输出转矩的控制。

通过改变电压和频率的比例关系,可以实现电机的恒转矩调速。

这种控制方法适用于一些需要保持恒定转矩的场合,如起重机械、卷取机等。

3. PI控制方法PI控制方法是一种闭环控制方法,它通过测量电机的输出转速与期望转速之间的差异,并根据差异调整变频器的输出电压和频率来控制转速。

这种控制方法具有较高的控制精度和适应性,可以根据实际情况进行参数调整,实现稳定的转速控制。

4. 矢量控制方法矢量控制方法是一种高级的闭环控制方法,它可以实现更精确的转速控制和较高的转矩响应。

矢量控制方法通过对电机的电流、电压和转速进行测量和计算,并根据计算结果调整变频器的输出,使电机能够精确地跟随给定的转速和转矩变化。

5. 力矩控制方法力矩控制方法是一种特殊的转矩控制方法,它可以根据负载的力矩需求来调整电机输出的转矩。

通过测量负载的力矩大小,并根据力矩与转速的关系进行计算和控制,可以实现对电机输出的力矩进行精确的控制。

综上所述,变频器的控制方法有简单开关控制、转矩控制、PI控制、矢量控制和力矩控制等多种方式。

不同的控制方法适用于不同的应用场合,可以根据实际需求选择最合适的控制方式。

随着技术的不断进步和应用领域的扩大,变频器的控制方法也在不断发展和创新,为工业生产提供更加高效和可靠的电机控制解决方案。

变频器运转中最常用的3种指令详解-民熔

变频器运转中最常用的3种指令详解-民熔

变频器运转中最常用的三种指令-民熔变频器的工作有两个基本条件。

除了频率信号外,还有变频器的工作信号。

变频器的操作指令包括启动、停止、正反转、正反转微动、复位等。

作为变频器的预速率设定方式,变频器有三种操作指令方式:键盘控制、终端控制和通讯控制。

这些操作命令模式必须根据实际需要进行选择和设置,也可以根据功能进行相互切换。

一、操作器健盘控制操作人员的键盘控制是变频器最简单的操作命令方式。

用户可以通过变频器操作员键盘上的操作键、停止/复位键和前进/后退/点动键直接控制变频器的运行。

操作人员键盘控制的最大特点是方便实用,还可以起到报警故障的功能,可以告诉用户变频器是在运行、故障还是报警。

因此,用户可以判断变频器是否真的在运行,是否有无无接线报警,并通过数字液晶屏显示故障类型。

二、外部端子控制终端控制是指变频器的操作指令由外部输入终端控制,开关信号由外部输入。

这些按钮、选择开关、继电器、PLC或继电器模块代替了操作键盘上的操作键、停止键、点动键和复位键,可以远距离控制变频器的运行。

变频器的外部输入控制端子接收开关信号。

所有终端可分为两类:1。

基本控制输入端子,如操作、停止、正向旋转、反向旋转、微动、复位等。

这些端子的功能在工厂由变频器校准,不能更改。

2。

由于变频器的作用,可编程控制输入端可以接收几十个控制信号,但每个驱动系统同时输入控制端并不多。

为了节省终端,减少体积,变频器只提供一定数量的“可编程控制输入终端”,也称为“多功能输入终端”。

虽然工厂也设置了具体的功能,但它们并不是固定的。

用户可以根据需要进行预置。

常用的可编程功能,如多级速度控制、加减速控制等。

三、通信控制通信控制方式与通信方式相同。

在不增加线路的情况下,只需将上位机的传输数据转换到变频器上,即可通过正反转、微动、故障复位等方式对变频器进行控制。

为了正确建立通信,必须在变频器中设置与通信有关的参数,如站号、波特率、奇偶校验等。

上位机与变频器之间采用主从式通信方式。

变频器控制电机转速的方法

变频器控制电机转速的方法

变频器控制电机转速的方法变频器是一种能够实现电机转速控制的设备,它通过改变电机的输入电压和频率来调整电机的转速。

在工业领域中,变频器广泛应用于电机的转速控制,能够提高电机的运行效率和稳定性。

下面将详细介绍变频器控制电机转速的方法。

1.基本原理变频器是一种电力变换设备,它能够将电网络提供的固定频率的交流电转换为可调频率的交流电,并通过改变输入电压的幅值和频率来调整电机的转速。

其基本原理是通过控制变频器中的功率电子元器件开关管的通断来改变交流电的电压和频率。

通过调整开关管的通断频率和占空比来实现输出电压和频率的可调范围,从而控制电机的转速。

2.控制方式(1)开环控制:开环控制是指变频器通过设置一定的输出电压和频率来控制电机的转速,但无法实时检测电机的转速。

在开环控制下,变频器根据预设的电压和频率输出设定的电信号,控制电机的转速。

这种控制方式适用于转速要求相对不高的应用。

(2)闭环控制:闭环控制是指变频器通过搭载转速传感器来实时检测电机的转速,并根据检测到的转速信号与预设的设定值进行比较,从而调整变频器的输出信号来实现精确的转速控制。

