表达式求值
表达式求值

(1)6 7 5 – 8 3 / * + (2)25 x + a a b + * b + *
问题2 问题2:如何对一个后缀表达式求值?
步骤: 1、读入表达式一个字符 2、若是操作数,压入栈,转4 3、若是运算符,从栈中弹出2个数,将运算结果再压入栈 4、若表达式输入完毕,栈顶即表达式值; 若表达式未输入完,转1 例 计算 4+3*5 后缀表达式:435*+
3 1 4 2 优先级,有时还要处理括号。
运算符的优先关系表
+ - × / ( ) + > > > > < > - > > > > < > × < < > > < > / < < > > < > ( < < < < < ) > > > > = >
后缀表达式:不包含括号,运算符放在两个运算
对象的后面,所有的计算按运算符出现的顺序,严 格从左向右进行。 如:2 1 + 3 *,对于的中缀表达式为(2 + 1) * 3
中缀表达式:在程序语Байду номын сангаас中,运算符位于两个操
作数中间的表达式称为是中缀表达式。P66 例子: 要对以下中缀表达式求值: 4+2×3 - 10/5 1 中缀表达式运算的规则: =4+6-10/5 (1)先乘除,后加减; 2 =4+6-2 (2)从左算到右; 3 =10-2 (3)先括号内,后括号外。 。 4 =8 + × - / 中缀表达式不仅要依赖运算符
表达式求值实验报告

表达式求值的类型定义与操作实现一、需求分析设计一个程序,演示用算符优先法对算术表达式求值的过程。
利用算符优先关系,实现对算术四则混合运算表达式的求值。
(1)输入的形式:表达式,例如2*(3+4)#;包含的运算符只能有'+' 、'-' 、'*' 、'/' 、'('、')';(2)输出的形式:运算结果,例如Answer is:77.000000;(3)程序所能达到的功能:对表达式求值并输出结果。
二、概要设计:本课程设计需要用到抽象数据类型栈存储表达式。
本部分给出栈的类型定义与表达式求值操作描述。
1、存储结构(顺序栈):typedef struct SqStack{SElemType *base;SElemType *top;int stacksize;}SqStack;2、基本操作:Status InitStack(SqStack &s)操作结果:初始化一个空栈s。
Status GetTop(SqStack s,SElemType &e)初始条件:栈s已存在。
操作结果:得到s的栈顶元素并用e带回。
Status Push(SqStack &s,SElemType e)初始条件:栈s已存在。
操作结果:向栈s中压入元素e。
Status Pop(SqStack &s,SElemType &e)初始条件:栈s已存在‘操作结果:弹出栈s栈顶元素,并用e带回。
Status In(char e)操作结果:判断e是否为7种运算符之一char Precede(char p,char c)操作结果:比较运算符p与运算符c的优先级。
SElemType Operate(SElemType x,char n,SElemType y)操作结果:计算x,y对运算符n的运算结果。
三、详细设计本部分主要给出表达式求值的实现算法1、初始化一个空栈sStatus InitStack(SqStack &s) //{s.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType));if(!s.base)exit(OVERFLOW);s.top=s.base;s.stacksize=STACK_INIT_SIZE;return OK;}2、读取栈顶元素Status GetTop(SqStack s,SElemType &e){if(s.top==s.base)return ERROR;e=*(s.top-1);return OK;}3、向栈s中压入元素eStatus Push(SqStack &s,SElemType e){if(s.top-s.base>=s.stacksize){s.base=(SElemType*)realloc(s.base,(s.stacksize+STACKINCREMENT)*sizeof(SElemType));if(!s.base)exit(OVERFLOW);s.top=s.base+s.stacksize;s.stacksize+=STACKINCREMENT;}*s.top++=e;return OK;}4、弹出栈顶元素Status Pop(SqStack &s,SElemType &e) //{if(s.top==s.base)exit(OVERFLOW);e=* --s.top;return OK;}5、判断是否为7种运算符之一Status