电路综合设计实验_设计实验2_实验报告
组合逻辑电路的设计实验报告

竭诚为您提供优质文档/双击可除组合逻辑电路的设计实验报告篇一:数电实验报告实验二组合逻辑电路的设计实验二组合逻辑电路的设计一、实验目的1.掌握组合逻辑电路的设计方法及功能测试方法。
2.熟悉组合电路的特点。
二、实验仪器及材料a)TDs-4数电实验箱、双踪示波器、数字万用表。
b)参考元件:74Ls86、74Ls00。
三、预习要求及思考题1.预习要求:1)所用中规模集成组件的功能、外部引线排列及使用方法。
2)组合逻辑电路的功能特点和结构特点.3)中规模集成组件一般分析及设计方法.4)用multisim软件对实验进行仿真并分析实验是否成功。
2.思考题在进行组合逻辑电路设计时,什么是最佳设计方案?四、实验原理1.本实验所用到的集成电路的引脚功能图见附录2.用集成电路进行组合逻辑电路设计的一般步骤是:1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表;2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式;3)画出逻辑图;4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。
五、实验内容1.用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)设计一个一位全加器。
1)列出真值表,如下表2-1。
其中Ai、bi、ci分别为一个加数、另一个加数、低位向本位的进位;si、ci+1分别为本位和、本位向高位的进位。
2)由表2-1全加器真值表写出函数表达式。
3)将上面两逻辑表达式转换为能用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)实现的表达式。
4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。
按图选择需要的集成块及门电路连线,将Ai、bi、ci接逻辑开关,输出si、ci+1接发光二极管。
改变输入信号的状态验证真值表。
2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(b),一枪打兔子(c)。
实验2 电源等效电路综合实验

实验二 电源等效电路综合实验一、实验目的1、掌握建立电源模型、电源外特性的测试方法。
2、研究电源模型等效变换的条件,加深对电压源和电流源特性的理解。
3、验证戴维南定理、诺顿定理,掌握测量有源二端网络等效参数的一般方法。
4、理解阻抗匹配,掌握最大功率传输的条件。
5、掌握根据电源外特性设计实际电源模型的方法。
二、实验原理1、实际电压源和实际电流源的等效互换理想电压源具有端电压保持恒定不变,而输出电流的大小由负载决定的特性。
实验中使用的恒压源在规定的电流范围内,具有很小的内阻,可以将它视为一个电压源。
理想电流源具有输出电流保持恒定不变,而端电压的大小由负载决定的特性。
实验中使用的恒流源在规定的电压范围内,具有极大的内阻,可以将它视为一个电流源。
实际电压源可以用一个内阻R S 和电压源U S 串联表示,其端电压U 随输出电流I 增大而降低。
在实验中,可以用一个小阻值的电阻与恒压源相串联来模拟一个实际电压源。
实际电流源是用一个内阻R S 和电流源I S 并联表示,其输出电流I 随端电压U 增大而减小。
在实验中,可以用一个大阻值的电阻与恒流源相并联来模拟一个实际电流源。
一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。
若视为电压源,则可用一个电压源U s 与一个电阻R S 相串联表示;若视为电流源,则可用一个电流源I S 与一个电阻R S 相并联来表示。
若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。
实际电压源与实际电流源等效变换的条件为: (1)取实际电压源与实际电流源的内阻均为R S ;(2)已知实际电压源的参数为U s 和R S ,则实际电流源的参数为SSS R U I =和R S , 若已知实际电流源的参数为I s 和R S ,则实际电压源的参数为S S S R I U =和R S 。
