难点探究专题:全等三角形中的动态问题
难点探究专题:全等三角形中的动态问题

难点探究专题:全等三角形中的动态问题◆类型一全等三角形中的动点问题1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN 上的一个动点,在点P移动的过程中,若NA=NB,则∠PAM与∠PBM是否相等?说明理由.2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二全等三角形中的动图问题3.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC与△CDE都是等边三角形,连接AD,BE.(1)如果点B,C,D在同一条直线上,如图①所示,试说明:AD=BE;(2)如果△ABC绕C点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.◆类型三全等三角形中的翻折问题4.如图,将Rt△ABC沿斜边翻折得到△ADC,E,F分别为DC,BC边上的点,且∠EAF =12∠DAB.试猜想DE,BF,EF之间有何数量关系,并说明理由.参考答案与解析1.解:∠P AM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△P AN ≌△PBN (SAS),∴∠P AN =∠PBN .∴∠P AM =∠PBM .2.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD与△BCE 中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE .(2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如图所示.∵将Rt △ABC沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG =90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF 和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF=EF ,∴DE +BF =EF .。
全等三角形中的动态性问题

全等三角形中的动态性问题动态性几何问题是中考数学题型中的热点题型,这类试题常以运动的点、线段、变化的图形等为基本条件,给出一个或多个变量,要求确定变量与其它量之间的关系,或变量在一定条件为定值时,进行相关的几何计算和综合解答。
解答这类题目,一般要根据点的运动和图形的变化过程,对其不同情况进行分类求解,要始终把握住“动静结合找界点、分类讨论细演算” 。
一、图形的全等图形经过“轴对称”、“平移”、“旋转” 后,位置发生了变化,但形状和大小不变,变换后的图形和变换前的图形能完全重合,这样的两个图形就全等。
1、全等三角形的性质:对应角相等,对应边相等。
2、全等三角形的判定:SSS , SAS , ASA , AAS , HL 。
二、试题探究例题1、已知:AB⊥BD, ED⊥BD, AC=CE, BC=DE。
例题1图(1)(1)试猜想线段AC与CE的位置关系,并证明你的结论.结论:AC⊥CE (证明略)(2)若将△ECD沿CB方向平移,其余条件不变, 结论:AC⊥C1E 还成立吗?请说明理由。
例题1图(2)结论:AC⊥C1E (证明略)例题2、已知:AB⊥BD, ED⊥BD, AC=CE, BC=DE。
(1)线段BD、AB、DE之间有怎样的数量关系,并说明理由。
例题2图(1)结论:BD=AB+DE (证明略)(2)若将两个三角形绕点C 旋转到如图所示的位置,则线段BD、AB、DE之间数量关系还成立吗?并说明理由。
例题2图(2)结论:BD = AB - ED (证明略)总结:图形变换,全等不变;遇到变式,先找不变。
三、典型例题例题3、如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ 。
(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E,如图b,求证:BE⊥DQ 。
例题3图(a)例题3图(b)证明:略。
例题4、已知,如图1,E、F为线段AC上的两个动点,且DE⊥AC于E点,BF ⊥AC于F点,若AB=CD,AF=CE,BD交AC于M点;(1)求证:MB=MD,ME=MF;(2)当E、F两点移至如图2所示的位置时,其它条件不变,上述结论能否成立?若成立,请说明你的理由。
2020七年级数学下册试题 难点探究专题:全等三角形中的动态问题

难点探究专题:全等三角形中的动态问题◆类型一全等三角形中的动点问题1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN上的一个动点,在点P移动的过程中,若NA=NB,则∠PAM与∠PBM是否相等?说明理由.2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二全等三角形中的动图问题3.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC与△CDE都是等边三角形,连接AD ,BE.(1)如果点B ,C ,D 在同一条直线上,如图①所示,试说明:AD =BE ;(2)如果△ABC 绕C 点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.◆类型三 全等三角形中的翻折问题4.如图,将Rt △ABC 沿斜边翻折得到△ADC ,E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并说明理由.参考答案与解析1.解:∠P AM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△P AN ≌△PBN (SAS),∴∠P AN =∠PBN .∴∠P AM =∠PBM .2.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD 与△BCE 中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE . (2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如图所示.∵将Rt △ABC 沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG=90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF 和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF =EF ,∴DE +BF =EF .。
全等三角形中的动态几何问题

全等三角形中的动态几何问题动态几何题,是指以几何知识和几何图形为背景,渗透运动变化观点的一类试题;而通过对几何图形运动变化,使同学们经历由观察、想象、推理等发现、探索的过程,是中考数学试题中,考查创新意识、创新能力的重要题型;解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动.本文以中考试题中的全等三角形动态几何题为例,谈谈这类问题的解题思路,供同学们学习时参考.1. 在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD⊥MN 于D ,BE⊥MN于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD -BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.CBA ED图1NM AC DE MN图2AC BEDNM图32.如图A,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图A中的△CEF绕点C旋转一定的角度,得到图B,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图A中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形C(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.3. (08河北中考第24题)如图14-1,在△ABC 中,BC 边在直线l 上,AC ⊥BC ,且AC = BC .△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF =FP .(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将△EFP 沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP 沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.4. 如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系: ①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论图14-1(E )(F ) BC PA llPCF图14-2l图14-3是否仍然成立,并选取图2证明你的判断.5. 如图,在等腰梯形ABCD 中,已知AD∥BC,AB=DC ,AD=2,BC=4,延长BC 到E ,使CE=AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(5分)(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.(5分)F EDCBA。
专题03 全等三角形中的动态问题(解析版)

