广东省肇庆市端州区2017-2018学年八年级下学期期末考试数学试题(图片版,无答案)
2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
肇庆市八年级下学期数学期末考试试卷

肇庆市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分)圆是中心对称图形,它的对称中心是()A . 圆周B . 圆心C . 半径D . 直径2. (3分) (2020八下·房山期中) 为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A . ①②④B . ①③④C . ③④D . ①②3. (3分) (2020九下·江阴期中) 如图,点A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在y轴上.已知平行四边形ABCD的面积为8,则k的值为()A . 8B . ﹣8C . 4D . ﹣44. (3分)(2019·滨州) 用配方法解一元二次方程时,下列变形正确的是().A .B .C .D .5. (3分)若反比例函数的图象在第一、三象限,则的值可以是()A . 4B . 3C . 0D . -36. (3分)如图,在△ABC中,∠BAC=60°,BC=18,D是AB上一点,AC=BD,E是CD的中点.则AE的长是().A . 12B . 9C . 9D . 以上都不对7. (3分)已知m是方程x2-x-2=0的一个根,则m2-m的值是()A . - 2B . 0C . 2D . 48. (3分) (2016·南通) 若一个多边形的内角和与它的外角和相等,则这个多边形是()A . 三角形B . 四边形C . 五边形D . 六边形9. (3分)如图所示,在△ABC中,AB=12,BC=10,点O为AC的中点,则BO的取值范围是()A . 1<BO<11B . 2<BO<22C . 10<BO<12D . 5<BO<610. (3分)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y 上,过点C作CE∥x轴交双曲线于点E,则CE的长为()A . 2.5B . 3C . 3.5D . 4二、填空题(每小题4分。
肇庆市数学八年级下学期期末考试试卷

肇庆市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·钦北期末) 下列从左到右的变形中,是分解因式的是()A . a2﹣4a+5=a(a﹣4)+5B . (x+2)(x+3)=x2+5x+6C . a2﹣9b2=(a+3b)(a﹣3b)D . x+1=x(1+ )2. (2分)在、、、、中分式的个数有()。
A . 2个B . 3个C . 4个D . 5个3. (2分) (2015九上·淄博期中) 南京到上海铁路长300km,为了适应两市经济的发展,客车的速度比原来每小时增加了40km,因此从南京到上海的时间缩短了一半,设客车原来的速度是xkm/h,则根据题意列出的方程是()A .B .C .D .4. (2分)如图所示,已知AB=DC,∠ABC=∠DCB=90°,可以推得Rt△ABC≌Rt△DCB,所用的判断定理简称是()A . SASB . HLC . ASAD . AAS5. (2分)已知分式当,时,值是,那么当,时,分式的值是()A .B .C . 1D . 36. (2分) (2019八下·杭锦旗期中) 如图,在平行四边形ABCD中,已知AD=5cm,AB=3cm,AE平分交BC边于点E,则EC等于()A . 1cmB . 2cmC . 3cmD . 4cm7. (2分) (2015八下·成华期中) 等腰三角形的顶角为100°,则它的一个底角是()A . 40°B . 50°C . 60°D . 80°8. (2分) (2017九上·合肥开学考) 下列函数中,当x>0时,y随x的增大而增大的是()A . y=﹣2x+1B . y=﹣x2﹣1C . y=(x+1)2﹣1D . y=9. (2分)不等式组的解集是A . -2<x<1B . x<1C . x>-2D . x<-210. (2分) (2019九上·惠州期末) 如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1 ,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1 ,则点A的对应点A2的坐标是()A . (5,2)B . (1,0)C . (3,﹣1)D . (5,﹣2)二、填空题 (共15题;共70分)11. (2分)(2020·温岭模拟) 分解因式:x2﹣4x=________12. (1分) (2015八上·永胜期末) 已知分式,当x=2时,分式无意义,则a=________;当a为a<6的一个整数时,使分式无意义的x的值共有________个.13. (1分) (2017八下·山西期末) 一个多边形的外角都等于60°,这个多边形是________边形.14. (1分)分式、、、的最简公分母是________.15. (2分)(2014·成都) 如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是________m.16. (1分)(2019·陕西模拟) 如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是________.17. (5分)已知a﹣b=3,ab=﹣1,求a2b﹣ab2的值.18. (5分) (2017八下·简阳期中) 解方程:(1);(2).19. (10分)根据图中尺规作图的痕迹,先判断得出结论:,然后证明你的结论(不要求写已知、求证)20. (5分) (2019七下·岳阳期中) 已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.21. (5分) (2018八上·营口期末) 计算:(1)(2x+1)2﹣(2x+5)(2x﹣5)(2) [2x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y(3)(﹣)3 (﹣)2÷(﹣)422. (5分) (2018八下·灵石期中) 