2、戴维南定理和诺顿定理戴维南定理指出:任何一个有源二端网络,总可以用一个电压源U S 和一个电阻R S 串联组成的实际电压源来代替,其中:电压源U S 等于这个有源二端网络的开路电压U OC , 内阻R S 等于该网络中所有独立电源均置零(电压源短接,电流源开路)后的等效电阻R O 。
数字电子电路》综合性设计性实验

加强实验操作训练,提高学生的动 手能力和实验效率。
相关技术发展与展望
集成电路技术
随着集成电路技术的发展,数字电子电路的设计 和实现将更加高效和可靠。
人工智能技术
人工智能技术在数字电子电路中的应用将进一步 拓展,为电路设计带来更多可能性。
5G通信技术
5G通信技术的发展将促进数字电子电路在通信领 域的应用和发展。
实验总结与反思
总结实验成果
对整个实验过程进行总结,概括实验的主要成果和收获。
反思与展望
对实验中存在的问题和不足进行反思,并提出改进措施和展望,为后续实验提供借鉴和指导。
06
实验扩展与提高
实验优化建议
增加实验难度
通过增加实验的复杂性和难度, 提高学生的实验技能和解决问题
的能力。
引入新技术
将最新的数字电子技术引入实验中, 使学生能够掌握最新的知识和技术。
确定设计方案后,绘制电路原 理图和PCB版图。
根据电路图,搭建实验电路并 完成硬件调试。
进行软件编程和调试,实现所 需功能。
进行系统测试和性能评估,完 成实验报告。
04
实验操作与调试
实验操作流程
电路设计
根据实验要求,设计合适的电 路图,确保电路功能符合要求。
程序编写
根据电路功能,编写合适的程 序,实现电路的控制和数据处 理。
数据处理与分析
对实验数据进行处理和分析,包 括计算误差、对比理论值与实际 值等,以评估实验结果的准确性 和可靠性。
实验结果对比与讨论
对比不同方案结果
将采用不同方案得到的实验结果进行 对比,分析各种方案的优缺点,为后 续实验提供参考。
结果讨论
对实验结果进行深入讨论,探讨可能 影响实验结果的因素,以及如何改进 实验方法和技巧。
实验二 组合逻辑电路设计

实验五组合逻辑电路设计(此项实验为设计性实验)设计性综合实验要求:1.根据设计任务要求,从单元电路的设计开始选择设计方案。
根据设计要求和已知条件,计算出元件参数,并选择合适的元件,最后画出总电路图。
2.通过安装调试,实现设计中要求的全部功能。
3.写出完整的设计性综合实验报告,包括调试中出现异常现象的分析和讨论。
一、实验目的1. 掌握组合逻辑电路的设计方法。
2. 能够熟练的、合理的选用集成电路器件。
3.提高电路布局、布线及检查和排除故障的能力。
4.培养书写设计性综合实验报告的能力。
二、设计任务与要求1.设计一个一位半加器和全加器。
2.设计一个对两个两位无符号的二进制数M、N比较大小的电路(只要求设计出M>N的电路)。
3.对所设计电路进行连接、验证,并写出结果。
三、实验原理及参考电路组合逻辑电路是最常见的逻辑电路,其特点是在任何时刻电路的输出信号仅取决于该时刻的输入信号,而与信号作用前电路原来所处的状态无关。
组合逻辑电路设计的一般步骤如图5-1所示。
图5-1 组合逻辑电路设计流程图根据设计任务的要求建立输入、输出变量,并列出真值表,然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式,并按实际选用逻辑门的类型修改逻辑表达式。
根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。
最后用实验来验证设计的正确性。
- 19 -1.组合逻辑电路的设计过程用“与非”门设计一个表决电路。
当四个输入端中有三个或四个为“1”时,输出端才为“1”。
设计步骤:a.根据题意列出真值表如表5-1所示,再填入卡诺图表5-2中。
b.由卡诺图得出逻辑表达式,并简化成“与非”的形式Y=ABC+BCD+ACD+ABD=)′)′()′()′()′((ABCACDBCDABCc.根据逻辑表达式画出用“与非门”构成的逻辑电路如图5-2所示。
表5-1表5-2d.用实验验证逻辑功能在实验装置适当位置选定三个14P插座,按照集成块定位标记插好所选集成块。
