单端反激开关电源

合集下载

单端反激开关电源

单端反激开关电源

12V/5A单端反激开关电源摘要:本文介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于该电流型PWM控制芯片、实现输出电压可调的开关稳压电源电路。

开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。

开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。

开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

关键字:开关电源、UC3842、PWM0:引言开关电源自20世纪90年代问世以来,便显示出强大的生命力,并且以其优良特性倍受人们的青睐。

随着电源技术的飞速发展,高效率的开关电源已经得到越来越广泛的应用。

而直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。

同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。

随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。

特别是在高新技术领域的应用,开关电源推动了高新技术产品的小型化、轻便化。

另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

1:开关电源的概述1.1:开关电源的含义:一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。

开关电源是开关稳压电源的简称,它是一种用脉宽调制(PWM)驱动功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。

它与线性稳压电源(AC-DC 电源)相比,其工作频率为20 kHz-500KHz,效率可达65%-70%,而线性电源的效率只有30%-40%,因而它比线性稳压电源更节能。

1.2:开关电源的现状:电源是各种电气设备补个或缺的组成部分,其性能优越直接关系到电子设备的技术指标级能否安全可靠的工作。

单端反激式变换器开关稳压电源原理图

单端反激式变换器开关稳压电源原理图

单端反激式变换器开关稳压电源原理图单端反激式功率变换器开关稳压电源并非是只能由一只晶体管组成,而由两只晶体管仍然可以组成单端变换器形式的开关稳压电源。

单端反激式开关稳压电源与推挽、全桥、半桥双端变换的开关稳压电源的根本区别在于高频变压器的磁心仅工作在磁滞回线的一侧(第一象限)。

典型的单端反激变换式开关稳压电源的原理图如图所示。

所谓单端,即指转换电路的磁心仅工作在其磁滞回线的一侧。

所谓反激,系指当晶体管导通时,在初级电感线圈中储存能量,当晶体管截止时,初级线圈中储存的能量再通过次级线圈释放给负载。

当开关管VT1被控制脉冲激励而导通时,输入电压Ui便施加到高频变压器T1的原边绕组N1上。

由于变压器T1副边的整流二极管VD反接,因此副边绕组N2没有电流流过;当VT1截止时,绕组N2上的电压极性颠倒,VD被正偏,VTl导通期间储存在T1中的能量便通过VD负载释放。

由于这种电路在开关管导通期间储存能量,因此在开关管截止期间才向负载传递能量。

高频变压器在工作中除了起变压作用外,还相当于一个储能用的电感,因此也有人称之为“电感储能式变换器”或“电感变换器”。

单端反激式开关电源电路是成本最低的一种。

它可以达到输入与输出部分隔离,还可以同时输出几路不同的电压,有较好的电压调整率。

但其输出纹波电压较大,负载调整率较差,适用于相对固定的负载。

在单端反激式开关电源电路中,开关三极管承受的最大反峰值电压是线路工作电压峰值的2倍以上。

为了降低开关管的耐压,需要对集射电压进行限幅,因此常用的单端反激式开关电源有三种形式。

单端反激变换器的很重要的特色是变压器充当了电感的作用,即在开关开通时变压器储能,开关关断时变压器将能量释放到副边,因此单端反激变换器的变压器工作在电感类型的工作区,在功率过大时变压器储能也大造成其负荷太重,但并不是说不能工作在100W以上,更不会有100W左右可靠性比正激更好的说法,只是在电源设计中是否合算的问题,而且单端反激变换器在多输出时的电压调整率不如正激.对于经常烧管子的问题,一是看选择的Mosfet的耐压定额够否:反激变换器的开关管的最大电压是输入电压加上输出电压与变比的乘积,考虑到漏感影响,电压定额要比这个值大至少20%(当然看漏感的大小和Clamp电路或Snubber的性能了);二看变压器设计的工作点要求远离饱和区,而且要留足够的裕量,在严重的情况下(最大占空比时)不至于饱和.只要计算正确,设计合理,出现这种问题的机会就比较少,所以一定要先在理论上把握住精髓,掌握必要的知识,在加上多学习多动手多思考,各种问题都会解决的.其实看正激还是反激很简单在电路上的区别主要有两点:1.看次级何时导通--次级一般接有二极管之类的单向导通器件, 在初级通时,次级可以导通,是正激的表现;在初级导通时,次级不导通,则时反激的表现2.看初级有没有为反激准备的回路--反激变换器在晶体管关闭时发生能量转换,由磁能变为电能,所以,一定要有电流流动的回路,没有回路则不可能是反激.反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。

