污水处理厂自控系统方案(精.选)

合集下载

污水处理厂自控系统的设计方案

污水处理厂自控系统的设计方案

污水处理厂自控系统的设计方案一、引言随着城市化进程的加快,城市污水处理厂的建设和运营愈加重要。

污水处理厂的自控系统是保障污水处理过程高效运行的关键因素之一。

本文将针对污水处理厂自控系统的设计方案进行探讨,旨在优化污水处理厂运行效率,提高水资源利用率和环境保护水平。

二、污水处理厂自控系统的功能要求1. 监测与测量功能:自控系统应能够对污水处理厂的污水流量、水质、温度、压力等参数进行实时监测与测量。

2. 控制与调节功能:自控系统应根据监测到的数据,自动控制设备的运行,保证处理过程的稳定性和连续性。

3. 报警与故障诊断功能:自控系统应具备故障自诊断和报警功能,能够快速响应和处理设备故障,提高运行的可靠性。

4. 数据记录与分析功能:自控系统应有完善的数据记录和存储功能,能够将历史数据进行分析,提供科学依据与参考。

5. 远程监控与管理功能:自控系统应支持远程监控与管理,方便操作人员随时了解运行状态和做出相应调整。

三、污水处理厂自控系统的设计方案1. 系统整体架构设计根据污水处理厂的实际情况,自控系统的整体架构可包括监测与测量模块、控制与调节模块、报警与故障诊断模块、数据记录与分析模块以及远程监控与管理模块。

这些模块之间通过数据总线进行信息传输和交互,实现系统的自动化控制。

2. 监测与测量模块设计监测与测量模块是自控系统的基础,其设计应覆盖污水处理厂的各个环节。

对于污水流量的监测,可以采用超声波流量计或电磁流量计;对于水质参数的监测,可以选择多参数水质在线分析仪器;对于温度和压力的监测,可以采用温度传感器和压力传感器等。