如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.23. (10分)(2017·渭滨模拟) 已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2 ,求CD的长.24. (2分) (2017八下·海安期中) 如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.25. (15分)(2011·梧州) 由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共15题;共70分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、23-1、24-1、24-2、25-1、25-2、25-3、第11 页共11 页。
八年级下册数学肇庆数学期末试卷测试卷附答案

八年级下册数学肇庆数学期末试卷测试卷附答案一、选择题1.若使二次根式3x -在实数范围内有意义,则x 的取值范围是( ) A .3x ≤ B .3x ≥C .3x ≠D .3x >2.已知a 、b 、c 是三角形的三边长,如果满足(a ﹣3)24b +-+|c ﹣5|=0,则三角形的形状是( ) A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形3.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠FB .∠B =∠BCFC .AC =CFD .AD =CF4.一家公司打算招聘一名翻译对甲、乙、丙三名应试者进行了听、说、读、写的英语水平测试,他们各项成绩(百分制)如下表所示:应试者 听 说 读 写 甲 73 80 82 83 乙 85 78 85 73 丙80828080如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2:1:3:4的比确定,从他们的平均成绩(百分制)看,应该录取( )A .甲 B .乙C .丙D .不确定5.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结矩形各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )cm .A .20B .202C .203D .256.如图,在Rt ACB ∆中,90ACB ︒∠=,25A ︒∠=,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使B 点落在AC 边上的E 处,则ADE ∠等于( )A .25︒B .30︒C .35︒D .40︒7.如图,在△ABC 中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF ⊥CF ,若AC =3,BC =6,则DF 的长为( )A .1.5B .1C .0.5D .28.如图,在平面直角坐标系中,矩形ABCD 的顶点()6,0A ,()0,4C 点D 与坐标原点O 重合,动点P 从点O 出发,以每秒2个单位的速度沿O A B C ---的路线向终点C 运动,连接OP 、CP ,设点P 运动的时间为t 秒,CPO ∆的面积为S ,下列图像能表示t 与S 之间函数关系的是( )A .B .C .D .二、填空题9.若2336y x x =-+-+,则xy 的平方根为________.10.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若5AB =,6AC =,则菱形ABCD 的面积为______.11.若直角三角形的三边分别为x ,8,10,则2x =__________.12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.一次函数2y x m =+的图象与y 轴的交点是()0,3,则m =______.14.如图,已知四边形ABCD 是一个平行四边形,则只须补充条件__________,就可以判定它是一个菱形.15.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米; ③图中点B 的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是 ___.16.如图,Rt ABC 中,9,6,90AB BC B ==∠=︒,将ABC 折叠,使A 点与BC 的中点D 重合,折痕为,MN 则线段BN 的长为________.三、解答题17.计算:(1)(2+1)×8-18; (2)12273-+23×24. 18.笔直的河流一侧有一营地C ,河边有两个漂流点A ,B 、其中AB =AC ,由于周边施工,由C 到A 的路现在已经不通,为方便游客,在河边新建一个漂流点H (A ,H ,B 在同一直线上),并新修一条路CH ,测得BC =10千米,CH =8千米,BH =6千米. (1)判断△BCH 的形状,并说明理由; (2)求原路线AC 的长.19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A (﹣1,﹣1),B (2,2). (1)线段AB 的长为 ;(2)在小正方形的顶点上找一点C ,连接AC ,BC ,使得S △ABC =92.①用直尺画出一个满足条件的△ABC ; ②写出所有符合条件的点C 的坐标.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形.(2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 .21.我们规定,若a +b =2,则称a 与b 是关于1的平衡数.(1)若3与x 是关于1的平衡数,5-2与y 是关于1的平衡数,求x ,y 的值; (2)若(m +3)×(1-3)=-2n +3(3-1),判断m +3与5n -3是否是关于1的平衡数,并说明理由.22.甲、乙两组工人同时加工某种零件,甲组在工作中有一段时间停产更新设备,更新设备后,甲组的工作效率是原来的2倍.