专题03全等三角形中的动态问题
初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。
解决动点问题常见的答题思路是:
1. 注意分类讨论;
2. 仔细探究全等三角形对应边与对应角的变化;
3. 利用时间表示出相应线段或边的长度,列出方程求解.
【典例解析】
【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______ 秒时,△DEB与△BCA全等.
【答案】0,2,6,8.
【解析】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,
∵AC=4,
∴BE=4,
∴AE=8−4=4,
∴点E的运动时间为4÷2=2(秒);
1/ 35。
全等三角形 动态问题

全等三角形动态问题全等三角形动态问题一:什么是全等三角形?•解释:全等三角形是指两个三角形的对应边长和对应角度都相等的情况下,它们是全等的。
问题二:全等三角形的性质有哪些?•解释:全等三角形具有以下性质:1.对应边长相等:如果两个三角形的对应边长相等,那么它们是全等的。
2.对应角度相等:如果两个三角形的对应角度相等,那么它们是全等的。
3.对边角的对应关系:如果两个三角形的一对对应边和夹角相等,那么它们是全等的。
4.SSA 判定条件:如果两个三角形的两对对应边和一对夹角相等,那么它们可能全等或无解。
5.SSS 判定条件:如果两个三角形的三对对应边相等,那么它们是全等的。
问题三:如何判断两个三角形是否全等?•解释:判断两个三角形是否全等可以使用以下方法:1.SSS 判定条件:如果两个三角形的三对对应边相等,那么它们是全等的。
2.SAS 判定条件:如果两个三角形的一对对应边和夹角相等,那么它们是全等的。
3.ASA 判定条件:如果两个三角形的两对对应角度和一对对应边相等,那么它们是全等的。
4.AAS 判定条件:如果两个三角形的两对对应角度和一对对边相等,那么它们是全等的。
5.RHS 判定条件:如果两个直角三角形的斜边和一个锐角相等,那么它们是全等的。
问题四:全等三角形的应用有哪些?•解释:全等三角形具有以下应用:1.几何证明:全等三角形的性质可以用于几何证明中,帮助推导出其他几何定理和性质。
2.三角测量:通过判定两个三角形是否全等,可以进行相关角度和边长的测量,用于解决实际问题。
3.相似三角形的推导:全等三角形的性质也可以用于推导相似三角形的性质和定理。
以上是关于全等三角形动态的一些问题及解释。
全等三角形是几何学中的重要概念,掌握其性质和应用可以帮助我们更好地理解和运用几何学知识。
问题五:如何构造一个全等三角形?•解释:构造一个全等三角形可以使用以下方法:1.SSS 构造法:根据给定的三个边长,可以使用直尺和量角器来构造一个全等的三角形。
全等三角形中的动态问题

全等三角形中的动态问题在学习全等三角形的时候,大家总是皱眉头,眼神恍惚,好像在解一道超级难的题。
三角形这个东西,真没那么复杂。
想象一下,三个小三角形在操场上聚会,嬉戏打闹,大家都挺亲密,根本不分你我。
全等三角形就像是这些小伙伴,它们的边长和角度一模一样,简直就是同一个模子里刻出来的。
听起来是不是很简单呢?你要知道,这个可不是说说而已,真正的乐趣在于如何运用它们。
想想,我们日常生活中也常常用到全等三角形。
比如说,拼图游戏。
拼图就是把不同形状的块组合成一个完整的图案。
你那块拼图,不管怎么换,最终都会和那些相同的块契合。
全等三角形就是这样的存在,它们在某种程度上能让我们快速解决问题,像魔法一样。
我们在设计房屋时,也会用到这些小三角形。
像屋顶的结构,有时候全等三角形的存在,能让我们的设计更加稳固。
这就像是搭积木,底部要稳,才能往上堆得高高的,三角形就给了我们这种力量。
说到三角形,就不得不提到那条著名的“毕达哥拉斯定理”,真是让人又爱又恨的家伙。
它说的是直角三角形的边长关系,有点像调皮的孩子,时不时就跑出来捣蛋。
不过,等你搞懂了,就会发现这玩意儿在全等三角形中简直是个无价之宝。
比如,你在设计一座桥的时候,桥的稳定性就是靠三角形的特性来保证的。
就像高空走钢丝的杂技演员,必须得有坚固的基础,才能一步一步走得稳稳当当。
全等三角形还常常出现在各种比赛中,像篮球赛、足球赛之类的,队员们都是通过精准的配合来获得胜利。
三角形的特性让他们能找到最佳的位置和角度,简直就像是在打游戏,得找准时机出手。
想象一下,一个队员在三角形的顶点,他的传球角度和距离就能让队友更容易得分。
哎呀,这样一想,数学和运动还真是个完美的组合呢。
再说说建筑设计,很多建筑师就是喜欢用全等三角形来增加美感和稳定性。
有时候你会发现,建筑物的外观就像一个个拼在一起的三角形,给人一种和谐又稳定的感觉。
这个设计就像是为建筑加了一层保护壳,让它不轻易倒下。
想象一下,那些高耸入云的摩天大楼,若没有三角形的帮忙,恐怕早就摇摇欲坠了。
最新人教版初中八年级上册数学难点探究专题练习:动态变化中的三角形全等