3. 控制与调节模块设计控制与调节模块负责根据监测到的数据,自动控制处理设备的运行。

可采用PLC(可编程逻辑控制器)作为主控制器,通过控制终端对设备进行运行参数的调节和控制。

同时,可以集成PID控制算法,实现对处理过程的精确控制。

4. 报警与故障诊断模块设计报警与故障诊断模块负责监测设备的运行状态,一旦发现异常情况,及时发出报警信号,并提供故障诊断信息。

污水处理厂自控系统的设计方案

污水处理厂自控系统的设计方案

污水处理厂自控系统的设计方案污水处理厂自控系统的设计方案随着城市化进程的加速和工业的快速发展,污水处理成为城市管理和环境保护的重要一环。

污水处理厂的自控系统对于提高污水处理效率、降低能耗和减少环境污染具有重要意义。

本文将探讨污水处理厂自控系统的设计方案。

关键词:污水处理工艺、自控系统、传感器、仪表。

一、引言污水处理厂的自控系统是指通过自动化设备和技术,对污水处理全过程进行实时监测、控制和管理,以达到提高处理效率、保证出水水质、降低能耗和减少人力成本的目的。

随着科技的不断进步,越来越多的污水处理厂开始采用自控系统来实现高效、稳定和可持续的运营。

二、污水处理工艺污水处理厂的主要工艺包括:预处理、生物处理和后处理。

其中,生物处理是核心环节,包括曝气、沉淀和污泥处理等环节。

曝气池是生物处理的关键部分,通过向池中通入氧气,促进微生物的生长和有机物的分解。

沉淀池则是用于去除悬浮物和沉淀物,保证出水的清洁度。

污泥处理则是将沉淀池中的污泥进行浓缩、消化和脱水等处理,以减少污泥的体积和污染度。

三、自控系统自控系统是污水处理厂的核心组成部分,主要包括传感器、仪表和控制系统等。

传感器主要用于监测污水处理过程中的关键参数,如水位、流量、氧气浓度等。

仪表则用于测量物理参数,如温度、压力、物位等。

控制系统则通过对传感器和仪表的数据进行采集、处理和决策,实现对污水处理全过程的自动化控制。

四、设计方案1、传感器设计:针对曝气池的监测,可选用智能型溶解氧传感器,同时配置温度传感器和压力传感器,以实现对曝气池内污水质量的实时监测和管理。

针对沉淀池和污泥处理环节,可选用悬浮物浓度传感器和污泥浓度传感器等。

2、仪表设计:在温度控制方面,可选用智能型温度控制器,通过与传感器配合使用,实现对水温的精确控制。

在流量控制方面,可选用质量流量计,通过与控制系统配合使用,实现对进水流量的精确控制。

3、控制系统设计:针对污水处理厂的运营需求,可选用分布式控制系统(DCS),通过将各环节的传感器和仪表进行连接,实现对污水处理全过程的集中控制和监测。

污水处理厂自动控制系统及方案

污水处理厂自动控制系统及方案

污水处理厂自动控制系统及方案一、内容描述首先我们要明白的是这个自动控制系统的任务和目标,简单来说就是确保污水从进入处理厂到处理完成的过程能够自动化进行。

系统可以自动控制各种设备的运行,比如水泵、搅拌机、过滤设备等,确保它们按照预定的程序和时间进行工作。

这样一来不仅提高了处理效率,还大大节省了人力成本。

接下来这个系统是怎么工作的呢?它主要通过一系列传感器和控制器来监测和处理污水,传感器会实时监测污水的各种指标,比如温度、流量、PH值等。

一旦这些指标超出了预设的范围,控制器就会发出指令,调整相关设备的运行状态,确保污水能够得到妥善处理。

这个过程是完全自动化的,极大地提高了处理效率和质量。

1. 污水处理厂的重要性及其对环境的影响我们都知道,水是生命之源,没有水我们的生活将陷入困境。

但随着城市化进程的加快,污水处理成为一项重要的任务。

污水处理厂的存在,就像是城市的“清洁卫士”,它们的工作直接关系到我们的生活环境质量。

首先污水处理厂的重要性不言而喻,它承担着处理城市污水的重任,确保我们的生活和工业用水得到妥善处理,避免污水直接排放对环境和生态系统造成破坏。

想象一下如果没有这些处理厂,污水将直接流入河流、湖泊,甚至地下水,那将是一场环境灾难。

其次污水处理厂对环境的影响是深远的,经过处理的污水,其有害物质和污染物被有效去除,水质得到明显改善。

这不仅保护了我们的水资源,还避免了污水对环境的污染。

同时处理过的污水还可以回用于农业、工业等领域,实现水资源的循环利用。

这样一来不仅节约了水资源,还降低了对环境的压力。

污水处理厂在我们的生活中扮演着不可或缺的角色,它们默默地承担着清洁的使命,保护着我们的环境和水资源。

所以对于污水处理厂的自动控制系统及方案的研究和优化,就显得尤为重要和必要了。

2. 自动化控制在污水处理厂的应用背景随着城市的发展,污水处理成为一项至关重要的任务。

污水处理厂作为城市基础设施的重要组成部分,其运行效率直接关系到环境保护和居民生活质量。

污水处理厂自动控制系统及方案

污水处理厂自动控制系统及方案

污水处理厂自动控制系统及方案一、引言污水处理厂是为了处理城市或工业区域产生的污水而建设的设施。

为了提高处理效率和降低运营成本,自动控制系统在污水处理厂中起着至关重要的作用。

本文将详细介绍污水处理厂自动控制系统的相关内容,包括系统的组成、工作原理、方案设计和优势等。

二、系统组成污水处理厂自动控制系统主要由以下几个组成部分构成:1. 监测传感器:用于实时监测污水处理厂的各项指标,如水位、流量、浊度、温度等。

传感器可以通过物理或化学方法来检测这些指标,并将数据传输给控制器。

2. 控制器:控制器是系统的核心部分,根据传感器传输的数据,通过预设的算法和逻辑来控制污水处理过程中的各个环节。

控制器可以自动调节进水量、投加药剂的量、搅拌器的速度等,以达到最佳的处理效果。

3. 执行器:执行器根据控制器的指令,执行相应的动作。

例如,根据控制器的调节,执行器可以控制闸门的开启和关闭、泵的启停等。

4. 人机界面:人机界面是用户与系统交互的界面,通常是一个触摸屏或计算机界面。

通过人机界面,操作人员可以监视和控制整个系统的运行状态,并进行必要的调整和设置。

三、工作原理污水处理厂自动控制系统的工作原理如下:1. 监测:传感器实时监测污水处理厂的各项指标,如水位、流量、浊度、温度等。

监测数据通过信号传输给控制器。

2. 数据分析:控制器接收传感器传输的数据,并进行分析和处理。

根据预设的算法和逻辑,控制器判断当前污水处理过程中是否需要进行调节或控制。

3. 控制:根据数据分析的结果,控制器通过执行器控制相应的设备。

例如,根据水位监测数据,控制器可以调节闸门的开启和关闭,以控制进水量。

4. 人机交互:操作人员可以通过人机界面监视和控制整个系统的运行状态。

如果系统出现异常或需要调整,操作人员可以通过人机界面进行相应的操作。

四、方案设计设计一个高效可靠的污水处理厂自动控制系统需要考虑以下几个方面:1. 传感器选择:根据实际需求选择合适的传感器,确保能够准确监测污水处理过程中的各项指标。