In(char e) / /{switch(e){case '+':case '-':case '*':case '/':case '(':case ')':case '#':return(1);break;default:return(0);}}6、比较两运算符优先级char Precede(char p,char c){ 'switch(p){case '+':case '-':switch(c){case '*':case '/':case '(':return '<';break;default:return '>';break;}break;case '*':case '/':switch(c){case '(':return '<';break;default:return '>';break;}break;case '(':switch(c){case ')':return '=';break;case '#':printf("ERROR!!\n");exit(OK);default:return '<';break;}break;case ')':switch(c){case '(':printf("ERROR!!\n");exit(OK);default:return '>';break;}break;case '#':switch(c){case ')':printf("ERROR!!\n");exit(OK);case '#':return '=';break;default:return '<';break;}break;}}7、四则运算SElemType Operate(SElemType x,char n,SElemType y) {SElemType e;switch(n){case '+':e=x+y;break;case '-':e=x-y;break;case '*':e=x*y;break;case '/':if(y==0){printf("分母不能为0!\n");exit(1);}else{e=x/y;break;}}return e;}8、主函数进行表达式求值void main(){SqStack OPTR,OPND;SElemType p,s,a,b,theta;char c;printf("请输入一个表达式并以'#'结束\n(只包括' +-*/' 和'('')'):\n");InitStack(OPTR);Push(OPTR,'#');InitStack(OPND);c=getchar();GetTop(OPTR,p);while(c!='#'||p!='#'){if(!In(c)){s=c-48;c=getchar();while(c>='0'&&c<='9'){s=s*10+(c-48);c=getchar();}Push(OPND,s);}else{switch(Precede(p,c)){case '<':Push(OPTR,c);c=getchar();break;case '=':Pop(OPTR,s);c=getchar();break;case '>':Pop(OPTR,theta);Pop(OPND,b);Pop(OPND,a);Push(OPND,Operate(a,theta,b));break;}GetTop(OPTR,p);}}//whileprintf("\n\n");GetTop(OPND,p);printf("Answer is:%f\n",p);getch();}四、调试分析1、初始化了一种类型的两个栈,分别用来存放数值和运算符。
c语言算术表达式求值

c语言算术表达式求值【实用版】目录1.引言2.C 语言算术表达式的基本概念3.C 语言算术表达式的求值方法4.实际应用示例5.总结正文【引言】在 C 语言编程中,算术表达式是用来进行数值计算的重要工具。
本篇文章将为大家介绍 C 语言算术表达式的求值方法。
【C 语言算术表达式的基本概念】C 语言中的算术表达式主要包括以下几种:1.一元运算符:例如+、-、*、/等,用于对一个数值进行操作。
2.二元运算符:例如+、-、*、/等,用于对两个数值进行操作。
3.关系运算符:例如<、>、<=、>=、==、!=等,用于比较两个数值的大小或相等性。
4.逻辑运算符:例如&&、||、! 等,用于进行逻辑判断。
【C 语言算术表达式的求值方法】C 语言中,算术表达式的求值主要遵循以下规则:1.先进行括号内的运算,再进行括号外的运算。
2.先进行乘除法运算,再进行加减法运算。
3.关系运算符和逻辑运算符的优先级较低,从左到右依次进行运算。
【实际应用示例】下面我们通过一个实际的 C 语言程序,来演示算术表达式的求值过程。