乙组工作2小时后,由于部分工人离开,工作效率有所降低.两组各自加工零件的数量y (件)与时间x (小时)之间的函数图象如图所示.(1)直接写出线段DE的函数关系式,并写出自变量的取值范围;(2)求甲乙两组何时加工的零件数相同;(3)若甲、乙两组加工的零件合在一起装箱,每320件装成一箱,零件装箱的时间忽略不计,直接写出经过多长时间恰好装满2箱.23.在正方形ABCD中,点E、F分别是边AD和DC上一点,且DE=DF,连结CE和AF,点G是射线CB上一点,连结EG,满足EG=EC,AF交EG于点M,交EC于点N.(1)证明:∠DAF=∠DCE;(2)求线段EG与线段AF的关系(位置与数量关系),并说明理由;(3)是否存在实数m,当AM=mAF时,BC=3BG?若存在,请求出m的值;若不存在,请说明理由.24.在平面直角坐标系中,O为坐标原点,直线y=x+b交x轴的负半轴于点A,交y轴的正半轴于点B,AB=62,点C在x轴的正半轴上,OC=2.(1)如图1,求直线BC的解析式;(2)如图2,点D在第四象限的直线C上,DE⊥AB于点E,DE=AB,求点D的坐标;(3)在(2)的条件下,请在平面内找一点P,使得四边形PDBE是平行四边形,直接写出这样的点P的坐标;(4)如图3,在(2)的条件下,点F在线段OA上,点G在线段OB上,射线FG交直线BC于点H,若∠FGO=2∠AEF,FG=5,求点H的坐标.25.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.(1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC中,AB=2,∠BAC=90°.在AB的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.【参考答案】一、选择题 1.B 解析:B 【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 【详解】解:二次根式3x -在实数范围内有意义,30x ∴-,解得3x .故选:B . 【点睛】本题考查的是二次根式有意义的条件,解题的关键是掌握被开方数大于等于0.2.B解析:B 【分析】根据二次根式和绝对值的非负性,可得3,4,5a b c === ,然后再由勾股定理的逆定理,即可求解. 【详解】解:∵(a ﹣3)24b +-c ﹣5|=0, ∴30,40,50a b c -=-=-= , 解得:3,4,5a b c === ,∵22222234255a b c +=+=== , ∴该三角形的形状是直角三角形. 故选:B 【点睛】本题主要考查了勾股定理的逆定理,平方、算术平方根、绝对值的非负性,熟练掌握若一个三角形的两边的平方和等于第三边的平方,则该三角形为直角三角形是解题的关键.3.B解析:B 【解析】 【分析】根据已知条件可以得到//AC DE ,对选项判断即可求出解. 【详解】解:∵D ,E 分别是AB ,BC 的中点 ∴//AC DE ,12DE ACA :根据∠B =∠F 得不出四边形ADFC 为平行四边形,选项不符合题意; B :∠B =∠BCF ,∴CF//AD ,∴四边形ADFC 为平行四边形,选项符合题意; C :根据AC =CF 得不出四边形ADFC 为平行四边形,选项不符合题意; D :根据AD =CF 得不出四边形ADFC 为平行四边形,选项不符合题意; 故答案为B . 【点睛】此题考查了中位线的性质以及平行四边形的判定,熟练掌握有关性质即判定方法是解题的关键.4.A解析:A 【解析】 【分析】根据题意,按2:1:3:4的比例算出甲、乙、丙三名应试者的加权平均数即可. 【详解】解:甲的综合成绩:73×20%+80×10%+82×30%+83×40%=80.4: 乙的综合成绩:85×20%+78×10%+85×30%+73×40%=79.5, 丙的综合成绩:80×20%+82×10%+80×30%+80×40%=80.2. ∵80.4>80.2>79.3,故从他们的的平均成绩(百分制)看,应该录取甲. 故选:A . 【点睛】本题考查的是加权平均数的求法.正确理解3:3:2:2的含义就是分别占总数的30%、30%、20%、20%是解题的关键.5.A解析:A 【分析】连接BD ,根据三角形中位线定理易得四边形EFGH 的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可. 【详解】 连接BD ,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.D解析:D【解析】【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CED的度数,再由三角形外角的性质即可得出结论.【详解】解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDE由△CDB折叠而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED-∠A=65°-25°=40°.故选:D.【点睛】本题考查了三角形内角和定理,翻折变换的性质,根据题意得出∠ADE=∠CED-∠A是解题关键.7.A解析:A【解析】 【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出FE ,计算即可. 【详解】 解:D 、E 分别为AB 、AC 的中点,6BC =,132DE BC ∴==, AF CF ⊥,90AFC ∴∠=︒,E 为AC 的中点,3AC =,11.52FE AC ∴==, 1.5DF DE FE ∴=-=,故选:A . 【点睛】本题考查的是三角形中位线定理、直角三角形的性质,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.8.B解析:B 【分析】先根据矩形的性质得到OA=BC=6,OC=AB=4,再分三种情况:点P 在OA 、AB 、BC 边上时,分别求出函数解析式,即可得到图象. 【详解】∵矩形ABCD 的顶点()6,0A ,()0,4C , ∴OA=BC=6,OC=AB=4,当点P 在OA 边上即0≤t<3时,1124422S AP OC t t =⋅⋅=⨯⨯=,当点P 在AB 边上即3≤t<5时,11641222S AO OC =⋅⋅=⨯⨯=,当点P 在BC 边上即5≤t≤8时,11(162)443222S PC OC t t =⋅⋅=⨯-⨯=-+,故选:B . 