污水处理厂自控系统的设计方案

污水处理厂自控系统的设计方案

污水处理厂自控系统的设计方案污水处理厂是处理城市生活污水的重要设施,在运行过程中需要进行空间、时间和物质的调控和协调,以达到高效、稳定地处理污水的目的。

为了实现这一目标,污水处理厂自控系统起到了至关重要的作用。

本文将从污水处理过程中的核心问题出发,介绍污水处理厂自控系统的设计方案。

一、污水处理厂自控系统的框架污水处理厂自控系统是污水处理工艺过程的重要组成部分,其框架一般包括数据采集、数据处理、数据传输、动作控制等模块。

其中,数据采集模块负责监测污水处理过程中的各项参数,包括污水水质、污泥品质、温度、压力等;数据处理模块负责对数据进行处理和分析,提供实时监测、历史数据查询等服务;数据传输模块负责将处理过后的数据传输到运行控制系统中;动作控制模块则负责根据运行控制系统的控制参数,对污水处理过程进行调控和协调。

二、污水处理厂自控系统的设计方案1. 数据采集模块数据采集模块是污水处理厂自控系统最核心的环节,数据的准确性和实时性直接关系到整个处理过程的稳定性和效果。

在数据采集模块的设计中,应当考虑到以下几方面:(1) 传感器的选择和安装:传感器的选择要考虑到水质、气体、电力等多种参数,同时要考虑到所处环境的特殊性。

传感器的安装位置和数量应该足够全面,能够建立完整的监测网络。

(2) 数据采集频率:在设计数据采集模块时,要考虑到信息传输的实时性和质量,尽可能降低数据传输时延。

(3) 数据校准,数据质量管理:传感器数据需要经过校准,保证其准确性和可靠性,同时应该建立实时监测的数据质量管理控制机制。

2. 数据处理模块数据处理模块是污水处理厂自控系统中的关键环节之一,主要负责将传感器提供的监测数据转化为可视化的数据分析和操作指令。

在数据处理模块设计中,应当考虑到以下几方面:(1) 数据转化:数据处理模块需要将传感器中采集到的原始数据进行算法计算,转化为污水处理过程中的各项参数,如COD、NH3-N、NO3-N等。

(2) 分析和报警:数据处理模块需要根据数据分析产生相应的运行情况报告和警报。

污水厂自控方案(含详细设备及PLC配置)【范本模板】

污水厂自控方案(含详细设备及PLC配置)【范本模板】

自动化控制系统目录1概述 (3)1。

1 设计原则 (3)1.2 自动化系统功能综述 (3)1。

3 系统配置 (5)1.3.1 网络结构 (5)1.3.2 具体配置(详细配置见附图一) (6)2控制流程图及各部分功能详述 (6)2。

1 生产过程监测系统(中控室) (6)2.2 生产过程的监测(现场)与自动控制系统 (9)2.2.1 1#PLC预处理控制站 (9)2.2.2 2#PLC BAF生物滤池处理子站 (14)2.2.3 3#PLC污泥脱水系统处理子站 (18)2.2.4 4#PLC中央控制室处理子站 (21)2。

3 生产管理计算机网络系统 (22)2.4 全厂CCTV电视监视系统 (23)3系统设计制作、调试及技术服务 (24)3.1环境条件 (24)3.2 控制箱柜设计 (25)3.3产品制造、运输、保管 (26)3。

4控制系统集成 (27)3.5检验及调试 (30)4质量保障能力 (32)4。

1设计、设备制造能力和条件 (32)4。

2售后服务体系及质量保障能力 (37)5自控系统施工组织及安装 (41)5。

1 项目进度计划安排 (41)5。

2 施工组织 (41)5。

3仪表安装及测试 (48)5。

4电缆 (52)5。

5 管线敷设及电缆桥架 (53)5.6电缆托架 (59)5。

7防雷和接地 (60)5.8 施工验收 (61)6自动化控制系统I/O表 (62)1 概述根据XXX城市总体规划,通过对污水量的预测,并结合城市发展前景,确定污水处理厂建设规模为:设计规模2万m3/d。