```c#include <stdio.h>int main() {int a = 10, b = 5;int result;result = a + b * (a - b) / (a * b);printf("The result is: %d", result);return 0;}```在这个程序中,我们定义了两个整数变量 a 和 b,并通过算术表达式计算 result 的值。
根据我们之前提到的算术表达式求值规则,我们可以将这个表达式分解为以下几个步骤:1.计算括号内的值:a - b = 10 - 5 = 52.计算乘法运算:b * (a - b) = 5 * 5 = 253.计算除法运算:(a * b) / (a * b) = 14.计算加法运算:a + 25 = 10 + 25 = 355.输出结果:printf("The result is: %d", result); 输出 35【总结】通过本篇文章的介绍,相信大家已经对 C 语言算术表达式的求值方法有了更加深入的了解。
小学综合算式专项测题数学表达式求值

小学综合算式专项测题数学表达式求值在小学综合算式的学习中,求值是一个重要的内容。
通过求值,可以帮助孩子巩固和运用所学的数学表达式,提高其算术运算能力。
下面本文将针对小学综合算式专项测题,围绕数学表达式的求值展开论述。
一、整数运算的求值整数运算是小学数学学习的基础,也是综合算式求值的重要部分。
在求整数运算的值时,我们可以利用规则和性质进行简化计算。
例如,对于表达式“3 + 7”,可以直接将3与7相加,得到结果10。
类似地,对于“9 - 4”,可以将9减去4,得到5。
通过这样的简化计算,可以帮助学生更好地理解整数运算的过程,并能够灵活地运用于实际问题的求解当中。
二、带有括号的算式求值在综合算式中,常常会使用括号来改变计算次序。
对于带有括号的算式,我们需要按照括号内的运算规则进行计算,然后根据整体算式的运算顺序进行求值。
例如,对于算式“4 × (3 + 2)”,首先计算括号中的表达式3 + 2,得到结果5,然后将4与5相乘,得到结果20。
通过这样的求值过程,可以帮助学生掌握括号运算的应用技巧。
三、混合运算的求值小学综合算式中常会出现混合运算的情况,即涉及多种运算符的表达式。
在求解混合运算的值时,我们需要按照运算顺序和运算法则进行计算,最终得到最终结果。
例如,“2 × 3 - 4 ÷ 2”,根据运算顺序,我们先进行乘法运算,得到结果6;然后进行除法运算,得到结果2;最后进行减法运算,得到最终结果0。
通过这样的求值过程,可以培养学生进行多种运算符混合运算的能力。
四、应用题中的数学表达式求值在小学综合算式的学习中,经常会遇到一些实际应用题,需要根据题意进行数学表达式的求值。
这类题目要求学生能够将实际问题转化为数学表达式,并根据题目所给条件进行求解。
例如,“小明有10元钱,他花了3元买了两本书,还剩多少钱?”可以将这个问题转化为算式“10 - 3 × 2”,然后求出最终结果。
表达式求值算法总结(C++)

表达式求值算法总结(C++)表达式求值,一般采用栈和队列的方式来求值,下面介绍表达式求值的两种算法。
方法一、使用两个栈,一个为操作符栈OPTR(operator),一个是操作数栈OPND(operand)算法过程:当输入3 * ( 4 - 1 * 2 ) + 6 / ( 1 + 1 )时,为简单方便,我们输入时,按照字符的顺序一个一个的处理,比如ch = getchar()。
然后根据ch 的值判断:若ch 是数字,直接压入操作数栈OPND;若ch 是'(',直接入栈OPTR;若ch 是')',若OPTR 和OPND 非空,弹出OPTR的栈顶操作符,弹出OPND栈顶的两个操作数,做运算,然后见个结果压入栈OPND,直到弹出的OPTR栈顶元素时')';若ch 是操作符(比如+, -, *, /),如果OPTR栈顶元素是(,直接入栈OPTR,如果不是'('且OPTR栈非空且栈顶元素操作符的优先级大于ch,那么弹出OPTR的栈顶操作符,并弹出OPND中栈顶的两个元素,做运算,将运算结果入栈OPND,此时,重复这一步操作;否则将ch入栈OPTR;若ch为EOF,说明表达式已经输入完成,判断OPTR是否为空,若非空,一次弹出OPTR 栈顶操作符,并与OPND栈顶两个元素做运算,将运算结果入栈OPND,最后表达式的结果即OPND的栈底元素。