实验2组合逻辑电路设计(预习报告)

实验二组合逻辑电路的设计
一、实验目的
略
二、实验器件数据
Figure 1 74HC02N(或非)
Figure 2 74HC00(n),与非门74LS00
Figure 3 74HC86N(异或)74LS86
三、 实验原理
1. 二进制加法运算电路
二进制加法电路可以由一位全加器组合而成; 全加器逻辑表达式为:111()=('()')'n n n n n
n n n n n n n n n n D A B C C A B C A B A B C A B ---=⊕⊕⎧
⎨
=+⊕⊕⎩g g ()'
一位全加器电路实现如下:
图中,用74LS00D 代替74HC86N
如果要实现多为二进制的加法运算,可将多个全加器级联。
例如将两个全加器级联, 并且在最后输出接一个带解码器的数字显示管,就构成了一个两位二进制数相加的加法器,
如
下图
2.二进制减法运算电路
为了实现减法电路,引入了补码系统,求补码只需让输入取反并使最后一位来自低位进位置高电平,其中,取反可以通过与高电平做异或运算来实现,电路如下:
注意:此时图中电子管输出应该为减法答案的补码。
下面,将补码答案转换为原码。
有如下电路:
注意,通过对图中低电平/高电平的转换(低位的进位信息和补码的取反信息),该减法电路实际上可以变化为加法电路。
可以加入控制信号K,使其为1时电路执行减法,否则执行加法,电路如下:
四、实验内容
1.基本要求:
原码输出结果,并显示正负标志2.提高要求:略。
实验二 组合逻辑电路分析与设计实验报告

实验二组合逻辑电路分析与设计实验报告
姓名:李凌峰班级:13级电子1班学号:13348060
一、实验数据与相应原理图:
1、复习组合逻辑电路的分析方法,对实验中所选的组合电路写出函数式。
设计一个代码转换电路,输入为4位8421码,输出为4位循环码。
对应的各位码如下表所示。
2、实验逻辑函数式:
实际实验逻辑表达式(用一异或门代替与或门):
3、实际实验逻辑图:
4、实际实验操作图
二、实验操作记录
1,检测转换电路:
2,实测波形图
10hz方波:
G3 G2 G1 G0波形:
B1 B2 B3 B4波形图:
由以上波形图张图绘制出总的时序图如下:
三、心得与体会
1、这次实验所用器材用了异或门74LS86和异步计数器74LS197.分析组合逻辑电路
时,要先由给定的组合逻辑电路写函数式,然后对函数式进行化简或变换,再根据最简式列真值表,最后确认逻辑功能。
设计组合逻辑电路时,则应先根据给定事件的因果关系列出真值表,然后由真值表写函数式,再对函数式进行化简或变换,最后画出逻辑图,并测试逻辑功能。
2、对示波器的操作仍不够熟悉,在将示波器连接到实验箱的测试端时总是忘了要接地,
致使示波器显示信号不正常。
3、在比较波形时,借用同学的接口同时加载4个波形容易做出总的时序图。
电路设计实验报告

电路设计实验报告实验目的,通过电路设计实验,掌握电路设计的基本原理和方法,提高对电路设计的理解和实践能力。
一、实验内容。
本次实验主要包括以下内容:1. 电路设计原理的学习和理解;2. 电路设计实验的具体步骤和方法;3. 电路设计实验中可能遇到的问题及解决方案。
二、实验步骤。
1. 确定电路设计的基本要求和参数;2. 进行电路设计的初步规划和布局;3. 选择合适的电子元器件,并进行电路连接;4. 调试和测试电路的性能,发现问题并及时解决;5. 对电路设计实验进行总结和分析。
三、实验结果。
通过本次电路设计实验,我们成功设计并搭建了一个简单的电路,实现了预期的功能。
在实验过程中,我们遇到了一些问题,但通过分析和调试,最终都得到了解决。
这次实验不仅加深了我们对电路设计原理的理解,也提高了我们的动手能力和解决问题的能力。
四、实验总结。
电路设计实验是电子专业学生必不可少的一门实践课程,通过实验,我们不仅能够将课堂上学到的理论知识应用到实际中,还能够培养我们的动手能力和解决问题的能力。
在今后的学习和工作中,我们将更加注重实践,不断提高自己的专业能力。
五、实验心得。
通过本次电路设计实验,我深刻体会到了实践的重要性。