根据污水量和投资状况,我方在进行系统组态时,将全厂作为一个整体来考虑,并可方便地扩展或升级.系统选用符合国际标准的产品,其技术先进、结构开放,能够长期提供技术支持、备品备件有保障。

同时,还充分考虑经济适用性、节省投资和与远期工程的衔接,与远期公用的控制子站,控制点数一次考虑,远期独立的部分另设控制子站或远程控制单元.本污水厂自控系统采用“集中管理、分散控制、数据共享”的分层、分布式的拓扑结构,符合当前工业自动化监测系统发展趋势,能够实现全厂工艺参数及设备集中监测和生产过程的自动控制。

污水处理厂自动控制系统与方案

污水处理厂自动控制系统与方案

污水处理厂自动控制系统与方案一、引言污水处理厂是为了保护环境和人民身体健康而建设的重要设施。

为了提高处理效率和降低运营成本,自动控制系统在污水处理厂中起着关键作用。

本文将详细介绍污水处理厂自动控制系统的设计方案,包括系统组成、功能模块和实施步骤。

二、系统组成污水处理厂自动控制系统主要由以下几个组成部份构成:1. 传感器:用于监测污水处理过程中的关键参数,如流量、浊度、温度等。

2. 控制器:根据传感器提供的数据,控制污水处理设备的运行状态和参数设定。

3. 执行器:根据控制器的指令,控制污水处理设备的启停、调节和维护等操作。

4. 数据采集系统:负责将传感器采集到的数据传输给控制器进行处理和分析。

5. 人机界面:提供操作界面和数据展示功能,方便操作人员进行监控和管理。

三、功能模块污水处理厂自动控制系统的功能模块主要包括以下几个方面:1. 进水监测与控制:通过传感器监测进水的流量和水质,根据设定的参数进行自动调节,确保进水达到处理要求。

2. 污水处理过程控制:根据处理工艺要求,通过控制器对污水处理设备进行自动调节,如调节曝气时间、搅拌速度等,以达到最佳处理效果。

3. 水质监测与调节:通过传感器监测处理后的出水水质,根据设定的水质标准进行自动调节,以保证出水水质符合排放标准。

4. 故障报警与维护:系统能够监测设备运行状态,一旦发现异常情况,及时报警并提供相应的维护建议,以保证设备正常运行。

5. 数据记录与分析:系统能够记录处理过程中的关键参数,并对数据进行分析,为运营管理提供科学依据。

四、实施步骤1. 系统需求分析:根据污水处理厂的规模和处理要求,确定自动控制系统的功能和性能需求。

2. 设计方案制定:根据需求分析结果,制定自动控制系统的硬件和软件设计方案,包括传感器选型、控制器配置、数据采集系统设计等。

3. 系统集成与调试:按照设计方案,进行系统硬件的安装和软件的编程,进行系统集成和调试,确保系统各功能模块正常运行。

污水处理厂自控系统的设计方案

污水处理厂自控系统的设计方案

污水处理厂自控系统的设计方案摘要:本文介绍了污水处理厂自控系统的设计方案。

自控系统是污水处理厂中至关重要的一部分,能够有效监测和控制污水处理过程,提高处理效率和水质的稳定性。

设计方案包括了硬件设备的选择与布置、软件系统的开发与配置、以及系统的运行和维护等内容,旨在提供一个完善、可靠的自控系统来优化污水处理厂的运行。

1. 引言污水处理厂的自控系统是为了提高处理过程的效率和水质的稳定性而设计的。

它能够实时监测各个处理环节的运行情况,并通过自动化控制技术来调节和控制处理过程,使得整个污水处理过程更加稳定和高效。

2. 设计目标设计一个可靠、高效的自控系统,实现以下目标:2.1 提高处理效率:监测和控制各个处理环节,优化操作参数,提高污水处理的效率。

2.2 确保水质稳定:实时监测处理过程中的重要参数,通过自动控制手段来调节处理过程,保证出水水质的稳定性。

2.3 减少人工操作:自动化控制减少了人工干预,降低了错误率,并减少了人力成本。

2.4 提高系统的可靠性:采用可靠的硬件设备和软件系统,保证自控系统的稳定运行。

3. 硬件设备选择与布置3.1 控制器:选择可编程控制器(PLC)作为自控系统的核心控制设备,PLC具有强大的处理能力和稳定性,并可根据需要进行程序编写和修改。

3.2 传感器:采用适合的传感器来实时监测处理过程中的水质、液位、温度、压力等参数,并将数据传输给PLC进行处理和控制。

3.3 执行器:根据系统的需要选择合适的执行器,如电动阀门、泵等,用于自动调节和控制处理过程。

3.4 电气设备:选择合适的电气设备,如安全开关、断路器等,确保系统的电气安全与可靠性。

3.5 仪表仪器:根据实际需要选择合适的仪表仪器,如流量计、浊度计等,用于实时监测处理过程中的参数。

4. 软件系统开发与配置4.1 PLC程序:根据处理过程的需求,编写PLC的控制程序,实现自动调节和控制。

4.2 人机界面(HMI):开发并配置HMI系统,实现与PLC的通信和数据交互,提供界面给操作人员进行监控和操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天水工业园区污水处理厂自控系统技术方案北京华联电子科技发展有限公司2014年9月29天水工业园区污水厂自控系统方案及相关技术说明一、系统概述:天水工业园区污水处理厂的自控系统由PLC站与监控操作站控制管理系统组成的自控系统和仪表检测系统两大部分组成。

前者遵循“集中管理、分散控制、资源共享”的原则;后者遵循“工艺必需、先进实用、维护简便”的原则。

为了满足武威工业园区污水处理厂工程实现上述要求,必须保证控制系统的先进性和可靠性,才能保证本厂设备的安全、正常、可靠运行。

本方案本着质量可靠、技术先进、性价比高的原则,结合我公司在实施其它类似项目中的设计、实施和组织的成功经验,充分考虑技术进步和系统的扩展,采用分层分布式控制技术,发挥智能控制单元的优势,降低并分散系统的故障率,保证系统较高的可靠性、经济性和扩展性,从而实现对各现场控制设备的操作、控制、监视和数据通讯。

1.1 系统基本要求工控通讯网络为光纤冗余环型工业以太网,通讯波特率≥100Mbps,系统自适应恢复时间<300ms,通讯距离(无中继器)≥1Km,网络介质要求使用可直埋的光缆, 在出现故障时, 可在线增加或删除任意一个节点, 都不会影响到其他设备的运行和通讯。

本系统采用先进的监控操作站控制系统,即系统采用全开放式、关系型、面向对象系统结构,支持不同计算厂家的硬件在同一网络中运行,并支持实时多任务,多用户的操作系统。

主要用于污水厂的生产控制、运行操作、监视管理。

控制系统不仅有可靠的硬件设备,还应有功能强大,运行可靠,界面友好的系统软件、应用软件、编程软件和控制软件。

1.2系统可靠性的要求控制系统在严格的工业环境下能够长期、稳定地运行。

系统组件的设计符合真正的工业等级,满足国内、国际的安全标准。

并且易配置、易接线、易维护、隔离性好,结构坚固,抗腐蚀,适应较宽的温度变化范围。

系统具备良好的电磁兼容性,支持I/O模板在系统运行过程中进行带电热插拔。

能够承受工业环境的严格要求。

1.3系统的先进性系统的设计以实现“现场无人职守,分站少人值班”为目的。

设备装置的启、停及联动运转均可由中央控制室远程操纵与调度。

1.4系统的故障诊断控制系统有一套完整的自诊断功能,可以在运行中自动地诊断出系统的任何一个部件是否出现故障,并且在监控软件中及时、准确地反映出故障状态、故障时间、故障地点、及相关信息。

