2017年浙教版九年级数学上册知识点汇总x

合集下载

2017年浙教版九年级数学上册知识点汇总

2017年浙教版九年级数学上册知识点汇总

九年级(上册)1. 二次函数1.1. 二次函数把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。

1.2. 二次函数的图象二次函数y=ax 2(a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。

当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。

函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。

函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a 44,2b 2 当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。

1.3. 二次函数的性质二次函数y=ax 2(a ≠0)的图象具有如下性质:1.4. 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。

注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。

2. 简单事件的概率2.1. 事件的可能性 把在一定条件下一定会发生的事件叫做必然事件;把在一定条件下一定不会发生的事件叫做不可能事件;把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。

2.2.简单事件的概率把事件发生可能性的大小称为事件发生的概率,一般用P表示。

事件A发生的概率记为P(A)。

必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),那么事件A发生的概率为:P(A)=m/n。

浙教版九年级数学上册知识点

浙教版九年级数学上册知识点

浙教版九年级数学上册知识点课堂临时报佛脚,不如课前预习好。

其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。

下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

九年级上册数学单元知识点第一章证明一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。

2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)3.等腰三角形的两底角的平分线相等。

(两条腰上的中线相等,两条腰上的高相等)4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

特殊的等腰三角形等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

2、性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

3、判定:⑴三边相等的三角形是等边三角形。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

二、直角三角形全等1、直角三角形全等的判定有5种:(1)、两角及其夹边对应相等的两个三角形全等;(ASA)(2)、两边及其夹角对应相等的两个三角形全等;(SAS)(3)、三边对应相等的两个三角形全等;(SSS)(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半3、在直角三角形中,斜边上的中线等于斜边的一半4垂直平分线:垂直于一条线段并且平分这条线段的直线。

浙教版九年级数学上册知识点汇总

浙教版九年级数学上册知识点汇总

九年级(上册)1. 二次函数1.1. 二次函数把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。

1.2. 二次函数的图象二次函数y=ax 2(a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。

当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。

函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。

函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a 44,2b 2 当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。

1.3. 二次函数的性质二次函数y=ax 2(a ≠0)的图象具有如下性质:1.4. 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。

注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。

2. 简单事件的概率2.1. 事件的可能性把在一定条件下一定会发生的事件叫做必然事件;把在一定条件下一定不会发生的事件叫做不可能事件;把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。

2.2.简单事件的概率把事件发生可能性的大小称为事件发生的概率,一般用P表示。

事件A发生的概率记为P(A)。

必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),则事件A发生的概率为:P(A)=m/n。

数学九年级浙江上册知识点

数学九年级浙江上册知识点

数学九年级浙江上册知识点一、有理数1. 自然数、整数、有理数的概念及其性质自然数包括0及其后面所有的正整数,整数包括自然数、0及其相反数,有理数包括整数和所有可以表示为分数的数。

有理数可以进行加减乘除以及比较大小。

2. 有理数的四则运算规则加法:有理数相加,符号相同则取绝对值相加,结果的符号与原符号相同;符号不同则取绝对值相减,结果的符号取绝对值大的数的符号。

减法:有理数相减,可以转化为加法运算。

乘法:有理数相乘,符号相同则结果为正,符号不同则结果为负。

除法:有理数相除,取被除数与除数的商作为结果,若符号相同则结果为正,符号不同则结果为负。

3. 有理数的倍数与约数倍数:一个数若可以被另一个数整除,则称该数为另一个数的倍数。

约数:一个数若可以整除另一个数,则称该数为另一个数的约数。

4. 有理数的比大小有理数比大小,可以根据绝对值的大小进行比较,绝对值大的数较大。

若绝对值相等,则根据正负进行比较,正数较大,负数较小。

二、平方与平方根1. 平方的概念与平方性质平方是一个数乘以自身所得到的结果,表示为x²,其中x为实数。

平方的结果一定是非负数。

2. 平方根的概念与平方根性质平方根是指一个数的平方等于该数的非负实数,表示为√x,其中x为非负数。

平方根可以是正数或零,但不可以是负数。

三、代数式与等式1. 代数式的概念与基本性质代数式是由数或变量及数运算符号组成的式子,可以通过数值的代入计算得到具体的结果。

代数式中的变量可以代表不同的数值。

2. 等式的概念与解方程等式是指两个代数式之间通过等号连接的关系,左右两边的代数式的计算结果是相等的。

解方程是指找到使等式成立的未知数的值。

四、二元一次方程1. 二元一次方程的概念与基本形式二元一次方程是指两个未知数的一次方程,其一般形式为ax+by+c=0,其中a、b、c为已知数且a和b不同时为0。