只有将理论知识与实际操作相结合,才能更好地理解和掌握所学内容。
在今后的学习和工作中,我会更加注重实践,不断提高自己的动手能力和解决问题的能力,为将来的发展打下坚实的基础。
六、参考文献。
[1] 《电路设计与分析》,XXX,XX出版社,200X年。
[2] 《电子电路设计基础》,XXX,XX出版社,200X年。
七、致谢。
在本次实验中,感谢指导老师的悉心指导和同学们的合作,让我收获颇丰。
同时也感谢家人的支持和鼓励,让我能够安心学习和实践。
以上就是本次电路设计实验的实验报告,谢谢大家的阅读。
组合逻辑电路设计实验报告

组合逻辑电路设计实验报告实验名称: 组合逻辑电路设计实验报告摘要:本实验旨在通过设计和实现不同的组合逻辑电路,加深对数字电路和逻辑门的理解,并通过实际操作提升实验者的动手能力和解决问题的能力。
实验中,我们掌握了组合逻辑电路的基本原理,并成功设计了多个功能不同的组合逻辑电路。
引言:组合逻辑电路是由多个逻辑门组成的电路,其输出只取决于当前的输入。
在数字电路中,组合逻辑电路是最基本的构建模块,常用于实现各种逻辑功能,如加法器、减法器、多路选择器等。
因此,掌握组合逻辑电路的设计和实现技巧对于数字电路的学习至关重要。
实验过程:1. 实验准备:在开始实验前,我们先了解了基本的逻辑门,如与门、或门、非门等,并根据实验要求准备所需的元件和工具。
2. 设计逻辑电路:根据实验要求,我们开始设计所需的组合逻辑电路。
首先,我们根据真值表确定逻辑功能,并使用布尔代数化简或卡诺图法简化逻辑表达式。
然后,我们根据简化后的逻辑表达式,逐步设计逻辑电路的电路图。
3. 仿真验证:在进行实际的电路搭建之前,我们使用仿真软件对所设计的电路进行验证。
通过输入各种组合的逻辑输入,观察输出是否符合预期的逻辑功能。
4. 实际搭建:在通过仿真验证后,我们开始使用实际的电子元件搭建电路。
根据电路图,按照正确的连接方式依次连接各个元件,并进行适当的调试和检查,确保电路的正常工作。
5. 测试与分析:完成电路搭建后,我们对电路进行了进一步的测试。
通过输入各种组合的逻辑输入,观察输出是否符合预期的逻辑功能。
同时,我们还对电路的响应时间、功耗等性能进行了测试和分析。
6. 总结与改进:根据实验得到的结果,我们对实验进行了总结和改进。
总结了实验中遇到的问题和解决方法,并提出了对电路性能和设计方法的改进建议。
结论:通过本次实验,我们深入了解了组合逻辑电路的设计和实现过程。
通过实际搭建和测试,我们成功实现了多个功能不同的组合逻辑电路,并对电路的性能进行了评估。
实验过程中,我们不仅提升了动手能力和解决问题的能力,也加深了对数字电路和逻辑门的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据傅立叶变换定理,任何满足Dirichlet条件的周期信号都可以分解为一系列正弦或者余弦信号之和。为了不失一般性,下面以正弦信号的产生为例来说明DDS的基本原理。
我们知道,正、余弦信号用可以用复数形式表示为:
式(2-1)
式(2-2)
上图描述了矢量 绕原点沿正方向(逆时针)旋转时,其模值 与 轴夹角 (相位角)及 在 轴上的投影 三者之间的关系。当 连续地绕原点旋转, 将取 之间的任意值, 将以 为模取 之间的任意值。如果将 看作我们欲重构正弦信号的幅度值,则相位角 和 的关系为: 。现将相位数字化(采样、量化),将 量化成 等份,则相位量化的最小间隔为 ,这样造成的结果是重构信号的幅度值 也相应离散化:
本次实验选用的FPGA是Altera公司Cyclone系列FPGA芯片。CycloneV系列器件延续了前几代Cyclone系列器件的成功,提供针对低成本应用的用户定制FPGA特性,支持常见的各种外部存储器接口和I/O协议,并且含有丰富的存储器和嵌入式乘法器,这些内嵌的存储器使我们在设计硬件电路时省去了外部存储器,节省了资源,而其硬件乘法器资源则非常适合用来实现高速DDS调制器。另外,CycloneV系列器件使用极低的1.2V内核电压,大大降低了芯片的功耗。在本文的设计中,FPGA对内主要实现DDS的功能,对外主要为外围器件提供控制信号和数据总线接口。