在系统发生故障后,I/O的状态应返回到系统根据工艺要求预设置的状态上。

1.5系统扩展性和兼容性为了保证武威工业园区污水处理厂扩建或改造时满足工厂的控制要求,控制系统具有较强扩展能力。

控制系统主要用于污水处理厂的生产控制、运行操作、监视管理。

不仅有可靠的硬件设备,还有功能强大,运行可靠,界面友好的系统软件、应用软件、编程软件和控制软件。

监控系统的数据库结构为面向对象的,实时式,关系型数据库。

操作系统和监控软件具有冗余和容错及灾难性恢复等功能。

二、系统结构及特点:2.1控制系统结构天水工业园区污水处理厂自控系统采用分层分布式结构网络控制方式。

该控制系统共分为主控级(中控室)和现地控制层(分控站)。

实现相应控制层设备的监视、操作、控制和网络通讯连接。

网络结构图如下:2.2 中控室拟设于综合楼内。

中央控制室的监控管理操作站系统完成全厂的自动控制。

包括两套互为热备的监控工作站、印机、UPS电源。

中央控制系统通过工业以太网,采用光缆与各现场控制PLC站连接。

这两套工作站为热冗余配备,可以分别侧重监测或组态功能,故障时互为备用,具有灵活的运行方式。

为观显示全厂工艺过程全貌,方便管理,在中控制室设立了电动投影屏幕和投影仪,显示全厂工艺流程图和主要参数及设备运行状态。

通过大容量的UPS 为中央控制室的所有设备提供了高质量的电源。

2.3分控站每个分控站配置一套PLC控制柜。

柜内包括可编程序控制器、操作员界面HMI、24VDC电源装置、冗余光纤交换机、电源防雷过电压保护装置、小型断路器、接线端子、小型继电器,安装连接缆线和附件等。

根据污水厂工艺特点,构筑物的布置和现场控制的分布情况,设置四个PLC 现场子站,PLC现场子站选用可编程序控制器(PLC),PLC为模块化结构,硬件配置较灵活,易于扩展,软件编程方便。

并且PLC子站与相应的MCC置于同一地点,节省其间电缆。

当中控室监控工作站故障退出运行或通道故障使分控站控制单元和主控级监控工作站通讯中断时,各现地控制单元能独立运行,进行控制和监视,提高运行可靠性。

1#现场控制站位于污泥浓缩脱水机房内。

负责监控:粗格栅及进水泵房、细格栅及曝气沉砂池、撇水池、污泥浓缩脱水机房。

控制对象为:1#、2#回转式细格栅除污机;无轴螺旋压榨机;桁车;吸砂机;中心传动浓缩机10WF1、10WF2、10WF3轴流风机。

IO点数统计:数字量输入DI:83;数字量输出DO:34;模拟量输入AI:17;模拟量输出AO:1。

2#现场控制站位于鼓风机房及变配电间内。

负责监控:加药间、鼓风机房和变配电间。

控制对象为:7GB2、7GB3、7GB5、7GB6鼓风机、7GV2、7GV3、7GV5、7GV6电动蝶阀;7ZF11、7ZF12、7ZF13、7ZF14、7ZF21、7ZF22、7ZF23、7ZF24、7ZF31、7ZF32、7ZF33、7ZF34轴流风机; 8WF1、8WF2、8WF3轴流风机; 2GV电动调节阀。

IO点数统计:数字量输入DI:113;数字量输出DO:40;模拟量输入AI:8;模拟量输出AO:6。

3#现场控制站位出水泵房内。

负责监控:消毒池、清水池、出水泵房。

控制对象为:1#、2#、3#、4#离心泵;6FM1、6FM2、6FM3轴流风机;12XHB1、12XHB2循环泵;12BJB1、12BJB2补水泵。

IO点数统计:数字量输入DI:26;数字量输出DO:9;模拟量输入AI:10;模拟量输出AO:0。

4#现场控制站位于A2/O+MBR池附属建筑内。

负责监控:A2/O+MBR池。

(此站控制系统供应商已集成,具备以太网通讯接口,配置触摸屏和不间断电源。

)2.4 控制系统特点2.4.1由于控制设备的分布特点及控制的独立性,采用现地元件层实现自动化仪表的数据采集,采用现地控制单元实现了相对独立设备的本体控制;从而大大减轻了操作员工作站监控操作站的负荷,有利于各级控制设备监控功能的合理分配和利用;2.4.2由于各现地控制单元相对独立,并且能够脱网独立运行,特别是在集控层总线网络瘫痪时,能够保证现地单元可靠地运行,大大提高了控制系统的可靠性;2.4.3采用分层分布式控制方式,使得总线网络的通讯负荷减少、通讯误码率大大降低,解决了数据通讯的瓶径问题,同时使网络结构更清晰、检修维护更方便;采用分层分布式控制方式,该控制系统具有更好的扩展性,若需对系统扩展,只要将接入相应的网络层中即可,不会影响到集控层网络的运行和操作。