单端反激式开关电源变压器设计

单端反激式开关电源变压器设计

单端反激式开关电源变压器设计首先是参数的确定。

设计单端反激式开关电源变压器时,需要确定其输入和输出电压、输出功率、工作频率等参数。

根据实际应用需求和性能要求,确定合理的参数是设计的第一步。

接下来是线圈绕制。

根据确定的参数,计算出合适的线圈匝数和绕线方法。

线圈绕制时,需要注意绕线的密度均匀性和固定性,以避免绕线过松或过紧,影响线圈的性能和寿命。

然后是磁芯选择和计算。

磁芯的选择与设计密切相关,它直接影响到电源变压器的效率、功率损耗和体积等。

根据输入输出电压和功率的关系,可以选择适当的磁芯材料和规格。

同时,需要根据工作频率和磁芯的特性计算线圈的匝数和绕制方法。

绝缘和耐压设计也是单端反激式开关电源变压器设计的重要环节。

电源变压器在工作时会有高电压和高频的信号通过,因此需要进行良好的绝缘和耐压设计。

合理的绝缘材料和绝缘结构可以保证电源变压器的安全可靠性。

在设计过程中,还需要考虑电源变压器的散热和冷却。

电源变压器在工作时会产生一定的热量,需要通过散热和冷却措施来保持合适的温度。

合适的散热风扇和散热片等可以有效地降低电源变压器的温度,提高其效率和寿命。

最后,还需要进行电磁兼容性设计。

电源变压器在工作时会产生一些电磁干扰信号,需要采取适当的电磁屏蔽和滤波措施,以防止其对周围电子设备和系统产生干扰。

综上所述,设计单端反激式开关电源变压器是一个比较复杂的工程,需要综合考虑各个方面的问题,并进行合理的计算和设计。

只有在合理选择参数、绕制线圈、选择磁芯、考虑绝缘和耐压、散热和冷却、以及电磁兼容性等问题时进行综合考虑和设计,才能设计出高效、稳定、可靠的单端反激式开关电源变压器。

TOPSwitch单端反激式开关电源设计

TOPSwitch单端反激式开关电源设计

第二节TOPSwitch组成单端反激式开关电源的设计流程图TOPSwitch是内含高压功率MOSFET开关管的单片复合IC器件,它包含所有的模拟和数字控制电路,能完成隔离变压、调整稳压、自动保护等开关电源需要的全部功能。

由于IC 外部元器件很少,因此它能大为简化电源的设计。

又因它的开关频率高达100KHz,从而能V时明显缩小电源变压器的尺寸,并且允许使用更小的储能元件。

当电网电压为85-265ACV时,输出功率则达100W。

其输出功率功率可达50W,当电网电压为195-265AC设计一台单端反激式离线开关电源,涉及到电气工程的许多方面:模拟电路和数字电路的结构,双极管和MOS功率管器件的特征,磁性材料的考虑,热温升的散发,过流和过压的安全防护,控制回路的稳定性能等。

这就提出了一个巨大的挑战:它的设计涉及到需要综合协调的许多可变因素。

正是由于TOPSwitch的高度集成化,才使得这项设计任务被大大地简化。

因为它有效的缩减了设计变数项目,并且建立了IC内部回路的稳定性,所以发展成为一种简单的逐步设计方法,使之容易遵循参照,并指引读者从TOPSwitch的设计流程图中,快速的得到较满意的结果。