由于受到字长的限制,相位累加器累加到一定值后,就会产生一次累加溢出,这样波形存储器的地址就会循环一次,输出波形循环一周。相位累加器的溢出频率即为合成信号的频率。可见,频率控制字K越大,相位累加器产生溢出的速度越快,输出频率也就越高。故改变频率字(即相位增量),就可以改变相位累加器的溢出时间,在参考频率不变的条件下就可以改变输出信号的频率。
图1相位增量为 时相位幅度的映射关系
图2相位增量为 时相位幅度的映射关系
对比图1和图2,我们很容易发现,当相位增量减少为原来的二分之一时,输出信号的采样值密集度就成了原来的两倍,那么 旋转一周的时间自然也增大为原来的两倍,即 。周期 与频率 成倒数关系,由此可得两种情况下输出重构信号的频率关系: ,如图3所示。
式(2-3)
由式(2-3)可以看出, 只能取与相位 对应的幅度值。
如上图所示,设此时 不是绕原点连续旋转,而是在系统时钟 的控制下以相位增量 进行阶跃式旋转(上图中 ),很容易可以看出来,在相位周期变化的同时,输出信号的幅度 也在周期重复着,因此,重构信号的周期在幅度中也就体现出来了。
为了进一步探讨相位增量对输出信号频率的影响,我们分别以相位增量为 和 重构信号幅度,分别如下图1和2所示。在此,我们假设相位累加是在相同的系统时钟 的进行的,即对于不同的相位增量, 是固定不变的,这是理解相位增量和重构信号频率关系的基础。
此次实验我们采用DE0-CV开发板,实现函数信号发生器,根据按键选择生产正弦波信号、方波信号、三角信号。频率范围为10KHz~300KHz,频率稳定度≤ ,频率最小不进10kHz。提供DAC0832,LM358。
二、正文
1.方案论证
基于实验要求,我们选择了老师提供的数模转换芯片DAC0832,运算放大器LM358以及DE0-CV开发板来实现函数信号发生器。
(3)DDS理论上最大输出频率不会超过系统时钟频率 的二分之一,但在实际应用中,由于DDS系统中的低通滤波器非理想特性,由通带到阻带之间存在着一个过渡带,工程中DDS最高输出频率只取到 左右。
④DDS技术特点
(1)DDS技术可以用于产生任意波形
基于前面对DDS系统的基本结构分析,很容易理解,只要改变存储在波形存储器中的波形数据,就可以改变输出波形。所以对于任何周期性波形,只要满足采样定理,都可以利用DDS技术来实现。
DDS电路一般由参考时钟、相位累加器、波形存储器、D/A转换器(DAC)和低通滤波器(LPF)组成。其结构框图如下图所示:
其中, 为参考时钟频率, 为频率控制字, 为相位累加器位数, 为波形存储器位数, 为波形存储器的数据位字长和D/A转换器位数。
DDS系统中的参考时钟通常由一个高稳定度的晶体振荡器来产生,用来作为整个系统各个组成部分的同步时钟。频率控制字(Frequency Control Word,FCW)实际上是二进制编码的相位增量值,它作为相位累加器的输入累加值。相位累加器由加法器和寄存器级联构成,它将寄存器的输出反馈到加法器的输入端实现累加的功能。在每一个时钟脉冲,相位累加器把频率字累加一次,累加器的输出相应增加一个步长的相位增量,由此可以看出,相位累加器的输出数据实质上是以为步长的线性递增序列(在相位累加器产生溢出以前),它反映了合成信号的相位信息。相位累加器的输出与波形存储器的地址线相连,相当于对波形存储器进行查表,这样就可以把存储在波形存储器中的信号抽样值(二进制编码值)查出。在系统时钟脉冲的作用下,相位累加器不停的累加,即不停的查表。波形存储器的输出数据送到D/A转换器,D/A转换器将数字量形式的波形幅度值转换成所要求合成频率的模拟量形式信号,从而将波形重新合成出来。若波形存储器中存放的是正弦波幅度量化数据,那么D/A转换器的输出是近似正弦波的阶梯波,还需要后级的低通平滑滤波器进一步抑制不必要的杂波就可以得到频谱比较纯净的正弦波信号。如下图所示为DDS各个部分的输出信号:
设计实验
一、摘要
任意波形发生器是不断发展的数字信号处理技术和大规模集成电路工艺孕育出来的一种新型测量仪器,能够满足人们对各种复杂信号或特殊信号的需求,代表了信号源的发展方向。可编程门阵列(FPGA)具有高集成度、高速度、可重构等特性。使用FPGA来开发数字电路,可以大大缩短设计时间,减小印制电路板的面积,提高系统的可靠性和灵活性。