【点睛】此题考查函数图象,正确理解题意分段求出函数解析式是解题的关键.二、填空题9. 【解析】 【分析】根据二次根式有意义的条件求出x ,进而求出y ,根据平方根的概念解答即可. 【详解】有意义,则x-3≥0,同理,3-x≥0,解得,x=3,则y=6,∴xy=18,∵18的平方根是∴xy的平方根为故答案为:【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.10.B解析:24【解析】【分析】首先求出对角线BD的长,根据菱形面积等于两条对角线乘积的一半计算即可.【详解】∵四边形ABCD为菱形,∴AC⊥BD,3,OA OC OB OD===,在Rt△ABO中,BO,4∴BD=8,∴菱形ABCD的面积为:116824AC BD=⨯⨯=,22故填:24.【点睛】此题主要考查菱形的对角线的性质和菱形的面积计算,熟练掌握菱形面积等于两条对角线乘积的一半是解题关键.11.36或164【解析】【分析】根据直角三角形斜边的情况分类讨论,然后根据勾股定理即可求出2x.【详解】解:若10为斜边的长度,根据勾股定理:222x=-=;10836若x为斜边的长度,根据勾股定理:222x=+=.108164综上所述:2x=36或164故答案为36或164.【点睛】此题考查的是勾股定理,根据直角三角形斜边的情况分类讨论和用勾股定理解直角三角形是解决此题的关键.12.D1【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.3【分析】将(0,3)代入一次函数解析式中即可得出关于m 的一元一次方程,解之即可得出结论;【详解】解:∵函数2y x m =+的图象经过()0,3,∴3=0+m ,∴m =3.故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征以及解一元一次方程,解题的关键是:代入点的坐标找出关于m 的一元一次方程.14.A解析:AB =BC (答案不唯一)根据有一组邻边相等的平行四边形是菱形添加即可.【详解】解:补充的条件是AB=BC,理由是:∵AB=BC,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故答案为:AB=BC.【点睛】本题考查了平行四边形的性质和菱形的判定,注意:有一组邻边相等的平行四边形是菱形.此题是一道开放性的题目,答案不唯一.15.①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,解析:①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,根据返回快递车速与货车速度之和乘以返货到相遇时间=75,解方程可判断④.【详解】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.故①正确;②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,故②错误;③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+34=334,点B纵坐标为120﹣60×34=75,故③正确;④设快递车从乙地返回时的速度为y千米/时,则(y+60)(134344)=75,y=90,故④正确.故答案为①③④.【点睛】本题考查一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,掌握一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,一次函数的应用是16.4【分析】根据题意,设BN=x,由折叠DN=AN=9-x,在利用勾股定理列方程解出x,就求出BN的长.【详解】∵D是CB中点,BC=6∴BD=3设BN=x,AN=9-x,由折叠,DN=A解析:4【分析】根据题意,设BN=x,由折叠DN=AN=9-x,在Rt BDN利用勾股定理列方程解出x,就求出BN的长.【详解】∵D是CB中点,BC=6∴BD=3设BN=x,AN=9-x,由折叠,DN=AN=9-x,在Rt BDN中,222+=,BN BD DN()222+=-,解得x=4x x39∴BN=4.故答案是:4.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.三、解答题17.(1)4-;(2)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)解析:(1)42)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)+=4=4==+(2=2-3+4=3=【点睛】此题考查了二次根式的加减乘法运算,解题的关键是熟练掌握二次根式的加减乘法运算法则.18.(1)△HBC 是直角三角形,理由见解析;(2)原来的路线AC 的长为千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△BCH 是直角三角形,理解析:(1)△HBC 是直角三角形,理由见解析;(2)原来的路线AC 的长为253千米. 【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△BCH 是直角三角形,理由是:在△CHB 中,∵CH 2+BH 2=82+62=100,BC 2=100,∴CH 2+BH 2=BC 2,∴△HBC 是直角三角形且∠CHB =90°;(2)设AC =AB =x 千米,则AH =AB -BH =(x -6)千米,在Rt △ACH 中,由已知得AC =x ,AH =x -6,CH =8,由勾股定理得:AC 2=AH 2+CH 2,∴x 2=(x -6)2+82,解这个方程,得x =253, 答:原来的路线AC 的长为253千米. 