2. 二元一次方程的解法解二元一次方程可以使用代入法、消元法或图示法等。

九上数学知识点总结(浙教版)(打印版)

九上数学知识点总结(浙教版)(打印版)

九上数学知识点总结知识点、二次函数的概念和图像1、二次函数的概念:如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像:二次函数的图像是一条关于bx -=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点;④与y 轴有交点3、二次函数图像的平移函数)0()(2≠+-=a k m x a y 的图象可由函数2ax y =的图象先向右(当m>0)或向左(当m<0)平移|m|个单位,再向上(当k>0)或向下(当k<0)平移|k|个单位得到,顶点是(m,k ),对称轴是直线x=m4、函数平移规律(口诀:左加右减、上加下减)(1)函数图像向左移动b(b>0)个单位后,需将原函数解析式中x 改为(x+b),才符合移动后的图像所对应的函数解析式。

(2)函数图像向上移动c(c>0)个单位后,需将原函数解析式的等式右边整体加上c ,才符合移动后的图像所对应的函数解析式。

知识点、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,。

h=,k=(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的因式分解))((212x x x x a c bx ax --=++,2,1x =aacb 24b 2-±-.二次函数c bx ax y ++=2可转化为两根式(交点式)))((21x x x x a y --=。

如果与x 轴没有交点,则不能这样表示。

知识点、二次函数的最值(1)如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。

浙教版九年级数学上册知识点

浙教版九年级数学上册知识点

浙教版九年级数学上册知识点课堂临时报佛脚,不如课前预习好。

其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。

下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

九年级上册数学单元知识点第一章证明一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。

2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)3.等腰三角形的两底角的平分线相等。

(两条腰上的中线相等,两条腰上的高相等)4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

特殊的等腰三角形等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

2、性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

3、判定:⑴三边相等的三角形是等边三角形。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

二、直角三角形全等1、直角三角形全等的判定有5种:(1)、两角及其夹边对应相等的两个三角形全等;(ASA)(2)、两边及其夹角对应相等的两个三角形全等;(SAS)(3)、三边对应相等的两个三角形全等;(SSS)(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半3、在直角三角形中,斜边上的中线等于斜边的一半4垂直平分线:垂直于一条线段并且平分这条线段的直线。

2017年浙教版九年级数学上学期知识点汇总

2017年浙教版九年级数学上学期知识点汇总

**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**九年级(上册)1. 二次函数1.1. 二次函数把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。

1.2. 二次函数的图象二次函数y=ax 2(a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。

当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。

函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。

函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a 44,2b 2当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。

1.3. 二次函数的性质二次函数y=ax 2(a ≠0)的图象具有如下性质:1.4. 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。

注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。

2. 简单事件的概率2.1. 事件的可能性把在一定条件下一定会发生的事件叫做必然事件;把在一定条件下一定不会发生的事件叫做不可能事件;把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。