以表达式3 * ( 4 - 1 * 2 ) + 6 / ( 1 + 1 )为例,计算过程如下所示:通过上述的计算过程,写出伪代码如下所示:void GetExpress(Stack * OPTR, Stack * OPND){char ch;while ((ch = getchar ()) != EOF) {if (IsDigit (ch)) {PushStack (OPND, ch);}else if (ch == '(')PushStack (OPTR, ch);else if (ch == ')') {while (!IsStackEmpty(OPTR)) {PopStack (OPTR, op);if (op == ')')break;PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}}else if (ch == '+' || ch == '-'|| ch == '*' || ch == '/') {while (!IsStackEmpty (OPTR) && GetTop (OPTR)!='(' && GetTop (OPTR)>ch) { PopStack (OPTR, op);PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}if (IsStackEmpty (OPTR) || GetTop(OPTR)=='(')PushStack (OPTR, ch);}}}// 当表达式输入完成后,需要对OPTR栈和OPND中的元素进行运算int GetValue(Stack * OPTR, Stack * OPND){while (!IsStackEmpty (OPTR)) {PopStack (OPTR, op);PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}// 最后的操作数栈OPND栈顶元素即是表达式的值return GetTop(OPND);}PS: 上面没有指出表达式非法的情况方法二:采用中缀表达式的方法,求取表达式的中缀表达式,借用一个操作符栈OPTR和中缀表达式队列Queue,求取中缀表达式,然后对中缀表达式求值。
数据结构课程设计-表达式求值【完整版】

XXXXXX大学《数据结构》课程设计报告班级:学号:姓名:指导老师:目录一算术表达式求值一、需求分析二、程序得主要功能三、程序运行平台四、数据结构五、算法及时间复杂度六、测试用例七、程序源代码二感想体会与总结算术表达式求值一、需求分析一个算术表达式就是由操作数(operand)、运算符(operator)与界限符(delimiter)组成得。
假设操作数就是正整数,运算符只含加减乘除等四种运算符,界限符有左右括号与表达式起始、结束符“#”,如:#(7+15)*(23—28/4)#。
引入表达式起始、结束符就是为了方便.编程利用“算符优先法”求算术表达式得值.二、程序得主要功能(1)从键盘读入一个合法得算术表达式,输出正确得结果。
(2)显示输入序列与栈得变化过程。
三、程序运行平台Visual C++6、0版本四、数据结构本程序得数据结构为栈。
(1)运算符栈部分:struct SqStack //定义栈{char *base; //栈底指针char *top; //栈顶指针intstacksize; //栈得长度};intInitStack (SqStack &s) //建立一个空栈S{if (!(s、base= (char *)malloc(50*sizeof(char))))exit(0);s、top=s、base;s、stacksize=50;return OK;}char GetTop(SqStack s,char &e) //运算符取栈顶元素{if (s、top==s、base) //栈为空得时候返回ERROR{ﻩ printf("运算符栈为空!\n");ﻩ return ERROR;}elsee=*(s、top-1); //栈不为空得时候用e做返回值,返回S得栈顶元素,并返回OK returnOK;}int Push(SqStack&s,char e) //运算符入栈{if (s、top—s、base >= s、stacksize)ﻩ{printf("运算符栈满!\n");ﻩs、base=(char*)realloc(s、base,(s、stacksize+5)*sizeof(char));//栈满得时候,追加5个存储空间if(!s、base)exit (OVERFLOW);s、top=s、base+s、stacksize;s、stacksize+=5;}ﻩ*(s、top)++=e;//把e入栈ﻩreturn OK;}int Pop(SqStack &s,char &e) //运算符出栈{if (s、top==s、base) //栈为空栈得时候,返回ERROR{printf("运算符栈为空!\n”);ﻩ return ERROR;}else{ﻩﻩe=*-—s、top;//栈不为空得时候用e做返回值,删除S得栈顶元素,并返回OK return OK;}}int StackTraverse(SqStack&s)//运算符栈得遍历{ﻩchar *t;ﻩt=s、base;ﻩif (s、top==s、base){ﻩ printf(”运算符栈为空!