一台开关电源的设计,本质上是一件把许多变数调节到最佳值的反复过程。

它的设计方法大体上可有下述三部分:一是完整的设计流程图,而是简明扼要的设计步骤,三是深化的数据信息处理。

在构思阶段的流程图,是做成一个框图来提供全局的概貌,并指出完整的设计步骤。

该逐步设计程序是设计方法的一种简化模式,在执行程序阶段,他自始至终指导读者如何按给定的电源系统指标要求和规范,运用经验规则,查阅表格和简化的图示项目,来完成所需的TOPSwitch反激式电源的设计在优化最佳数据和信息的过程中,可利用关键的基本工作数据作为设计指南,例如一些方程式和导向图标等。

在以上三者之间,它们提供了前后相互参照的内容,让读者能开阔思路,在给定的阶段执行有关程序,实现最佳参数,这有利于深入理解和进一步优化数据。

单端反激式开关稳压电源(修改版)课件

单端反激式开关稳压电源(修改版)课件

单端反激式开关稳压电源学生姓名: xxx学生学号: xxx院(系): xxx年级专业: xxx指导教师: xxx二〇一三年十二月摘要电源是实现电能变换和功率传递的主要设备。

在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电影产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。

这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。

开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。

UC3842是一种性能优良的电流控制型脉宽调制器。

假如由于某种原因使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空比D,使斩波后的平均值电压下降,从而达到稳压目的,反之亦然。

UC3842可以直接驱动MOS管、IGBT等,适合于制作20~80W小功率开关电源。

由于器件设计巧妙,由主电源电压直接启动,构成电路所需元件少,非常符合电路设计中“简洁至上”的原则。

设计思路,并附有详细的电路图。

关键词:开关电源,uc3842,脉宽调制,功率,IGBT目录摘要 (I)1 设计要求 (1)2 设计方案 (2)2.1开关稳压电源系统总体框图 (2)2.2电路结构的选择 (2)2.3 启动电路 (3)2.4 PWM脉冲控制驱动电路 (4)2.5 直流输出与反馈电路 (4)2.6 总体电路图分析 (6)3 设计过程 (7)3.1变压器和输出电感的设计 (7)3.2 电路仿真波形 (8)4 PCB设计 (11)4.1 PCB设计规范 (11)4.2 PCB设计图 (14)5总结和体会 (15)参考文献 (16)附录1:总体电路图 (17)1 设计要求电源设计指标小型电源输入、输出参数如下:输入电压:AC 110/220V;输入电压变动范围:90~240V;输入频率:50/60Hz;输出电压:12V;输出电流:2.5A。

单端反激开关电源

单端反激开关电源

因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的!反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。

先学习下Buck-Boost变换器工作原理简单介绍下1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量!2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量!3.接着开始下个周期!从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量!根据电流的流向,可以看出上边输出电压为负输出!根据伏秒法则Vin*Ton=Vout*ToffTon=T*DToff=T*(1-D)代入上式得Vin*D=Vout*(1-D)得到输出电压和占空比的关系Vout=Vin*D/(1-D)看下主要工作波形从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout);再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm 模式)。

如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM 模式)。

把上边的Buck-Boost变换器的开关管和续流管之间加上一个变压器就会变成反激变换器!还是和上边一样,先把原理大概讲下:1. 开关开通,变压器初级电感电流在输入电压的作用下线性上升,储存能量。

变压器初级感应电压到次级,次级二极管D反向偏置关断。

电源网独家攻略 单端反激开关电源变压器设计

电源网独家攻略 单端反激开关电源变压器设计

电源网独家攻略单端反激开关电源变压器设计单端反激开关电源变压器设计单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。

下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。

1、已知的参数这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压Vin、输出电压Vout、每路输出的功率Pout、效率η、开关频率fs(或周期T)、线路主开关管的耐压Vmos。

2、计算在反激变换器中,副边反射电压即反激电压Vf与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。

反激电压由下式确定:反激电压和输出电压的关系由原、副边的匝比确定。

所以确定了反激电压之后,就可以确定原、副边的匝比了。

另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式:设在最大占空比时,当开关管开通时,原边电流为Ip1,当开关管关断时,原边电流上升到Ip2。

若Ip1为0,则说明变换器工作于断续模式,否则工作于连续模式。

由能量守恒,我们有下式:一般连续模式设计,我们令这样就可以求出变换器的原边电流,由此可以得到原边电感量:对于连续模式,;对于断续模式,。

可由法求出所要铁芯:在上式中, Aw为磁芯窗口面积,单位为cm2Ae为磁芯截面积,单位为cm2Lp为原边电感量,单位为HIp2为原边峰值电流,单位为ABw为磁芯工作磁感应强度,单位为TK0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4Kj为电流密度系数,一般取395A/cm2根据求得的AwAe值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感。

有了磁芯就可以求出原边的匝数。

根据下式:再根据原、副边的匝比关系可以求出副边的匝数。

有时求的匝数不是整数,这时应该调整某些参数,使原、副边的匝数合适。

单端反激开关电源工作原理

单端反激开关电源工作原理

单端反激开关电源工作原理
单端反激开关电源工作原理如下:
1. 输入变压器:交流电源首先经过输入变压器,将输入的交流电源转换为所需要的较高或较低的交流电压。

2. 整流电路:经过输入变压器的交流电被整流电路转换为脉冲状的直流电。

3. 滤波电路:经过整流后得到的直流电,经过滤波电路使电压变得更加平滑稳定。

4. 开关电路:滤波后得到的直流电经过开关电路,由开关芯片控制开关管的导通和截止,产生一系列短暂的高频脉冲。

5. 变压器:开关电路产生的高频脉冲信号经过变压器,通过变压器的变比关系将电压转换为所需要的输出电压。

6. 输出滤波:经过变压器转换后得到输出电压,再经过输出滤波电路,进一步平滑和稳定输出电压。

7. 输出电路:最后将输出电压提供给负载进行使用,保证输出电流的稳定性和质量。

以上就是单端反激开关电源的工作原理,通过交流输入变压器、整流电路、滤波电路、开关电路、变压器、输出滤波、输出电路等组成,完成从输入交流电源到输出直流电压的转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的!反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。

先学习下Buck-Boost变换器工作原理简单介绍下1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量!2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量!3.接着开始下个周期!从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量!根据电流的流向,可以看出上边输出电压为负输出!根据伏秒法则Vin*Ton=Vout*ToffTon=T*DToff=T*(1-D)代入上式得Vin*D=Vout*(1-D)得到输出电压和占空比的关系Vout=Vin*D/(1-D)看下主要工作波形从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout);再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。

如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。

把上边的Buck-Boost变换器的开关管和续流管之间加上一个变压器就会变成反激变换器!还是和上边一样,先把原理大概讲下:1. 开关开通,变压器初级电感电流在输入电压的作用下线性上升,储存能量。

变压器初级感应电压到次级,次级二极管D反向偏置关断。

2. 开关关断,初级电流被关断,由于电感电流不能突变,电感电压反向(为上负下正),变压器初级感应到次级,次级二极管正向偏置导通,给C充电和向负载提供能量!3. 开始下个周期。

以上假设C的容量足够大,在二极管关断期间(开关开通期间)给负载提供能量!咱先看下在理想情况下的VDS波形上面说的是指变压器和开关都是理想工作状态!从图上可以看出Vds是由VIN和VF组成,VIN大家可以理解是输入电压,那VF呢?这里我们引出一个反激的重要参数:反射电压即VF,指次级输出电压按照初次级的砸比反射到初级的电压。

可以用公式表示为VF=VOUT/(NS/NP),(因分析的是理想情况,这里我们忽略了整流管的管压降,实际是要考虑进去的)式中VF为反射电压;VOUT为输出电压;NS为次级匝数;NP为初级匝数。

比如,一个反激变换器的匝比为NP:NS=6:1,输出电压为12V,那么可以求出反射电压VF=12/(1/6)=72V。

上边是一个连续模式(CCM模式)的理想工作波形。

下面咱在看一个非连续模式(DCM模式)的理想工作波形从图上可以看出DCM的Vds也是由VIN和VF组成,只不过有一段时间VF为0,这段时候是初级电流降为0,次级电流也降为0。

那么到底反激变化器怎么区分是工作在连续模式(CCM)还是非连续模式(DCM)?是看初级电感电流是否降到0为分界点吗,NO,反激变换器的CCM和DCM分界点不是按照初级电感电流是否到0来分界的,而是根据初次级的电流是否到0来分界的。

如图所示从图上可以看出只要初级电流和次级电流不同时为零,就是连续模式(CCM);只要初级电流和次级电流同时为零,便是不连续模式(DCM);介于这俩之间的是过度模式,也叫临界模式(CRM)。

以上说的都是理想情况,但实际应用中变压器是存在漏感的(漏感的能量是不会耦合到次级的),MOS管也不是理想的开关,还有PCB板的布局及走线带来的杂散电感,使得MOS的Vds波形往往大于VIN+VF。

类似于下图这个图是一个48V入的反激电源。

从图上看到MOS的Vds有个很大的尖峰,我用的200V的MOS,尖峰到了196了。

这是尖峰是由于漏感造成的,上边说到漏感的能量不能耦合到次级,那么MOS关断的时候,漏感电流也不能突变,所以会产生个很高的感应电动势,因无法耦合到次级,会产生个很高的电压尖峰,可能会超过MOS的耐压值而损坏MOS管,所以我们实际使用时会在初级加一个RCD吸收电路,把尖峰尽可能的吸到最低值,来确保MOS管工作在安全电压。

具体RCD吸收电路图如下简单分析下工作原理1.当开关S开通时,二极管D反骗而截至。

电感储存能量。

2当开关S关断时,电感电压反向,把漏感能量储存在C中,然后通过R释放掉。

细心的朋友可能会发现,当开关关断的时候,这个RCD电路和次级的电路是一模一样的,D 整流,C滤波。

R相当于负载。

只不过输出电压不是VO,而变成了次级反射到初级的电压VF。

所以,注意了,R的值不能取得太小,太小了损耗严重,影响效率。

而且电阻的功率会变的很大!下边来个加了RCD吸收的波形关于RCD吸收的选取网上有很多文章,在以后我会介绍下!大家也可以看我的博客(只要在百度里搜老梁头的博客,就会出来。

里边有一篇介绍RCD的)原理先讲到这里吧,下边我讲下变压器的设计!今天讲下变压器的设计方法!变压器的设计方法有多种,个人感觉适合自己的才是最好的,选择一个你自己最熟悉的,能够理解的才是最好的!我先介绍下一种设计方法:1.先确定输入电压,一般是按照最低输入直流电压计算VINmin计算A.要是直流输入按直流的最低输入来计算;B.要是输入为交流电,一般对于单相交流整流用电容滤波,直流电压不会超过交流输入电压有效值的1.4倍,也不低于1.2倍。

列如,全围交流输入85-265VAC的电源,一般按85VAC时计算,那VINmin=85*1.2=102V,一般会取整数按100VDC计算。

2.确定导通时间Ton导通时间Ton=T*DT为周期T=1/FD为最大占空比,一般在最低输入电压的时候,D会最大,保证输出稳定。

注意大的占空比可以降低初级的电流有效值,和MOS的导通损耗,但是根据伏秒法则,初级占空比大了,次级的肯定会小,那么次级的峰值电流会变大,电流有效值变大,会导致输出纹波变大!所以,一般单端反激拓扑的占空比选取不要超过0.5。

而且一般的电流控制模式,占空比大于0.5要加斜率补偿的,对调试是个难度。

还有一重要的是你的占空比决定你的匝比,匝比决定啥,嘿嘿,反射电压VF,忘了再去上边看下,再加上你漏感引起的尖峰,最终影响你MOS的耐压。

占空比越小匝比越小,反射电压VF越低,MOS的电压应力小。

反之MOS的电压应力大,所以占空比要考虑好了。

要保证再最高电压下你的VDS电压在MOS的规定电压以下,最好是降额使用,流出足够的余量来!列如,电源的开关频率为100K,最低输入时的最大占空比为0.4,那T=1/100000=10μS,那么Ton=0.4*10μS=4μS。

3.确定磁芯的有效面积AEAE一般会在磁芯的资料中给出。

4.计算初级匝数NPNP=VINmin*Ton/ΔB*AE式中VINmin为直流最低输入电压;Ton为导通时间AE为磁芯的有效面积ΔB为磁感应强度变化量,这个值和磁芯材质,及温升等有关,一般考经验来选取,在0.1-0.3之间,取得越大,余量越小,变压器在极端情况下越容易饱和!俺一般取0.2。