2.2. 简单事件的概率把事件发生可能性的大小称为事件发生的概率,一般用P 表示。

事件A 发生的概率记为P(A)。

九年级上数学知识点浙教版

九年级上数学知识点浙教版

九年级上数学知识点浙教版九年级上学期的数学课程内容较为丰富,包含了多个重要的数学知识点。

本文将对九年级上数学课程的知识点做一个全面的概述,并按照章节的顺序进行介绍。

第一章分式运算在分式运算这一章中,我们学习了有理数的加减乘除运算,以及分式的四则运算。

其中,重点掌握了分式的约简、通分和分式方程的解法。

第二章整式的加减与乘法整式的加减与乘法是九年级上数学中的重要内容,本章主要讲解了整式加减法的运算规则和整式乘法的运算法则。

通过熟练的掌握整式的运算方法,可以解决各种实际问题。

第三章一元一次方程与不等式在这一章中,我们学习了一元一次方程与不等式的解法。

通过观察和运用等式的性质,我们可以快速求解方程和不等式,进而解决与实际生活相关的应用问题。

第四章图形的相似与等距九年级上学期还学习了图形的相似与等距性质。

在这一章节中,我们了解了相似图形的性质与判定条件,并学习了相似比的计算方法。

同时,我们也学习了等腰三角形与等边三角形的性质与判定方法。

第五章直角三角形与三角函数直角三角形与三角函数是九年级上数学的难点内容之一。

在这一章节中,我们学习了直角三角形中的三角比的定义和性质,并学会了运用三角函数解决相关的计算问题。

第六章平面向量平面向量是数学中的重要概念,也是九年级上学期的重要内容。

在这一章中,我们学习了平面向量的定义和性质,以及平面向量的加法和数乘运算法则。

同时,我们也学会了应用平面向量解决几何和物理问题。

第七章平面和空间几何在平面和空间几何这一章节中,我们学习了平面和空间几何中的重要定理和性质。

通过学习平面与平面的位置关系、直线与直线的位置关系以及平面与直线的位置关系,我们可以解决各种几何问题。

第八章统计与概率统计与概率是九年级上学期最后一个章节的内容,本章主要讲解了统计与概率中的基本概念和应用方法。

通过学习统计图表的制作和数据的分析方法,我们可以进行各种实际问题的统计与预测。

通过九年级上学期的数学学习,我们不仅掌握了各种数学知识点,还培养了我们逻辑思维和问题解决能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级(上册)
1. 二次函数
1.1. 二次函数
把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。

1.2. 二次函数的图象
二次函数y=ax 2(a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。

当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。

函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。

函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是⎪⎪⎭
⎫ ⎝⎛--a b ac a 44,2b 2 当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。

1.3. 二次函数的性质
二次函数y=ax 2(a ≠0)的图象具有如下性质:
1.4. 二次函数的应用
运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。

注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。

2. 简单事件的概率
2.1. 事件的可能性
把在一定条件下一定会发生的事件叫做必然事件;
把在一定条件下一定不会发生的事件叫做不可能事件;
把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。

2.2. 简单事件的概率
把事件发生可能性的大小称为事件发生的概率,一般用P 表示。

事件A 发生的概率记为P(A)。

必然事件发生的概率为100%,即P(必然事件)=1;
不可能事件发生的概率为0,即P(不可能事件)=0;
随机事件的概率介于0与1之间,即0<P(随机事件)<1.
如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n ,事件A 包含其中的结果数为m(m ≤n ),那么事件A 发生的概率为:P(A)=m/n 。

运用公式P(A)=m/n 求简单事件发生的概率时,首先应确定所有结果的可能性都相等,然后确定所有可能的结果总数n 和事件A 包含其中的结果数m 。

2.3. 用频率估计概率
在相同条件下,当重复试验的次数大量增加时,事件发生的概率就稳定在相应的概率附近。

因此,我们可以通过大量重复试验,用一个事件发生的概率来估计这一事件发生的概率。

2.4. 概率的简单应用
概率与人们生活密切相关,能帮助我们对许多事件作出判断和决策。

3. 圆的基本性质
3.1. 圆
在同一平面内,线段OP 绕它固定的一个端点O 旋转一周,另一端点P 所经过的封闭曲线叫做圆,定点O 叫做圆心,线段OP 叫做圆的半径。

以点O 为圆心的圆,记做“⊙O ”,读作“圆O ”。

连结圆上任意两点的线段BC 叫做弦,经过圆心的弦AB 叫做直径,直径是半径的两倍。

圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

小于半圆的弧叫做劣弧,劣弧用符号“⌒”和弧两端的字母表示;大于半圆的弧叫做优弧,半圆和优弧用符号“⌒”和三个字母表示(弧两端的字母和弧中间的字母)。

半径相等的两个圆能够完全重合,半径相等的两个圆叫做等圆。

能够重合的圆弧称为相等的弧。

如果用r 表示圆的半径,d 表示同一平面内点到圆心的距离,则有
点在圆内点在圆上;点在圆外;⇔<⇔=⇔>r d r d r d
不在同一直线上的三个点确定一个圆。