闭环控制能够准确掌握电机的真实转速,适用于对转速要求较高的应用。

3.控制策略(1)V/F控制:V/F控制是一种基本的变频器控制策略,它通过改变变频器的输出电压和频率来控制电机的转速。

V/F控制通常是在开环控制下进行的,变频器根据预设的电压和频率输出相应的电信号,控制电机的转速。

V/F控制适用于一些负载特性要求不高的应用。

(2)矢量控制:矢量控制是一种高级的变频器控制策略,它通过在开环或闭环控制下,综合考虑电压、频率和电流等因素,实现对电机转速的精确控制。

矢量控制能够从电机转矩和力矩平衡的角度来控制电机的转速和转矩,适用于对转速和转矩精度要求较高的应用。

(3)无传感器控制:无传感器控制是一种不需要安装转速传感器的控制策略,它通过变频器内部的算法实现对电机转速的检测和控制。

无传感器控制可以减少设备的安装和维护成本,适用于一些对转速要求较高但无法安装传感器的特殊应用。

变频器工作的常用模式

变频器工作的常用模式

变频器工作的常用模式变频器是一种常见的电器控制装置,用于调节电动机的速度和频率。

在工作过程中,变频器可以通过选择不同的工作模式来满足各种应用需求。

本文将介绍变频器工作的常用模式。

1. 恒定转速模式恒定转速是变频器最基本的工作模式之一,适用于需要保持电机恒定转速的场景。

变频器通过控制输出频率,使电机稳定地运行在设定的转速上。

该模式广泛应用于传送带、风机等需要稳定运转的设备。

2. 变频调速模式变频调速模式是变频器最常用的工作模式之一,适用于需要实现精细调速的场景。

通过改变输出频率,变频器可以调节电机的转速,实现从低速到高速的连续调节。

这种模式在机械加工、液压系统等领域得到广泛应用。

3. 节能运行模式节能运行模式是一种针对节约能源的工作模式。

在这个模式下,变频器根据实际需求调整电机的转速和负载,以达到最佳能效。

例如,当负载较轻时,变频器会适当降低电机的运行频率,降低能耗。

这种模式在节能的要求日益提高的环境中得到广泛应用。

4. 同步控制模式同步控制模式是一种多电机协同运行的工作模式。

通过变频器的同步控制功能,可以实现多台电动机的协同运行,保持各个电机的同步性和一致性。

这种模式在车间生产线、物流系统等需要多电机配合的场景中得到应用。

5. 故障检测与保护模式故障检测与保护模式是变频器工作中非常关键的一个模式。

变频器通过内置的故障检测与保护机制,对电机运行过程中的异常情况进行监测,并及时采取相应的措施,以避免设备损坏或人身安全事故的发生。

这种模式在电机运行安全保障方面起着重要作用。

总结:变频器作为一种重要的电气控制设备,可以通过不同的工作模式来满足各种应用需求。

无论是恒定转速、变频调速还是节能运行,每种模式都有其独特的应用场景。

而同步控制模式和故障检测与保护模式则分别在多电机协同和安全保障方面发挥着重要的作用。

通过灵活应用变频器的不同工作模式,可以更好地实现电机的控制和优化运行。

变频器的控制方式及合理选用

变频器的控制方式及合理选用

变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。

其控制方式经历以下四代。

(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。

其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。

他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。

以内切多边形逼近圆的方式而进行控制的。

经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。

但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

(3)第三代以矢量控制(磁场定向法)又称VC控制。

其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。

通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。

(4)第四代以直接转矩控制,又称DTC控制。

其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。

具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器中常用的控制方式1, 非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

⑴V/f 控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。

(3) 矢量控制矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。

通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。

例如形成开关次数最少的PWM波以减少开关损耗。

目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。

基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。

因此,基于转差频率的矢量控制方式比转差频率控制方式在输出特性方面能得到很大的改善。

但是,这种控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。

无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。

这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂,一般需要专门的处理器来进行计算,因此,实时性不是太理想,控制精度受到计算精度的影响。

(4) 直接转矩控制直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提高。

即使在开环的状态下,也能输出100%的额定转矩。

(5)最优控制最优控制在实际中的应用根据要求的不同而有所不同,可以根据最优控制的理论对某一个控制要求进行个别参数的最优化。

例如在高压变频器的控制应用中,就成功的采用了时间分段控制和相位平移控制两种策略,以实现一定条件下的电压最优波形。

(6)其他非智能控制方式在实际应用中,还有一些非智能控制方式在变频器的控制中得以实现,例如自适应控制、滑模变结构控制、差频控制、环流控制、频率控制等。

变频器控制方式低压通用变频输出电压为380〜650V,输出功率为0.75〜400kW 工作频率为0〜400Hz,1 u/f=c的正弦脉宽调制(SPWM控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。

但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。

另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

因此人们又研究出矢量控制变频调速。

2电压空间矢量(SVPWM控制方式它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。

经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。

但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

3矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流la、lb、lc、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1lb1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、lt1 (Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。