难点探究专题:动态变化中的三角形全等——以“静”制“动”,不离其宗◆类型一动点变化1.如图,Rt△ABC中,∠C=90°,AC=6,BC=3,PQ=AB,点P与点Q分别在AC和AC 的垂线AD上移动,则当AP=_________时,△ABC和△APQ全等.2.如图,△ABC中,AB=AC=12cm,∠B =∠C,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v cm/s,则当△BPD 与△CQP全等时,v的值为____________【提示:三角形中有两个角相等,则这两个角所对的边相等】.3.(2016·达州中考)△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.【方法11】(1)观察猜想:如图①,当点D在线段BC 上时,①BC与CF的位置关系为_______;②线段BC,CD,CF之间的数量关系为___________ (将结论直接写在横线上).(2)数学思考:如图②,当点D在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二图形变换4.如图甲,已知A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,且AB=CD,连接BD.(1)试问OE=OF吗?请说明理由;(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.5.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.参考答案与解析1.3或6解析:∵△ABC和△APQ全等,AB=PQ,∴有△ABC≌△QP A或△ABC≌△PQA.当△ABC≌△QP A时,则有AP =BC=3;当△ABC≌△PQA时,则有AP=AC =6,∴当AP=3或6时,△ABC和△APQ全等,故答案为3或6.2.2或3解析:当BD=PC时,△BPD 与△CQP全等.∵点D为AB的中点,∴BD=12AB=6cm,∴PC=6cm,∴BP=8-6=2(cm).∵点P在线段BC上以2cm/s的速度由B点向C点运动,∴运动时间为1s.∵△DBP≌△PCQ,∴CQ=BP=2cm,∴v =2÷1=2(cm/s); 当BD=CQ时,△BDP≌△QCP.∴PB=PQ,∠B=∠CQP.又∵∠B=∠C,∴∠C=∠CQP,∴PQ=PC,∴PB =PC.∵BD=6cm,BC=8cm,PB=PC,∴QC =6cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(cm/s),故答案为2或3.3.解:(1)①垂直②BC=CD+CF(2)CF⊥BC成立;BC=CD+CF不成立,正确结论:CD=CF+BC.证明如下:∵正方形ADEF中,AD=AF,∠DAF=∠BAC =90°,∴∠BAD=∠CAF.在△DAB与△F AC中,⎩⎪⎨⎪⎧AD=AF,∠BAD=∠CAF,AB=AC,∴△DAB≌△F AC(SAS),∴∠ABD=∠ACF,DB=CF.∵∠ACB=∠ABC=45°,∴∠ABD=180°-45°=135°,∴∠BCF=∠ACF-∠ACB =∠ABD-∠ACB=90°,∴CF⊥BC.∵CD=DB +BC,DB=CF,∴CD=CF+BC.4.解:(1)OE=OF.理由如下:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BF A=90°.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在Rt△ABF和Rt△CDE中,⎩⎪⎨⎪⎧AB=CD,AF=CE,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点探究专题:全等三角形中的动态问题
◆类型一全等三角形中的动点问题
1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN 上的一个动点,在点P移动的过程中,若NA=NB,则∠PAM与∠PBM是否相等?说明理由.
2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.
(1)观察猜想:如图①,当点D在线段BC上时,
①BC与CF的位置关系为________;
②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);
(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
◆类型二 全等三角形中的动图问题
3.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC 与△CDE 都是等边三角形,连接AD ,BE.
(1)如果点B ,C ,D 在同一条直线上,如图①所示,试说明:AD =BE ;
(2)如果△ABC 绕C 点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.
◆类型三 全等三角形中的翻折问题
4.如图,将Rt △ABC 沿斜边翻折得到△ADC ,E ,F 分别为DC ,BC 边上的点,且∠EAF =12
∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并说明理由.
参考答案与解析
1.解:∠P AM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,
∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△P AN ≌△PBN (SAS),∴∠P AN =∠PBN .∴∠P AM =∠PBM .
2.解:(1)①垂直 ②BC =CD +CF
(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,
∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .
3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD
与△BCE 中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,
∴△ACD ≌△BCE (SAS).∴AD =BE .
(2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .
4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如图所示.∵将Rt △ABC
沿斜边翻折得到△ADC ,∠EAF =12
∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG =90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .
在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,
∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .
在△AGF 和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,
∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF
=EF ,∴DE +BF =EF .。