\n”); //栈为空栈得时候返回ERRORreturn ERROR;}while(t!=s、top){ﻩﻩprintf(" %c",*t); //栈不为空得时候依次取出栈内元素t++;ﻩ}return ERROR;}(2)数字栈部分:struct SqStackn//定义数栈{int *base; //栈底指针int*top; //栈顶指针int stacksize; //栈得长度};intInitStackn (SqStackn &s) //建立一个空栈S{s、base=(int*)malloc(50*sizeof(int));if(!s、base)exit(OVERFLOW);//存储分配失败s、top=s、base;s、stacksize=50;return OK;}int GetTopn(SqStackn s,int&e) //数栈取栈顶元素{if(s、top==s、base){printf("运算数栈为空!\n");//栈为空得时候返回ERRORﻩ return ERROR;}elseﻩe=*(s、top-1);//栈不为空得时候,用e作返回值,返回S得栈顶元素,并返回OKreturnOK;}int Pushn(SqStackn &s,int e) //数栈入栈{if(s、top—s、base>=s、stacksize){ﻩﻩprintf("运算数栈满!\n");//栈满得时候,追加5个存储空间ﻩs、base=(int*)realloc (s、base,(s、stacksize+5)*sizeof(int));if(!s、base) exit (OVERFLOW);ﻩs、top=s、base+s、stacksize;//插入元素e为新得栈顶元素s、stacksize+=5;}*(s、top)++=e; //栈顶指针变化returnOK;}int Popn(SqStackn &s,int &e)//数栈出栈{ﻩif (s、top==s、base){ﻩ printf("运算符栈为空!\n");//栈为空栈得视时候,返回ERRORﻩ return ERROR;ﻩ}else{ﻩﻩe=*—-s、top;//栈不空得时候,则删除S得栈顶元素,用e返回其值,并返回OK ﻩreturnOK;}}int StackTraversen(SqStackn &s)//数栈遍历{ﻩint*t;ﻩt=s、base ;ﻩif(s、top==s、base)ﻩ{printf("运算数栈为空!\n”);//栈为空栈得时候返回ERRORﻩ return ERROR;ﻩ}ﻩwhile(t!=s、top)ﻩ{printf(” %d”,*t); //栈不为空得时候依次输出t++;}return ERROR;}五、算法及时间复杂度1、算法:建立两个不同类型得空栈,先把一个‘#’压入运算符栈。
表达式求值算法比较

在 Pe i e中载入 已截取的 MP rme r V文件 , 将其依次拖 到
时间线上 , 即可实现 多媒 体编辑 。关于 更多的信息, 参考 可
Pe i e的帮助文件及相关 书籍 , rme r 本文 不再过多介绍 。 多媒 体文件在 Pe ir rm e e中编辑后 , 可用 E pr 进行媒 xot
Co a a l t d fEx r sin Ev la in M eh d mp r be S u y o p eso au t t o o
s n  ̄ lQig C e g S u e hn h w i
程书伟
Absr ct Th aerma e n ea o t n o h ufl n rc s frlv n to s o x rsin v lain a d a ay e ta : e p l k 8 a lb r i n t e fl l tp oe s o eea tmeh d fep eso eau to n n lzs a o i me
1表达 式求 值 介绍
目前常用 的表达式种类主 要包括中缀表达式与后缀表 达式两种 。中缀 表达式即平常使用的数学表达式, : x x 如 l3 (+ ) 7 , 5 2 一 特点是符 合人类 的思维习惯 , 用户使 用起来很 顺手 。后缀 表达 式又 称 为逆波 兰式 ,是 波兰 逻辑 学 家 J . L kse i 于 12 u ai c w z 9 9年提 出的另一种表 示表 达式 的方法 , 按 此方法 , 每一运算符都置于其运 算对象之后 , 故称为后缀表 示。 种表示法 的一个特 点是, 这 表达 式中各个运算是按运算
体文件 导出。值得注意 的是导 出要选 择 E p r t D D而 x ot o V
C#算术表达式求值(后缀法),看这一篇就够了