经过三角形各个顶点的圆叫做三角形的外接圆,这个外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。

三角形的外心是三角形三条边的垂直平分线的交点。

3.2. 图形的旋转
一个图形变成另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形运动叫做图形的旋转,这个固定的点叫做旋转中心。

图形的旋转具有以下性质:
图形经过旋转所得到的图形和原图形相等。

对应点到旋转中心的距离相等,任何一对对应点与旋转中心连线所成的角度等于旋转的角度。

3.3. 垂径定理
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

分一条弦成相等的两条弧的点,叫做这条弧的中点。

圆心到圆的一条弦的距离叫做弦心距。

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

平分弧的直径垂直平分弧所对的弦。

3.4. 圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

1o 圆心角所对的弧叫做1o 的弧,n o 圆心角所对的弧叫做n o 的弧。

在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等。

在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等。

3.5. 圆周角
圆周角的度数等于它所对弧上的圆心角度数的一半。

半圆(或直径)所对的圆周角是直径。

90o 的圆周角所对的弦是直径。

在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。

3.6. 圆内接四边形
如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆。

圆内接四边形的对角互补。

3.7. 正多边形
正多边形:各边相等、各内角也相等的多边形。

任意一个正三角形和正方形都能作出它的外接圆。

把经过一个正多边形的各个顶点的圆叫做这个正多边形的外接圆,这个正多边形也就叫做圆内接正多边形。

任何正多边形都有一个外接圆。

3.8. 弧长及扇形的面积
在半径为R 的圆中,n o 的圆心角所对的弧长l 的计算公式为:
180
R n l π= 在半径为R ,圆心角为n o ,弧长为l 的扇形中,该扇形面积S 的计算公式为:
lR 2
1360R n S 2==π 4. 相似三角形
4.1. 比例线段
比例有如下基本性质:
()0,,,a 都不为d c b a bc ad d
c b =⇔= 两条线段的长度的比叫做这两条线段的比。

四条线段a,b,c,d 中,如果a 和b 的比等于c 与d 的比,即d
c b =a ,那么这四条线段a,b,c,
d 叫做成比例线段,简称比例线
段。

如果三个数a,b,c 满足比例式()c b b c
b b ::a a ==或,那么b 就叫做a,
c 的比例中项。

c
b b a a
c b =⇔=2 如果点P 把线段AB 分成两条线段AP 和PB ,使AP>PB ,且AB
AP AP PB =,那么称线段AB 被点P 黄金分割,点P 叫做线段
AB 的黄金分割点,所分成的较长一条线段AP 与整条线段AB 的比叫做黄金比。

4.2. 由平行线截得的比例线段
两条直线被一组平行线(不少于3条)所截,所得的对应线段成比例。

4.3. 相似三角形
相似三角形的对应角相等,对应边成比例。

4.4. 两个三角形相似的判定
平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

有两个角对应相等的两个三角形相似。

两边对应成比例,且夹角相等的两个三角形相似。

三边对应成比例的两个三角形相似。

4.5. 相似三角形的性质及其应用
三角形的三条中线相交于一点。

三角形三条中线的交点叫做三角形的重心。

三角形的重心分每一条中线成1:2的两条线段。

相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方。

4.6. 相似多边形
对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似多边形对应边的比叫做相似比。

相似多边形的周长之比等于相似比;相似多边形的面积之比等于相似比的平方。

由一个图形改变为另一个图形,在改变的过程中保持形状不变(大小可以改变),这样的图形改变叫做图形的相似。

4.7. 图形的位似
如果两个图形满足以下两个条件:所有经过对应点的直线都相交于同一点;这个交点到两个对应点的距离之比都相等,那么这两个图形就叫做位似图形,经过各对应两点的直线的交点叫做位似中心。

位似中心到两个对应点的距离之比叫做位似比。

利用图形的位似可以把一个图形放大或缩小。

若所画图形与原图形的位似比大于1,则将图形放大;若所画图形与原图形的位似比小于1,则将图形缩小。

当以坐标原点为位似中心时,若原图形上点的坐标为(x,y),位似图形与原图形的位似比为k ,则位似图形上对应点的坐标为(kx,ky)或(-kx,-ky)。

相关文档
最新文档