【点睛】本题考查了勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理. 19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积画解析:(1)32;(2)①见解析;②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积92画出对应的三角形即可; ②根据点C 的位置,写出点C 的坐标即可.【详解】解:(1)如图所示在Rt △ACB 中,∠P =90°,AP =3,BP =3∴2232AB AP BP =+=(2)①如图所示Rt △ACB 中,∠C =90°,AC =3,BC =3∴119=33222ABC S AC BC =⨯⨯=△②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).满足条件的三角形如图所示.C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).【点睛】本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解.20.(1)见解析;(2)18【分析】(1)由四边形ABCD是平行四边形易证△AOE≌△COF,从而可得OE=OF,所以四边形AFCE是平行四边形,又EF⊥AC,根据菱形的判定定理即可得证;(2)由解析:(1)见解析;(2)18【分析】(1)由四边形ABCD是平行四边形易证△AOE≌△COF,从而可得OE=OF,所以四边形AFCE是平行四边形,又EF⊥AC,根据菱形的判定定理即可得证;(2)由(1)可求三角形ACE的面积,又2,从而可得三角形CED的面积,则AE EDABCD的面积即可求解.【详解】(1)∵四边形ABCD是平行四边形,∴AE//FC.∴∠EAO=∠FCO,∠AEO=∠CFO.∵EF平分AC,∴OA=OC.∴△AOE ≌△COF .∴OE =OF .∴四边形AFCE 是平行四边形.又∵EF ⊥AC ,∴四边形AFCE 是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形AFCE 是菱形,6AC =,4EF =,∴三角形ACE 的面积为16262⨯⨯=, ∵2AE ED =,∴三角形CED 的面积等于三角形ACE 的面积的一半,即三角形CED 的面积为1632⨯=, ∴三角形ACD 的面积为639+=,∴ABCD 的面积等于三角形ACD 的面积的2倍,即ABCD 的面积为1892=⨯. 故答案为:18.【点睛】本题考查了菱形的判定及平行四边形面积的求法,解题的关键是熟练掌握菱形的判定定理.21.(1) -1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析【解析】【分析】(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;(2)对式子进行化简,得到的关系,再对解析:(1) -1,3-;(2)当m =n =5m n关于1的平衡数,否则5m n 1的平衡数;见解析【解析】【分析】(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;(2)对式子进行化简,得到m n ,的关系,再对m n ,进行分情况讨论求解即可.【详解】解:(1)根据题意可得:32x +=,52y =解得1x =-,3y =故答案为1-3(2)()1231m n =-+, ∴ 323m n -=-+,∴ 2m n -=-+∴ 20m n +-=①当m n 和均为有理数时,则有 2=02=0m n m +-+,,解得:2=1m n =-,,当2=1m n =-,时,5252m n -+≠所以5m n +1的平衡数②当m n 和中一个为有理数,另一个为无理数时,55m n m n +,而此时5m n +为无理数,故52m n +≠,所以5m n +1的平衡数③当m n 和均为无理数时,当52m n +=时,联立20m n +-=,解得m =n =存在m =n =5m n 1的平衡数,当m ≠且n ≠5m n 1的平衡数综上可得:当m =n =5m n 1的平衡数,否则5m n 1的平衡数.【点睛】本题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,并掌握分类讨论的思想.22.(1)y =40x+20(2≤x≤9);(2)5.5小时;(3)8小时【分析】(1)利用待定系数法求一次函数解析式即可;(2)求出C 点坐标,利用待定系数法求线段BC 的函数关系式,根据线段DE ,B解析:(1)y =40x +20(2≤x ≤9);(2)5.5小时;(3)8小时【分析】(1)利用待定系数法求一次函数解析式即可;(2)求出C 点坐标,利用待定系数法求线段BC 的函数关系式,根据线段DE ,BC 的函数解析式即可求解;(3)假设经过x 小时恰好装满2箱,甲组6.5小时加工的零件为300件,此时乙组加工的零件为40×6.5+20=280,两组生产的不够两箱,甲组一共加工了6.5小时,要想装满两箱,乙应加工320×2﹣300=340,进而列方程40x +20=340求解即可.【详解】解:(1)由图象得:D (2,100),E (9,380),设线段DE 的解析式为:y =kx +b ,∴21009380k b k b +=⎧⎨+=⎩, 解得:4020k b =⎧⎨=⎩, ∴y =40x +20(2≤x ≤9);(2)∵甲组的工作效率是原来的2倍,∴C 点纵坐标是:60÷2×2×(6.5﹣2.5)+60=300,∴C (6.5,300),设线段BC 的解析式为:11y k x b =+,∴11112.5606.5300k b k b +=⎧⎨+=⎩, 解得:116090k b =⎧⎨=-⎩, ∴y =60x ﹣90(2.5≤x ≤6.5),由题意得:40x +20=60x ﹣90,解得:x =5.5,答:甲乙两组5.5小时,加工的零件数相同;(3)设经过x 小时恰好装满二箱,由图象得:甲组6.5小时加工的零件为300件,乙组6.5小时加工的零件为40×6.5+20=280(件),∴此时不够装满2箱.恰好装满2箱乙应加工320×2﹣300=340(件),40x +20=340,解得:x =8,答:经过8小时恰好装满2箱.【点睛】本题考查一次函数的应用,正确获取图象信息,根据题意得出函数关系式以及数形结合是解题的关键.23.(1)见解析;(2),,见解析;(3)或【分析】(1)根据正方形的性质得到对应边相等,证明即可得到;(2)作,交于点,交于点,则,通过证明,得到,可推导出,从而证得结论; (3)存在,作于点,解析:(1)见解析;(2),,见解析;(3)或 【分析】(1)根据正方形的性质得到对应边相等,证明即可得到;(2)作,交于点K,交AD于点H,则,通过证明,得到,可推导出,从而证得结论;(3)存在,作于点L,连结EF,分两种情况,即点G在BC边上、点G在CB 边的延长线上,分别设和,将AE、DE、DF用或表示出来,再将、AM用或表示出来,即可求出的值.【详解】解:(1)证明:如图1,四边形ABCD是正方形,,,,,.(2),,理由如下:如图2(或图3),作,交于点K,交AD于点H,,,四边形是平行四边形,;由(1)得,,,,,,,,,,,,,,,.(3)存在,作于点L,连结EF,,∴四边形是矩形,,,如图4,点G在边BC上,设,,,,,,,,,,,由得,,∴,,,,;如图5,点G 在边CB 的延长线上,设,则,, ,,,由得,, ,, ,综上所述,或.【点睛】 此题重点考查正方形的性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理以及二次根式等知识,第(3)题要分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.24.(1);(2)D (3,3);(3)点P 的坐标有:(6,0)或(0,)或(,12);(4)H (,).【解析】【分析】(1)由题意表达出点A 和点B 的坐标,然后用勾股定理建立等式可求出b 的值,从而得 解析:(1)36y x =-+;(2)D (3,-3);(3)点P 的坐标有:(6,0)或(0,6-)或(6-,12);(4)H(45,185).【解析】【分析】(1)由题意表达出点A和点B的坐标,然后用勾股定理建立等式可求出b的值,从而得到点B的坐标,结合点C的坐标,进而求出直线BC的解析式;(2)过点D作DK∥y轴交直线AB于点K,设出点D的坐标,表达出点K的坐标,结合DE=AB,建立等式,可求出点D的坐标;(3)由题意,要使四边形PDBE是平行四边形,则要进行分类讨论,可分为3种情况进行分析;先求出点E的坐标,然后利用平行四边形的性质,平移的性质,即可求出点P的所有点的坐标;(4)由题意可得AE=OE,且∠AEO=90°,可将△AEF绕点E旋转,构造全等三角形;表达出线段长,利用勾股定理建等式,求解参数的值,进而求出点H的坐标.【详解】解:(1)∵直线y=x+b交x轴的负半轴于点A,交y轴的正半轴于点B,∴A(-b,0),B(0,b),∴OA=OB=b,在△OAB中,∠AOB=90°,AB=由勾股定理可得,b2+b2=2,解得,b=6(b=-6舍去),∴OA=OB=6,∴点A为(6-,0),点B为(0,6);∵OC=2,∴C(2,0),设直线BC的解析式为y=kx+6,∴2k+6=0,解得:3k=-,∴直线BC的解析式为36y x=-+.(2)过点D作DK∥y轴交直线AB于点K,∴∠ABO=∠K=45°,∵AB=DE=62,∴DK=12,设点D的横坐标为t,则D(t,-3t+6),K(t,t+6),∴DK=t+6-(-3t+6)=12,解得:t=3,∴D(3,-3).(3)根据题意,要使四边形PDBE是平行四边形,则要进行分类讨论,可分为3种情况进行分析;如图所示:BEDP是矩形;①当点P在点1P的位置时,此时四边形1∵∠ABO=45°,DE⊥AB,∴△OBE是等腰直角三角形,∵OB=6,∴BE=OE=32∴点E是AB的中点,∴点E的坐标为(3 ,3);∵点B 为(0,6),点D 为(3,-3),由平移的性质,则点1P 的坐标为(6,0);②当点P 在点2P 的位置时,此时四边形2BEP D 是平行四边形,则BD ∥EP 2,BE ∥DP 2;∵点E 的坐标为(3-,3),点B 为(0,6),点D 为(3,-3),由平移的性质,则点2P 的坐标为(0,6-);③当点P 在点3P 的位置时,此时四边形3BP ED 是平行四边形,则BP 3∥DE ,DB ∥EP 3;∵点E 的坐标为(3-,3),点B 为(0,6),点D 为(3,-3),由平移的性质,则点3P 的坐标为(6-,12);综合上述,点P 的坐标有:(6,0)或(0,6-)或(6-,12);(4)过点E 作EL ⊥DK 于点L ,连接OD ,过点E 作EM ⊥x 轴于点M ,如图:则AM =OM =3=EM =3,∴EM =AM ,∴∠MEO =∠EOM =45°,∴∠AEO =90°,在OG 上截取ON =AF ,连接EN ,∵∠EAF =∠EON ,∴△EAF ≌△EON (AAS ),∴EF =EN ,∠AEF =∠OEN ,∴∠FEN =∠FEO +∠OEN =∠FEO +∠AEF =∠AEO =90°,∴∠EFN =45°,∵∠EFO =∠AEF +∠EAO =∠EFN +∠NFO ,又∵∠EAO =∠EFN =45°,∴∠NFO =∠AEF ,∴∠FGO =2∠AEF =2∠NFO ,设∠AEF =α,则∠NFO =α,∠FNO =90°-α,∠FGO =2α,在y 轴负半轴上截取OP =ON ,连接FP ,则OF 垂直平分NP ,∴FN =FP ,∴∠FPO =90°-α,∴∠GFP =180°-2α-(90°-α)=90°-α=∠GPF ,∴FG =GP =5,设AF =m ,则ON =OP =m ,则OG =5-m ,OF =6-m ,在Rt △OGF 中,由勾股定理可得,(5-m )2+(6-m )2=52,解得:m =2,(m =9舍去),∴OG =3,OF =4,∴F (-4,0),G (0,3),设直线FG 的解析式为y =ax +c ,∴340c a c =-⎧⎨-+=⎩,解得343a c ⎧=⎪⎨⎪=⎩, ∴直线FG 的解析式为:334y x =+,∵H 是直线334y x =+与直线y =-3x +6的交点, ∴33436y x y x ⎧=+⎪⎨⎪=-+⎩,解得45185x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴H (45,185). 【点睛】本题是一次函数与几何综合问题,考查了一次函数的性质,平行四边形的性质,平移的性质,勾股定理,等腰三角形的性质等知识,解题的关键是熟练掌握所学的知识,正确作出合适的辅助线,运用分类讨论的思想进行解题.25.(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:,,,【分析】(1)根据勾股定理计算BC 的长度,(2)根据对角线互相垂直平分的四边形是菱形判断,(3)有四种情况,作辅解析:(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:12,32 【分析】(1)根据勾股定理计算BC 的长度,(2)根据对角线互相垂直平分的四边形是菱形判断,(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.【详解】(1)∵BD⊥CD∴∠BDC=90°,BC>CD∵在“准等边四边形”ABCD中,BC≠AB,∴AB=AD=CD=3,∵BD=4,∴BC=225+=,CD BD(2)正确.如图所示:∵AB=AD∴ΔABD是等腰三角形.∵AC⊥BD.∴AC垂直平分BD.∴BC=CD∴CD =AB=AD=BC∴四边形 ABCD是菱形.(3)存在四种情况,⊥于F,则∠CFE=90,如图2,四边形ABPC是“准等边四边形”,过C作CF PE∵EP是AB的垂直平分线,∴90∠∠ ,AEF A==∴四边形AEFC是矩形,在Rt ABC中,2,2=== ,AB AC BC∴2===CF AE BE∵2==AB PC∴226-PF PC CF∴BEP CFP AEFC S S S S =++四边形ABPC 矩形 1262126222222222⎛⎫=⨯⨯++⨯+⨯⨯ ⎪ ⎪⎝⎭332+= 如图4,四边形ABPC 是“准等边四边形”,∵2AP BP AC AB ==== ,∴ABP △是等边三角形,∴2313(2)221422ABP ABC S S S =+=⨯+⨯⨯=+四边形ACBP ; 如图5,四边形ABPC 是“准等边四边形”,∵2AB BP BC === ,PE 是AB 的垂直平分线,∴,PD AB ⊥ E 是AB 的中点,∴122BE AB == , ∴222221422PE PB BE ⎛⎫=-=-= ⎪ ⎪⎝⎭∴ACBP 11417222122APB ABC S S S =+=⨯⨯+⨯⨯=+四边形 如图6,四边形ABPC 是“准等边四边形”,过P 作PF AC ⊥于F ,连接AP ,∵2AB AC PB ===∴6PE =∴1122APB APC ABPC S SS =+=⨯=四边形【点睛】 本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.。
2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a33.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.164.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠15.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>27.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.409.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为度.12.当x=时,分式的值为零.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是.18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.共2个轴对称图案.故选B.2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.3.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.16【考点】方差.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2= [(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]= [4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.4.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【考点】分式有意义的条件;二次根式有意义的条件.【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.5.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .B .C .D .【考点】矩形的性质. 【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .6.一次函数y=kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >2【考点】一次函数的图象.【分析】根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+【考点】一次函数与二元一次方程(组).【分析】根据一共20个人,进球49个列出关于x、y的方程即可得到答案.【解答】解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为108度.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.【解答】解:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.故答案为:108.12.当x=2时,分式的值为零.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=3.