除了上述元器件以及相对应的软件的使用,我们要对经过DAC0832数模转换器输出的波形进行放大之后再进行低通滤波,以避免外界环境的干扰和系统内部元器件在工作时产生的噪声。
2.理论分析与计算
DDS原理:
1DDS原理的背景
1973年,J.Tiemey和C.M.Tader等人在《A Digital Frequency Synthesizer》一文中首次提出了DDS的概念,但限于当时的技术条件,DDS并没有引起人们的足够重视。上世纪90年代以来,随着数字集成电路和微电子技术的发展,DDS技术的优越性才日益体现出来。
2DDS的基本结构
DDS与大多数的数字信号处理技术一样,它的基础仍然是奈圭斯特采样定理。奈圭斯特采样定理是任何模拟信号进行数字化处理的基础,它描述的是一个带限的模拟信号经抽样变成离散值后可不可以由这些离散值恢复原始模拟信于或者等于模拟信号最高频率的两倍时,可以由抽样得到的离散信号无失真地恢复出原始模拟信号。只不过在DDS技术中,这个过程被颠倒过来了。DDS不是对模拟信号进行抽样,而是一个假定抽样过程已经发生且抽样值已经量化完成,如何通过某种方法把已经量化的数值重建原始信号的问题。
在波形输出到 点时,频率字发生了改变(变小),相位累加器的累加值即相位步进变小,其输出值斜率也变小,系统的输出波形的频率也在同时刻变小。DDS系统在频率字发生改变后的一个时钟周期,其输出频率就可以就转换到了新的频率上,也即在频率字的值改变以后,累加器在经过一个时钟周期后就按照新的频率字进行累加,开始合成新的频率。所以我们可以认为DDS的频率切换是在一个系统时钟周期内完成的,系统时钟频率越高,切换速度越快。
(2)DDS系统具有很高的频率分辨率
DDS系统输出频率的分辨率和频点数随相位累加器的位数成指数增长,由 可知,在系统时钟频率不变的情况下,只要增大相位累加器的位数 ,就可以得到几乎是任意小的频率分辨率,可以满足精细频率控制的要求。DDS如此精细的频率分辨率,使其输出频率已十分逼近连续变化。
(3)输出频率切换速度快且相位保持连续
式(2-14)
可以经过D/A转换和低通平滑滤波唯一地恢复出 。
可见,通过上述变换,变量 将唯一地确定一个单频模拟正弦信号 :
式(2-15)
该信号的频率为:
式(2-16)
式(2-16)就是DDS的基本方程,是利用DDS进行频率合成的立足点。在实际的DDS应用中,一般取 , 为正整数,于是DDS的基本方程可写成:
DAC0832是基于先进CMOS/Si-Cr技术的八位乘法数模转换器,它被设计用来与8080,8048,8085,Z80和其他的主流的微处理器进行直接交互。一个沉积硅铬R-2R电阻梯形网络将参考电流进行分流同时为这个电路提供一个非常完美的温度期望的跟踪特性(0.05%的全温度范围过温最大线性误差)。该电路使用互补金属氧化物半导体电流开关和控制逻辑来实现低功率消耗和较低的输出泄露电流误差。在一些特殊的电路系统中,一般会使用晶体管晶体管逻辑电路(TTL)提高逻辑输入电压电平的兼容性。
图3相位增量不同对重构信号频率的影响(仿真)
分析到这里,我们可以得出结论,在DDS系统中,在参考时钟 固定不变的前提下,通过改变相位增量的值,就可以得到不同频率的重构信号。
我们假设有一个频率为 的正弦信号 :
式(2-4)
现以采样频率 对该信号进行抽样,得到离散序列为:
式(2-5)
其中 为采样周期。习惯上将式(2-5)写成式(2-6)的形式:
式(2-17)
由式(2-17)可以看出,当 时,DDS系统输出信号频率 最小,而这个最小频率同时也是DDS系统的频率分辨率:
式(2-18)
对于DDS系统从波形存储器中读数据的过程,我们可以将其看作是对波形存储器中的波形数据再次采样的过程,也就是说,DDS系统查表的过程就是从波形存储器中二次采样过程,一个周期内查表的点数即为采样的点数。DDS系统要恢复出原始波形,其在一个周期内至少要取样两点,这是受我们一直都在强调的奈圭斯特采样定理的限制。那么DDS系统在理论上能输出的最大频率是:
式(2-6)
式(2-6)对应的相位序列为:
式(2-7)
该序列的显著特性是线性,即相邻样值之间的相位增量是一常数,且仅与信号频率 有关,当式(2-7)中的 取1时得到量化相位增量为: