运算放大器知识介绍

合集下载

运算放大器常见指标及重要特性

运算放大器常见指标及重要特性

运算放大器常见指标及重要特性运算放大器是一种电子放大器,用于放大微弱电信号。

它是现代电子系统中的关键组件之一,广泛应用于各种电路中,如音频放大器、通信电路、仪器仪表、运算放大电路等。

了解运算放大器的常见指标和重要特性对于正确选择和应用运算放大器至关重要。

下面是关于运算放大器常见指标和重要特性的详细介绍。

1.常见指标(1)增益:运算放大器的增益是指输入信号和输出信号之间的放大倍数。

运算放大器的增益通常用电压增益来表示,即输出电压与输入电压之比。

(2)输入阻抗:运算放大器的输入阻抗是指输入端对外界电路的负载特性,也就是输入电路对外界电路之间的阻抗。

输入阻抗越大,对外界电路的负载影响越小。

(3)输出阻抗:运算放大器的输出阻抗是指输出端对外界电路的负载特性,也就是输出电路对外界电路之间的阻抗。

输出阻抗越小,对外界电路的阻抗匹配越好。

(4)带宽:运算放大器的带宽是指在指定的增益范围内,能够传递的频率范围。

带宽越大,运算放大器能够传递的高频信号越多。

(5)零点抵消:运算放大器的零点抵消是指在输出电压为零时,输入电压不为零的情况下,输出电压的漂移量。

零点抵消越好,运算放大器的精度越高。

2.重要特性(1)运算精度:运算放大器的运算精度是指在给定的测量条件下,输出结果与实际值之间的偏差大小。

运算精度越高,运算放大器输出的信号越准确。

(2)稳定性:运算放大器的稳定性是指在不同工作条件下,输出信号的稳定程度。

稳定性越好,运算放大器的输出信号波动越小。

(3)噪声:运算放大器的噪声是指在运放输入端产生的不可避免的电压或电流波动。

噪声越小,运算放大器的信噪比越高。

(4)温度漂移:运算放大器的温度漂移是指在温度变化的情况下,输出信号的稳定程度。

温度漂移越小,运算放大器的性能越稳定。

(5)电源电压范围:运算放大器的电源电压范围是指能够正常工作的电源电压范围。

电源电压范围越大,运算放大器的适用范围越广。

(6)输入偏置电流:运算放大器的输入偏置电流是指在没有输入信号的情况下,输入端电流的大小。

运算放大器参数详解

运算放大器参数详解

运算放大器参数详解运算放大器(通常简称为运放)是一种广泛应用于模拟信号处理领域的电子器件。

它被广泛应用于各种不同的电子设备中,包括音频放大器、模拟电路、数字电路等。

以下是对运算放大器参数的详细解释:1. 带宽增益乘积:这是运算放大器的一个重要指标,它等于开环带宽与开环增益的乘积。

这个参数可以用来估算运放在高频应用中的性能。

2. 开环增益:开环增益是运算放大器在没有反馈的情况下,输入电压与输出电压之比。

这是一个衡量运放放大能力的参数。

3. 最大差模输入电压:这是指运放可以接受的最大差分输入电压。

超过这个电压,运放可能会被损坏。

4. 最大共模输入电压:这是指运放可以接受的最大共模输入电压。

超过这个电压,运放可能会被损坏。

5. 最大输出电压:这是指运放在安全工作范围内可以输出的最大电压。

超过这个电压,运放可能会被损坏。

6. 电源电压范围:这是指运放正常工作所需的最小和最大电源电压。

低于最小电压,运放可能无法正常工作;高于最大电压,运放可能会被损坏。

7. 功耗:这是指运放在正常工作条件下消耗的功率。

这是一个重要的环保指标,因为电子设备的功耗直接影响到其热量产生和能源消耗。

8. 输入阻抗:这是指运放在没有反馈的情况下,输入端的电阻抗。

这个参数可以影响运放在特定应用中的性能。

9. 输出阻抗:这是指运放在没有反馈的情况下,输出端的电阻抗。

这个参数可以影响运放在特定应用中的性能。

10. 带宽增益乘积与最大带宽:带宽增益乘积是指运算放大器在特定频率下达到特定增益所需的带宽,通常以Hz为单位表示。

最大带宽是指运放在不失真的情况下可以处理的最高频率信号。

这两个参数共同决定了运算放大器处理高频信号的能力。

11. 建立时间:这是指运算放大器从启动到达到最终输出值所需的时间。

这个参数对于需要快速响应的电路设计来说非常重要。

12. 失调电压:这是指运算放大器在没有输入信号的情况下,输出端的直流偏置电压。

这个参数可能会对电路的直流性能产生影响。

运算放大器知识点总结

运算放大器知识点总结

u otu u i1i2运算放大器知识点总结1、 部分组成偏置电路,输入级,中间级,输出级。

2、零点漂移: (1)表现:输入u i =0时,输出有缓慢变化的电压产生。

(2)原因:由温度变化引起的。

当温度变化使第一级放大器的静态工作点发生微小变化时,这种变化量会被后面的电路逐级放大,最终在输出端产生较大的电压漂移。

因而零点漂移也叫温漂。

(3)衡量方法:将输出漂移电压按电压增益折算到输入端计算。

例如100,=u1A100=u2A 10000=u A如果输入等效为100uV ,漂移为1V 。

(4)减小漂移的措施: 采用差动放大电路采用温度补偿,非线性元件 3运放的输入级一般采用差动放大电路。

差动放大电路又称差分放大电路,它的输出电压与两个输入电压之差成正比。

它能较好地克服直接耦合放大器的零点漂移问题,是集成运算放大器的基本组成单元。

结构如右图:(1)对称性结构 β1=β2=β U BE1=U BE2= U BE r be1= r be2= r be R C1=R C2= R C R b1=R b2= R b(2)信号分类差模信号:i2i1id =uu u -ou VCC V EE ou V CC V EEi2uEE共模信号:)(21=i2i1icuuu+差模电压增益:idodud=uuA共模电压增益:icocuc=uuA总输出电压:icucidudocodo=uAuAuuu+=+211EEAB RRRVU+=3ABC3V7.0RUI-=2C3C2C1III==②动态恒流源等效电阻:)//1(321be33ce RRRrRrR+++=β等效,且212121//RRRRRR+⨯=(5)差动放大器输入、输出方式的接法u i1=u i2 =u ic,u id=0设u i1 ↑,u i2↑→u o1↓,u o2↓。

因u i1 = u i2,→u o1 = u o2→ u o= 0 (理想化)共模电压放大倍数A UC=0 i2i1u①双端输入双端输出共模电压放大倍数 A UC =0 差模输入电阻:()be s id 2r R R += 输出电阻:()be s id 2r R R += ②双端输入单端输出差模电压放大倍数:使用于将差分信号转化为单端输出的信号 差模输入电阻:()be id 2r R R b += 输出电阻:R 0=R C共模电压放大倍数 u i1=u i2 =u ic , 设u i1 ↑,u i2 ↑→ i e1 ↑ ,i e1 ↑ 。

运放和mos恒流电路原理

运放和mos恒流电路原理

运放和mos恒流电路原理本文档将介绍运放和MOS恒流电路的原理和应用。

我们将从运放基础知识、MOS管基础知识、运放与MOS管结合、恒流电路原理、运放与MOS管在恒流电路中的应用、电路设计技巧、性能参数与优化以及实际应用与案例分析等方面进行详细阐述。

一、运放基础知识运算放大器(简称运放)是一种电压放大倍数很高的模拟放大器,其电压放大倍数可以达到几千倍甚至几十万倍。

运放具有很高的输入阻抗和很低的输出阻抗,因此在电路中常常被用作电压放大器。

二、MOS管基础知识MOS管即金属氧化物半导体场效应管,是一种电压控制型器件。

其优点包括输入阻抗高、驱动能力强、功耗低等。

根据导电沟道的类型,MOS管可以分为NMOS和PMOS两种。

三、运放与MOS管结合运放和MOS管在电路中常常被结合使用,以实现特定的功能。

例如,可以将运放用作电压跟随器或放大器,将MOS管用作开关或负载等。

四、恒流电路原理恒流电路是一种能够输出恒定电流的电路,其输出电流不受电压或负载变化的影响。

恒流电路通常由电阻、运放和MOS管等组成。

其原理是通过负反馈调节电阻上的电压,从而控制MOS管的导通电阻,实现恒流输出。

五、运放与MOS管在恒流电路中的应用在恒流电路中,运放可以作为比较器和放大器使用,将电流信号转换为电压信号,并通过负反馈调节电阻上的电压,实现恒流输出。

而MOS管则作为开关或负载使用,根据需要调整电流的大小。

六、电路设计技巧在恒流电路设计中,需要注意以下几点:首先,要选择合适的电阻和MOS 管型号,以实现所需的恒流精度和输出电流;其次,要设计合适的负反馈电路,以减小输出电流的波动;最后,要考虑到温度和电源电压等环境因素的影响,进行相应的补偿和调整。

七、性能参数与优化恒流电路的性能参数主要包括输出电流精度、稳定性、响应速度等。

为了优化性能参数,可以采取以下措施:首先,选择高精度的电阻和MOS管;其次,通过合理的电路设计和调整负反馈系数来提高稳定性;最后,采用适当的驱动电路来提高响应速度。

运算放大器基本知识

运算放大器基本知识

运算放大器基本知识
运算放大器(Operational Amplifier,简称OP-AMP)是一种特殊的电子放大器,以其性能优良、可靠性高而被广泛应用。

运算放大器由直流耦合放大器、输出级和反馈网络组成。

运算放大器的特点如下:
1. 高增益:运算放大器具有非常高的直流电压增益,通常在
10^5至10^6之间。

2. 宽频带:运算放大器在0频到几兆赫兹的频率范围内能够提供线性放大。

3. 低失调:运算放大器的失调输入电压和失调输入电流非常小。

4. 大输入阻抗:运算放大器的输入阻抗通常很大,可以达到几兆欧姆。

5. 小偏移电压:运算放大器的输入端之间的偏移电压非常小。

6. 大输出电流:运算放大器的输出电流能够达到几百毫安。

运算放大器的基本运算包括放大、求和、差分和积分等。

运算放大器的输出电压等于输入电压与输入电阻之间的乘积。

通过调节反馈网络中的电阻和电容,可以实现各种各样的运算功能。

运算放大器学习的12个基础知识点

运算放大器学习的12个基础知识点

运算放大器学习的12个基础知识点一、一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么?1、为芯片内部的晶体管提供一个合适的静态偏置,芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点。

但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了。

因为芯片内部的晶体管无法抬高地线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分析。

2、消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡,这也是其得名的原因。

二、同相比例运算放大器,在反馈电阻上并一个电容的作用是什么?1、反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。

2、防止自激。

三、运算放大器同相放大电路如果不接平衡电阻有什么后果?烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。

四、在运算放大器输入端上拉电容,下拉电阻能起到什么作用?是为了获得正反馈和负反馈,这要看具体连接,比如我把现在输入电压信号,输出电压信号,再在输出端取出一根线连到输入段。

那么由于上面的那个电阻,部分输出信号通过该电阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。

因为信号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。

五、运算放大器接成积分器,在积分电容的两端并联电阻RF的作用是什么?用于防止输出电压失控。

六、为什么一般都在运算放大器输入端串联电阻和电容?如果你非常熟悉运算放大器的内部电路的话,你就会知道,不论什么运算放大器都是由几个晶体管或是mos管组成。

在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时候,会输出近似于正电压的电平,反之也一样。

但这样运放似乎没有什么太大的用处,只有在外接电路的时候,构成反馈形式,才会使运放有放大功能。

七、运算放大器同相放大电路如果平衡电阻不对有什么后果?1、同相反相端不平衡,输入为0时也会有输出,输入信号时输出值总比理论输出值大或小一个固定的数。

运算放大器参数说明及选型指南

运算放大器参数说明及选型指南一、运放的参数说明:1.增益:运算放大器的增益是指输出信号与输入信号之间的比值,通常用V/V表示。

增益可以是固定的,也可以是可调的。

增益决定了输出信号相对于输入信号的放大程度。

2.带宽:运算放大器的带宽是指在其增益达到-3dB时的频率范围。

带宽决定了运放的工作频率范围,对于高频应用,需要选择具有宽带宽的运放。

3.输入偏置电压:输入偏置电压是指在无输入信号时,运放输入端的直流偏置电压。

输入偏置电压可能会引入偏置误差,对于精密测量电路,需要选择输入偏置电压尽可能小的运放。

4.输入偏置电流:输入偏置电流是指在无输入信号时,运放输入端的直流偏置电流。

输入偏置电流可能会引起输入端的电平漂移,对于高精度应用,需要选择输入偏置电流尽可能小的运放。

5.输入偏置电流温漂:输入偏置电流温漂是指输入偏置电流随温度变化的比例。

输入偏置电流温漂可能会导致运放的工作点发生变化,对于温度变化较大的应用,需要选择输入偏置电流温漂较小的运放。

6.输入噪声:输入噪声是指在无输入信号时,运放输入端产生的噪声。

输入噪声可能会影响信号的纯净度,对于低噪声应用,需要选择输入噪声较低的运放。

7.输出电流:输出电流是指运放输出端提供的最大电流。

输出电流决定了运放的输出能力,在驱动负载电流较大的应用中,需要选择输出电流较大的运放。

8.输出电压:输出电压是指运放输出端能够提供的最大电压。

输出电压决定了运放的输出范围,在需要大幅度信号放大的应用中,需要选择输出电压较大的运放。

二、选型指南:1.确定应用需求:根据实际应用需求确定所需的放大倍数、带宽、输入/输出电压等参数。

例如,对于音频放大器,需要考虑音频频率范围、输出功率等因素。

2.选择性能指标:根据应用需求选择合适的性能指标。

不同应用对各个参数的要求可能会有所差异,需根据实际情况进行权衡与选择。

3.查询产品手册:查询供应商的产品手册或网站,获取相关产品的详细参数信息。

产品手册通常会提供各项参数的典型值和极限值,可以用于评估是否满足需求。

运算放大器的参数

运算放大器的参数运算放大器(Op-amp)是一种电子元件,具有高放大度、高输入阻抗和低输出阻抗等特性。

它的性质可以通过一系列参数来描述,这些参数包括:放大倍数、输入电阻、输出电阻、共模抑制比、带宽等,下面我们将逐一介绍它们的意义和作用。

1、放大倍数放大倍数是指在没有反馈的情况下,运算放大器输出电压与输入电压之间的比值。

放大倍数可以表示为Av,其单位为V/V(伏特/伏特)。

一个典型的运算放大器的放大倍数可以高达10万倍,相比之下,普通的放大器通常只有100-1000倍的放大倍数。

放大倍数在运算放大器的设计和使用中起着至关重要的作用,它决定了运算放大器的放大能力。

因此,放大倍数也是评价运算放大器性能的重要参数之一。

2、输入电阻输入电阻是运算放大器输入端的电阻。

在使用运算放大器时,有时需要对电路输入信号进行一些特殊的处理,如滤波、放大等等。

此时输入电阻就是一个很关键的参数,它决定了输入信号是否能够准确地被引入运算放大器中。

输入电阻通常用Rin表示,其单位为欧姆(Ω),一般情况下,运算放大器的输入电阻在百万至千万的范围内,因此,它的输入阻抗非常高,对于输入信号来说,它的影响非常小。

所以,输入电阻也被称为“高阻输入”。

3、输出电阻输出电阻是运算放大器输出端的电阻。

输出电阻可以理解为运算放大器内部电路的内部电阻。

输出端电阻通常用Ro表示,单位为欧姆(Ω)。

运算放大器的输出电阻对于电路的使用有着重要的意义,它决定了能否输出一个强有力的信号。

当负载电路阻值很大的时候,输出电阻才能够填补电路的空隙,否则,信号源的输出电平无法被放大到期望的水平4、共模抑制比共模抑制比是衡量运算放大器对共模干扰的抑制能力的参数。

共模抑制比可以理解为运算放大器内部电路在处理共模信号时,处理能力与处理差分信号时的处理能力之比。

在运算放大器的工作中,由于接触共模信号所产生的电荷、辐射和传导噪声、地线反射等引起的共模干扰是不可避免的。

而共模抑制比可以有效地抑制这些噪声干扰,使得运算放大器输出的信号不会因为共模信号干扰而失真。

运算放大器的基础知识

运算放大器是一种重要的电子器件,具有多种功能和应用。其基本原理是利用反馈网络进行配置,以便对输入信号进行各种“运算”。这些运算包括正/负增益、滤波、非线性传递函数、比较、求和、减法、基准电压缓冲、差分放大、积分、差分等,是模拟设计的基本构建模块。运算放大器具有一些理想特性,如无限差分增益、零共模增益、零偏移电压和零偏置电流等,这使得它在电路设计中具有广泛的应用。在实际应用中,运算放大器通常使用负反馈来调整输出信号,直至输入差值变为0。这种负反馈机制确保了运算放大器的稳定性和精确性。此外,运算放大器还具有高输入阻抗、低偏置电流等特性,能够响应差分模式电压并忽略共模电压。运算放大器的输出具有低源阻抗,这使得它能够有效地驱动后续电路。总的多种“运算”,以及在实际电路设计中使用负反馈来调整输出信号,确保稳定性和精确性。

运放参数详解超详细

运放参数详解超详细运放,全称为运算放大器,是一种主要用于电子设备中的放大电路。

它能够接收输入信号并在输出端放大,以达到放大信号的效果。

运放广泛应用于放大、滤波、积分、微分、求和、差分等电路中,是现代电子电路中不可或缺的元件之一在使用运放时,需要了解一些重要的参数,这些参数将影响到运放的性能和应用。

下面将详细介绍一些常见的运放参数:1.增益:增益指的是输入信号经过运放放大后的输出信号与输入信号之间的比例关系。

增益可以是小信号增益,即输入信号幅度相对较小的情况下的增益;也可以是大信号增益,即输入信号幅度较大的情况下的增益。

通常使用dB(分贝)来表示增益大小。

2.带宽:带宽是指运放能够正确放大的频率范围。

在带宽之外的信号将会被放大产生失真。

带宽通常以Hz(赫兹)表示,常见的运放带宽为几百kHz到几GHz。

3.输入电阻:输入电阻指的是运放输入端的电阻阻抗。

输入电阻越大,表示输入信号的损耗越小,输出信号与输入信号之间的电压差会更小。

输入电阻一般以欧姆(Ω)表示。

4.输出电阻:输出电阻指的是运放输出端的电阻阻抗。

输出电阻越小,表示运放输出信号的能力越强,能够驱动更大的负载。

输出电阻一般以欧姆(Ω)表示。

5.失调电流:失调电流是指运放输入端的两个输入电流之间的差异。

失调电流越小,表示运放的两个输入端能够更好地匹配,从而减小了对输入信号的失真。

失调电流一般以安培(A)表示。

6.偏置电压:偏置电压是指运放两个输入端相对于公共模式电压的偏差。

偏置电压越小,表示运放能够更好地接近理想运算放大器模型,减小了对输入信号的失真。

偏置电压一般以伏特(V)表示。

7.输出偏置电压:输出偏置电压是指运放输出端相对于公共模式电压的偏差。

输出偏置电压越小,表示运放输出信号更加准确,能够更好地匹配输入信号。

输出偏置电压一般以伏特(V)表示。

8.运放噪声:运放噪声是指运放输出信号中存在的由运放本身引起的随机噪声。

运放噪声分为输入噪声和输出噪声,通常以nV/√Hz(纳伏特/根赫兹)表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.对放大电路输入电阻和输出电阻的影响
电工与电子技术
四种负反馈对 ri 和 ro 的影响
串联电压 串联电流 并联电压 并联电流
ri
增高
ro 减低
增高 增高
减低 减低
减低 增高
思考题:为了分别实现: (a) 稳定输出电压; (b) 稳定输出电流; (c) 提高输入电阻; (d) 降低输出电阻。
应引入哪种类型的负反馈?
愈小愈好
6. 共模输入电压范围 UICM
超出此值,运放的共模抑制性能下降,甚至造成器件损坏。
电工与电子技术
11.1.3 理想运算放大器及其分析依据
在分析运算放大器的电路时,一般将它看成是 理想的运算放大器。理想化的主要条件:
1. 开环电压放大倍数 2. 差模输入电阻 3. 开环输出电阻 4. 共模抑制比
电工与电子技术
RB1
C1+
RS es+–
+
uiRB2

- RC1
+ T1
RE1
RF
-RC2 + +C2
T2
+UCC
+
RE2
RL uo CE2 –
解:T2集电极的 反馈到T1的发射极,提高了E1 的交流电位,使Ube1减小,故为负反馈;
反馈从T2的集电极引出,是电压反馈;反馈电压 引入到T1的发射极,是串联反馈。
电工与电子技术
RB1
C1+
RS es+–
+
uiRB2

RC1 T1
RE1
RC2
+UCC
+C2
T2
+
RF RE2
RL uo CE2 –
解: RE2对交流不起作用,引入的是直流反馈; RE1、RF对交、直流均起作用,所以引入的 是交、直流反馈。
RE1对本级引入串联电流负反馈。
例3:判断图示电路中的负反馈类型。
返回
11.3 运算放大器在信号运算方面的应用
电工与电子技术
11.3.1 比例运算 1.反相输入
if RF
由运放工作在线性区的依据 ii
ii if 可列出
u u 0
ii
ui
u R1
ui R1
if
u uo RF
uo RF
由此得出
闭环电压 放大倍数
uo
RF R1
ui
Auf
uo ui
RF R1
电工与电子技术
第11章 运算放大器
11.1 运算放大器的简单介绍 11.2 放大电路中的负反馈 11.3 运算放大器在信号运算方面的应用 11.4 运算放大器在信号处理方面的应用 11.5 运算放大器在波形产生方面的应用 11.6 使用运算放大器应注意的几个问题
电工与电子技术
第11章 运算放大器
分立电路是由各种单个元件联接起来的电子电路。
u u
uo Uo(sat)
u u Uo 发生跃变
2. id 0 依然成立
返回
11.2 放大电路中的负反馈
电工与电子技术
11.2.1 反馈的基本概念
凡是将放大电路(或某个系统)输出信号的一部 分或全部经某种电路(反馈网络)引回到输入端,称 为反馈。
如果反馈信号使净输入信号增加,称为正反馈。 如果反馈信号使净输入信号减小,称为负反馈。
电工与电子技术
判4别. 并图联示电电流路负的反反馈馈类型
if RF
并联电流负反馈方框图
ii
+
ui

id

R1
+
R2
io
+-
RL uR
ui ii + id
A
io

if
F
R iR
图中 id ii if
if
( R RF
R )io
电工与电子技术
如何判别电路中反馈类型小结
(1) 反馈电路直接从输出端引出的,是电压反馈; 从负载电阻靠近“地”端引出的,是电流反馈;
电工与电子技术
运放工作在线性区的依据 1. u+ u–
u– id
u+
– rid ++
uo
由于运放 Auo ,而 故从式 uo Auo (u u ) ,可知
uo
是有限值,
(u
u )
uo Auo
0
相当于两输入端之间短路,但又未真正短路,故
称 “虚短路” 。
2. id 0 运放开环输入电阻 rid 相当于两输入端之间断路,但又未真正断路,故 称 “虚断路”。
电工与电子技术
判别2图. 并示联电电路压的负反反馈馈类型
if RF
ii
id
+ R1
ui
– R2

+
+-
RL
+
uo

净输入电流
负反馈
id ii if
反馈电流
if
u uo RF
uo RF
电压反馈 并联反馈
2. 并联电压负反馈
电工与电子技术
if RF
并联电压负反馈方框图
ii
id
ii + id
ui
uo
UO(sat)
正饱和区
u– u+
– ++
uo
–Uim
线性区
uo Auo (u u )
o Uim u u 因为理想运放
开环电压放大倍数 Auo
–UO(sat) 负饱和区
所以,当 u u时, uo UO(sat)
理想运放电压传输特性
u u
uo UO(sat)
11.1.3 理想运算放大器及其分析依据
+ ui
+ u–d

A1+ +
uo1

R
– uf +
– A2 +
uo
+
RL
[解] 反馈电路从 A2 的输出端引出,故为电压反馈; 反馈电压 uf 和输入电压ui 分别加在的同相和反相两个输 入端,故为串联反馈;
反馈电压 uf 使净输入电压 ud = ui – uf 减小,故为负反馈;
串联电压负反馈
[例 2] 判别图示电路从 A2 输出端引入 A1 输入端的反馈类型。
RE1、RF引入越级串联电压负反馈。
电工与电子技术
例4:如果RF不接在T2 的集电极,而是接C2与RL 之间,两者有何不同 ?
RB1
C1+
RS es+–
+
uiRB2

RC1 T1
RE1
RC2
×
+C2
T2
+UCC
+
RF RE2
RL uo CE2 –
解:因电容C2的隔直流作用,这时RE1、RF仅引入 交流反馈。
反馈量取自输出电压为电压反馈,取自输出电流为电流反馈;
在输入端
反馈量以电流的形式出现,与输入信号进行比较为并联反馈;
反馈量以电压的形式出现,与输入信号进行比较为串联反馈。
电工与电子技术
11.2.2 负反馈的类型
判1. 别串图联示电电压路负的反反馈馈类型
RF

uf R1
+ ud–

+
ui
R2
+
+

无负反馈放大 电路方框图
A X i
X o
11.2.1 反馈的基本概念 比较环节 基本放大电路
电工与电子技术
带有负反馈放大 X i + X d
A
X o
电路的方框图
X X X
i o f
— — —
输入信号 输出信号 反馈信号
X d — 净输入信号
– X f
F
反馈电路
净输入信号 X d X i X f 若三者同相,
+ R1
ui

– +
+
R2
+
uo

若 R1 RF 则 uo ui
Auf
uo ui
1
平衡电阻 R2 R1 // RF
电工与电子技术
结论:
(1) Auf为Auf 只与外部电阻 R1、RF 有关,与运放本
身参数无关。
(3) | Auf | 可大于 1,也可等于 1 或小于 1 。 (4) 因u–= u+= 0 , 所以反相输入端“虚地”。 (5) 电压并联负反馈,输入、输出电阻低,
ri = R1。共模输入电压低。
电工与电子技术
11.3.1 比例运算
2.同相输入
由运放工作在线性区的依据
ii if
可列出
由此得出 闭环电压 放大倍数
u u ui
ii
u R1
ui R1
Auo
rid ro 0 KCMRR
由于实际运算放大器的技术指标接近理想化条件, 后面对运算放大器的分析都是按其理想化条件进行的。
11.1.3 理想运算放大器及其分析依据
电工与电子技术
表示运算放大器输出电压与输入电压之间关系的
曲线称为传输特性。
uo
UO(sat)
正饱和区
–Uim O
线性区
Uim u u
–UO(sat) 负饱和区
u– u+
– ++
uo
uo Auo (u u )
若 Auo = 106 ± UO(sat) = ±15 V 则 ±UIM = ±0.015 mV
相关文档
最新文档