C#算术表达式求值(后缀法),看这⼀篇就够了⼀、种类介绍算术表达式有三种:前缀表达式、中缀表达式和后缀表达式。
⼀般⽤的是中缀,⽐如1+1,前后缀就是把操作符移到前⾯和后⾯,下⾯简单介绍⼀下这三种表达式。
1、前缀表⽰法前缀表⽰法⼜叫波兰表⽰法,他的操作符置于操作数的前⾯(例:+ 1 2),是波兰数学家扬·武卡谢维奇1920年代引⼊的,⽤于简化命题逻辑。
因为我们⼀般认为操作符是在操作数中间的,所以在⽇常⽣活中⽤的不多,但在计算机科学领域占有⼀席之地。
⼀般的表⽰法对计算机来说处理很⿇烦,每个符号都要考虑优先级,还有括号这种会打乱优先级的存在,将使计算机花费⼤量的资源进⾏解析。
⽽前缀表⽰法没有优先级的概念,他是按顺序处理的。
举个例⼦:9-2*3这个式⼦,计算机需要先分析优先级,先乘后减,找到2*3,再进⾏减操作;化成前缀表⽰法就是:- 9 * 2 3,计算机可以依次读取,操作符作⽤于后⼀个操作数,遇到减就是让9减去后⾯的数,⽽跟着9的是乘,也就是说让9减去乘的结果,这对计算机来说很简单,按顺序来就⾏了。
2、中缀表⽰法这也就是我们⼀般的表⽰法,他的操作符置于操作数的中间(例:1 + 2),前⾯也说过这种⽅法不容易被计算机解析,但他符合⼈们的普遍⽤法,许多编程语⾔也就⽤这种⽅法了。
在中缀表⽰法中括号是必须有的,要不然运算顺序会乱掉。
3、后缀表⽰法后缀表⽰法⼜叫逆波兰表⽰法,他的操作符置于操作数的后⾯(例:1 2 +),他和前缀表⽰法都对计算机⽐较友好,但他很容易⽤堆栈解析,所以在计算机中⽤的很多。
他的解释过程⼀般是:操作数⼊栈;遇到操作符时,操作数出栈,求值,将结果⼊栈;当⼀遍后,栈顶就是表达式的值。
因此逆波兰表达式的求值使⽤堆栈结构很容易实现,且能很快求值。
注意:逆波兰记法并不是简单的波兰表达式的反转。
因为对于不满⾜交换律的操作符,它的操作数写法仍然是常规顺序,如,波兰记法/ 6 3的逆波兰记法是6 3 /⽽不是3 6 /;数字的数位写法也是常规顺序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数据结构(C++版)》课设计报告2012—2013学年第一学期
课程名称数据结构
设计题目表达式求值
专业班级
姓名
学号
指导教师
课程设计题目:表达式求值
一、问题描述
对一个合法的中缀表达式求值。
简单起见,假设表达式只包含+,-,*,/等4个双目运算符,且运算符本身不具有二义性,操作数均为一位整数。
二、基本要求
1.正确解释表达式;
2.符合四则运算规则;
3.输出最后的计算结果。
三、概要设计
对中缀表达式求值,通常使用“算符优先算法”。
根据四则运算规则,在运算的每一步中,任意两个相继出现的运算符t和c之间的优先关系至多是下面三种关系之一:
(1) t的优先级低于c;
(2) t的优先级等于c;
(3) t的优先级高于c。
为实现算符优先算法,可以使用两个工作栈:一个栈OPTR存放运算符;另一个栈OPND存放操作数,中缀表达式用一个字符串数组存储。
四、详细设计
利用类模板
#include<iostream>
using namespace std;
const int StackSize=100;
template <class DataType> //定义模板类SeqStack
class SeqStack{
public:
SeqStack( ) ; //构造函数,栈的初始化
~SeqStack( ); //析构函数
void Push(DataType x); //将元素x入栈
DataType Pop( ); //将栈顶元素弹出
DataType GetTop( ); //取栈顶元素(并不删除)
int Empty( ); //判断栈是否为空
void Printf();
private:
DataType data[StackSize]; //存放栈元素的数组
int top; //栈顶指针,指示栈顶元素在数组中的下标
};
template <class DataType>
SeqStack<DataType>::SeqStack( ){ top=-1; }
template <class DataType>
SeqStack<DataType>::~SeqStack( ){}
template <class DataType>
void SeqStack<DataType>::Push(DataType x){ if (top==StackSize-1) throw "上溢";
data[++top]=x;
}
template <class DataType>
DataType SeqStack<DataType>::Pop( ){ DataType x;
if (top==-1) throw "下溢";