三、系统控制方式及功能描述:3.1 系统控制方式:现场手动模式:设备的现场控制箱或MCC 控制柜上的“就地/远程”开关选择“就地”方式时,通过现场控制箱或MCC 控制柜上的按钮实现对设备的启/停、开/关操作。

遥控模式:即远程手动控制方式。

现场控制箱或MCC 控制柜上的“就地/远程”开关选择“远程”方式时,操作人员通过操作面板或中控系统操作站的监控画面用鼠标器或键盘选择“遥控”方式并对设备进行启/停、开/关操作。

自动模式:现场控制箱或MCC 控制柜上的“就地/远程”开关选择“远程”方式,且现场控制站的“自动/遥控”设定为“自动”方式时,设备的运行完全由各PLC 根据污水处理厂的工况及生产要求来完成对设备的运行或开/关控制,而不需要人工干预。

控制方式设计为:就地手动控制优先,在此基础上,设置远程遥控和自动控制。

控制级别由高到低为:现场手动控制、遥控控制、自动控制。

3.2 主控级设备:天水工业园区污水处理厂自控系统主控工作作站接收全厂设备的运行状况,同时也对现地控制设备发送各种控制命令。

主控级工作站由两套互为热备的台湾研华公司生产的IPC-610H型工控机作为主要控制设备,采用Microsoft公司的Windows XP 操作系统和德国西门子的自动化监控组态软件WINCC开发版工业组态软件,完成数据的采集、设备的控制和监视以及与各分控站的通讯功能等。

主控级设备功能:3.2.1 数据采集实时采集各个终端站传送的各类数据和信号,通过在彩色监视器(TFT)显示总工艺流程图,分段工艺流程图,供电系统图,工艺参数,电气参数,电气设备运行状态等。

●操作站以"人—机"对话方式指导操作,自动状态下,可用键盘或鼠标器设定工艺参数、控制电气设备。

3.2.2 数据处理●对来自各现地控制单元的实时数据和相关设备状态信息进行数据校验检测;●实现系统的故障检测和诊断功能,如总线网络中途断线、站的失电、站地址的冲突、模块配置不对应等常见故障;●汇总各现地控制单元的所有上送数据和状态信息。

●数据查询功能:对系统中存储的相关设备数据能够按照时间、时段、设备、报警等各种方式进行查询;●数据检测功能:对现地控制单元上送数据进行实时性、可靠性等验证,保证数据的正确性;●根据采集的实时数据生成相应的各类生产报表、形成历史数据记录、趋势曲线记录等;●完成语音报警等功能;3.2.3 控制和监视●实现全厂各个现地控制单元的实时监视;●通过人机终端,实时显示各现地控制单元的状态信息和实时控制。

3.2.4 数据通讯通过光纤总线网络实现主控级计算机与分控站PLC和智能通讯装置的实时数据通讯;3.2.5 画面显示●根据系统采集的各分控站控制单元设备的实时数据和状态信息,实时刷新系统的相关画面;●实时显示系统的总工艺流程图,分段工艺流程图,供电系统图,工艺参数,电气参数,电气设备运行状态等;●系统画面中设置导航画面,通过导航画面可方便实现画面的快速切换;●在每个画面设置画面帮助,可为操作员提供快速操作帮助;3.2.6 存储和打印实时记录和存储系统中各分控控制单元中相关设备的实时数据,并形成历史数据文件。

实时存储和打印的数据主要有:●各类操作记录;●各类事故和故障记录;●各类报表记录等。

3.2.7 事故、故障报警●系统可实现系统中各分控控制单元所有设备的事故、故障等的报警、记录以及相应的报警画面弹出显示、语音报警等功能,并且能够按照报警发生的时间、次序、设备名称、事故和故障名称等等进行查询等。

3.2.8 保护功能系统具有多种安全设备、操作员操作权限设置、操作命令确认、操作口令确认、设备联锁等功能,可实现系统的安全、可靠、正常运行。

●系统设置有操作员操作权限等级设置,可根据操作要求,进行相应权限的登录操作;●操作员在操作过程中设置有操作口令和操作命令确认,有效地避免了设备的误动;3.2.9 自诊断功能系统能够提供完善的硬件和软件自诊断功能,主要包括:●计算机硬件设备及接口设备的自检;●系统通讯网络连接的自检;●系统相关设备的自检、故障提示等功能。

相关文档
最新文档