5.计算次级匝数NSNS=(Vo+Vd)*(1-D)*NP/VINmin*D式中Vo为输出电压Vd为二极管管压降D为占空比NP为初级匝数VINmin为最低输入电压6.确定次级整流二极管的应力VDR上边算出变压器的初级匝数NP和次级匝数NS后,就可以得出次级整流二极管的电压应力VDR=(VINmax*NS/NP)+VOUT式中VINmax为最大输入电压,要保证在最高输入电压下你的二极管的电压应力不超标。

一般算出来的这个VDR还要考虑降额使用,所以二极管的耐压要高于这个VDR值。

一般还要在整流管上并一个RC吸收,从而降低二极管反向回复时间造成的电压尖峰!尤其是CCM模式的时候!7.确定初级电感量LP确定电感量之前我们先看下上边的两个电流图对于上图是两种工作模式的初级电感电流波形,我加了两个参数Ip1和Ip2;Ip1对应最低输入电流Ip2对应最高峰值电流有上边这两个我们也就可以算出平均电流Iavg了Iavg=(Ip1+Ip2)Dmax/2式中Dmax为最大占空比如果输出功率为Pout,电源效率为Η,那么Pout/Η=VINmin*Iavg=VINmin*(Ip1+Ip2)Dmax/2得出Ip1+Ip2=2Pout/VINmin*Dmax*Η然后就可以计算Ip1和Ip2的值了对于DCM来说,电流是降到零的,所以Ip1为零对于CCM来说Ip1和Ip2都是未知数,又出来个经验选择了,一般取Ip2=(2-3)Ip1,不能取得太小,太小了会有一个低电流斜率,虽然这样损耗小点,但容易使变压器产生磁饱和,也容易使系统产生震荡!俺一般取Ip2=3Ip1。

计算出Ip1和Ip2后,这时候可以计算初级的电感量了在Ton电流的变化量ΔI=Ip2-Ip1根据(VINmin/LP)*Ton=/ΔI得出LP=VINmin*Ton/ΔI到此变压器的初级电感量计算完毕,变压器的参数也计算完毕!还有一种计算方法,就是按照上边的确定初级电感量的方法先确定电感量,然后来选择磁芯,选择磁芯的方法有很多种,一般最常用的是AP法这个公式是看资料上的,具体我也没推倒过具体可以看看修科老师的那本《开关电源中的磁性元器件》。

式中L为初级电感量也就是LPIsp为初级峰值电流Ip也就是ΔI,I1L为满载初级电流有效值,但我往往会把Isp和I1L看成是一个,都是初级的峰值电流,所以仁者见仁智者见智,大家可以到应用时具体的来微调!Bmax为磁感应强度变化量也就是ΔB.这个取值和上边一样,取得太大,磁芯小但容易饱和,而取得太小磁芯的体积又很大,所以一般折中取值!而且和频率关系也很大,要是频率很高,建议取小点,因为频率高了损耗也大,变压器大了有利于散热俺经常取0.2!K1=Jmax*Ko*10-4其中Jmax为最大电流密度俺一般取450A/平方厘米。

但老师书里取得是420A/平方厘米实用文档Ko为窗口面积,有的也叫窗口利用率吧,一般取0.2-0.4,具体要看绕线的结构了,比如加不加挡墙等因素,所以选取时要充分考虑,免得因取得变压器太小,结构要求苛刻而绕不下,导致项目失败!10-4是由米变厘米的系数所以上式整理下可得AP=Aw*Ae=(LP*IP2*104/450*ΔB*Ko)4/3cm4计算出了AP就可以找到合适的磁芯,然后找到Ae再根据式NP=LP*IP/ΔB*Ae式中LP就是上边算得初级电感量IP为初级峰值电流ΔB为磁感应强度变化量AE为磁芯的有效面积后边的次级匝数NS和次级整流二极管电压应力的确定就和上边的步骤5和6一样了!那这两种初级匝数NP的确定方法到底哪个对呢,可以告诉大家都对。

相关文档
最新文档