x=data[top--];
return x;
}
template <class DataType>
DataType SeqStack<DataType>::GetTop( ){
if (top!=-1)
return data[top];
}
template <class DataType>
int SeqStack<DataType>::Empty( ){
if(top==-1) return 1;
else return 0;
}
template<class DataType>
void SeqStack<DataType>::Printf(){
while(top!=-1)
{
cout<<GetTop()<<endl;
Pop();
}
}
int isp(char op){
switch(op){
case '\0':
return 0;
break;
case '+':
return 3;
break;
case '-':
return 3;
break;
case '*':
return 5;
break;
case '/':
return 5;
break;
case '(':
return 1;
break;
default:
return 6;
}
}
int icp(char ch){ switch(ch){
case '+':
return 2;
break;
case '-':
return 2;
break;
case '*':
return 4;
break;
case '/':
return 4;
break;
case '(':
return 6;
break;
case ')':
return 1;
break;
default:
return 0;
}
}
int calculate(int a, char ch, int b){
switch(ch){
case '+':
return a + b;
break;
case '-':
return a - b;
break;
case '*':
return a * b;
break;
case '/':
return a / b;
break;
default:
return -1;
}
}
int evaluation(char infixS[]){
SeqStack<char> OPTR;
SeqStack<int> OPND;
OPTR.Push('\0');
int i = 0;
char ch = infixS[i];
int a,b;
while(ch != '\0'){
if(ch >= '0' && ch <= '9'){
OPND.Push(ch - '0');
ch = infixS[++i];
}//if
if(ch == '+' || ch == '-' || ch == '*' || ch == '/' || ch == '(' || ch == ')'){
if(icp(ch) > isp(OPTR.GetTop())){
OPTR.Push(ch);
ch = infixS[++i];
}
else if(icp(ch) < isp(OPTR.GetTop())){
b = OPND.Pop();
a = OPND.Pop();
OPND.Push(calculate(a,OPTR.Pop(),b));
}
else{
OPTR.Pop();
ch = infixS[++i];
}
}//if
}//while
while(OPTR.GetTop() != '\0'){
b = OPND.Pop();
a = OPND.Pop();
OPND.Push(calculate(a,OPTR.Pop(),b));
}//while
return OPND.Pop();
}
//设计主函数。
int main(){
char s[] = {'8','*','(','2','+','3',')','*','2','+','1','\0'};
cout<<evaluation(s)<<endl;
return 0;
}
四、运行和测试
1.所求表达式为:
char s[] = {'8','*','(','2','+','3',')','*','2','+','1','\0'}
2.测试后结果:
五、总结与心得
解决此问题首先得区分运算符和操作数,得非常熟悉栈的使用,包括入栈.出栈等.在优先级中容易出错,对于不同栈相同字符其等级也不同,这样利于辨别 .以字符序列形式从终端输入语法正确的、不含变量的整数表达式。
利用课本3.2.5节中给出的算符优先关系,实现对算术四则混合运算表达式的求值,并仿照课本上的例子演示在求值过程中运算符栈、运算数栈、输入字符和主要操作的变化过程.。