通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

矢量控制方法的提出具有划时代的意义。

然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

4直接转矩控制(DTC方式1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。

该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。

目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。

直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。

它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

5矩阵式交一交控制方式VWF变频、矢量控制变频、直接转矩控制变频都是交-直-交变频中的一种。

其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。

为此,矩阵式交一交变频应运而生。

由于矩阵式交一交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。

它能实现功率因数为I,输入电流为正弦且能四象限运行,系统的功率密度大。

该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。

其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。

具体方法是:一一控制定子磁链引入定子磁链观测器,实现无速度传感器方式;自动识别(ID )依靠精确的电机数学模型,对电机参数自动识别;算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;——实现Band 控制按磁链和转矩的Band—Band控制产生PWM 信号,对逆变器开关状态进行控制。

2ms),很高的速度精度(土2%,无PG反馈),高转矩精度(+ 3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%〜200%转矩。

变频器控制方式的合理选用3、变频器控制方式的合理选用控制方式是决定变频器使用性能的关键所在。

目前市场上低压通用变频器品牌很多,包括欧、美、日及国产的共约50多种。

选用变频器时不要认为档次越高越好,而要按负载的特性,以满足使用要求为准,以便做到量才使用、经济实惠。

表1中所列参数供选用时4、转矩控制型变频器的选型及相关问题•• (25)基于调速方便、节能、运行可靠的优点,变频调速器已逐渐替代传统的变极调速、电磁调速和调压调速方式。

在推出PWM磁通矢量控制的变频器数年后,1998年末又出现采用DTC控制技术的变频器。

ABB公司的ACS600系列是第一代采用DTC技术的变频器,它能够用开环方式对转速和转矩进行准确控制,而且动态和静态指标已优于PWM闭环控制指标。

直接转矩控制以测量电机电流和直流电压作为自适应电机模型的输入。

该模型每隔25卩s产生一组精确的转矩和磁通实际值,转矩比较器和磁通比较器将转矩和磁通的实际值与转矩和磁通的给定值进行比较,以确定最佳开关位置。

由此可以看出它是通过对转矩和磁通的测量,即刻调整逆变电路的开关状态,进而调整电机的转矩和磁通,以达到精确控制的目的。

4.1选型原则首先要根据机械对转速(最高、最低)和转矩(起动、连续及过载)的要求,确定机械要求的最大输入功率(即电机的额定功率最小值)。

有经验公式P=nT/9950(kW)式中:P——机械要求的输入功率(kW); n——机械转速(r/min); T——机械的最大转矩(N • m)。

然后,选择电机的极数和额定功率。

电机的极数决定了同步转速,要求电机的同步转速尽可能地覆盖整个调速范围,使连续负载容量高一些。

为了充分利用设备潜能,避免浪费,可允许电机短时超出同步转速,但必须小于电机允许的最大转速。

转矩取设备在起动、连续运行、过载或最高转速等状态下的最大转矩。

最后,根据变频器输出功率和额定电流稍大于电机的功率和额定电流的原则来确定变频器的参数与型号需要注意的是,变频器的额定容量及参数是针对一定的海拔高度和环境温度而标出的,一般指海拔1000m以下,温度在40 C或25 C以下。

若使用环境超出该规定,则在确定变频器参数、型号时要考虑到环境造成的降容因素。

4.2变频器的外部配置及应注意的问题1)选择合适的外部熔断器,以避免因内部短路对整流器件的损坏变频器的型号确定后,若变频器内部整流电路前没有保护硅器件的快速熔断器,变频器与电源之间应配置符合要求的熔断器和隔离开关,不能用空气断路器代替熔断器和隔离开关。

2)选择变频器的引入和引出电缆根据变频器的功率选择导线截面合适的三芯或四芯屏蔽动力电缆。

尤其是从变频器到电机之间的动力电缆一定要选用屏蔽结构的电缆,且要尽可能短,这样可降低电磁辐射和容性漏电流。

当电缆长度超过变频器所允许的输出电缆长度时,电缆的杂散电容将影响变频器的正常工作,为此要配置输出电抗器。

对于控制电缆,尤其是I/0信号电缆也要用屏蔽结构的。

对于变频器的外围元件与变频器之间的连接电缆其长度不得超过10m。

3)在输入侧装交流电抗器或EMC滤波器根据变频器安装场所的其它设备对电网品质的要求,若变频器工作时已影响到这些设备的正常运行,可在变频器输入侧装交流电抗器或EMC滤波器,抑制由功率器件通断引起的电磁干扰。

若与变频器连接的电网的变压器中性点不接地,则不能选用EMC滤波器。

当变频器用500V以上电压驱动电机时,需在输出侧配置du/dt滤波器,以抑制逆变输出电压尖峰和电压的变化,有利于保护电机,同时也降低了容性漏电流和电机电缆的高频辐射,以及电机的高频损耗和轴承电流。

相关文档
最新文档