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,求出四边形BEDF是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD﹣DE=BC﹣BF,∴AE=CF,∵AE=3,∴CF=3,故答案为:3.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.【考点】勾股定理;等腰三角形的性质.【分析】首先利用勾股定理求出AE的长,即可求出△ABC的面积,然后证明DE 是△ABC的中位线,进而求出△BDE的面积.【解答】解:∵△ABC中,AB=AC,AE平分∠BAC交BC于点E,∴AE⊥BC,且BE=CE,∴AE==8,=×BC×AE=×12×8=48,∴S△ABC∵点D为AB的中点,∴DE是△ABC的中位线,∴DE∥AC,且DE=AC,∴==,=S△ABC=×48=12.∴S△BDE故答案为:12.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为4cm.【考点】菱形的性质;线段垂直平分线的性质.【分析】首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=4cm,然后由勾股定理,求得OB的长,继而求得答案.【解答】解:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a>b.(填“>”“<”或“=”号)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出﹣5与4的大小即可解答.【解答】解:∵直线y=﹣3x+2中,k=﹣3<0,∴此函数是减函数,∵﹣5<4,∴a>b.故答案为:>.17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是甲.【考点】方差.【分析】由s甲2=0.002、s乙2=0.03,可得到s甲2<s乙2,根据方差的意义得到甲的波动小,比较稳定.【解答】:∵s甲2=0.002、s乙2=0.03,∴s甲2<s乙2,∴甲比乙的产量稳定.故答案为:甲18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.【考点】解分式方程;实数的运算;负整数指数幂.【分析】(1)l原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)方程两边同乘(x+2)(x﹣2)得x(x+2)﹣(x+2)(x﹣2)=8,解得:x=2,检验:当x=2时(x+2)(x﹣2)=0,则x=2不是原方程的解,原方程无解.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.【考点】作图—复杂作图;矩形的判定.【分析】(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;(2)利用直角三角形斜边与其边上中线的关系进而得出AM=MC=BM=DM,进而得出答案.【解答】解:(1)①如图所示:M点即为所求;②如图所示:四边形ABCD即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.【解答】解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.【解答】证明:连接EC.∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,∴∠GCF=∠CFE=∠CGE=90°,∴四边形EFCG为矩形.∴FG=CE.又BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.【考点】四边形综合题.【分析】(1)由△ABC和△DEF是两个边长为6cm的等边三角形,得出BC=DF,由∠ACD=∠FDE=60°,得出BC∥DE,证出四边形BCDE是平行四边形;(2)(a)根据有一组邻边相等的四边形是菱形即可得到结论;(b)根据有一个角是直角的平行四边形是矩形即可得到结论.【解答】(1)证明:∵△ABC和△DEF是两个边长为6cm的等边三角形,∴BC=DE,∠ABC=∠FDE=60°,∴BC∥DE,∴四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,∴CD=DE,∴▱ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠CDE=90°,如图所示:∴∠CDB=90°﹣60°=30°同理∠DCA=30°=∠CDB,∴AC=AD,同理FB=EF,∴F与B重合,∴t=(6+2)÷1=8秒,∴当t=8秒时,平行四边形BCDE是矩形.。
肇庆市八年级下学期数学期末试卷

肇庆市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·岳阳模拟) 下列各式计算正确的是()A . 2+b=2bB .C . (2a2)3=8a5D . a6÷ a4=a22. (2分)(2020·凤山模拟) 下列几何图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2016九上·南开期中) 一元二次方程x(x+5)=0的根是()A . x1=0,x2=5B . x1=0,x2=﹣5C . x1=0,x2=D . x1=0,x2=﹣4. (2分)(2020·郑州模拟) 为调査某班学生每天使用零花钱的情况,童老师随机调查了 30 名同学,结果如下表:则这 30 名同学每天使用的零花钱的众数和中位数分别是()每天使用零花钱(单位:元)510152025人数258x6A . 15,15B . 20,17.5C . 20,20D . 20,155. (2分) (2020九上·路桥期末) 如图,点A,B,C都在⊙O上,若∠C=30°,则∠AOB的度数为()A . 30°B . 60°C . 150°D . 120°6. (2分)(2020·武汉模拟) 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100被感染.设每轮感染中平均每一台电脑会感染x台其他电脑,由题意列方程应为()A . 1+2x=100B . x(1+x)=100C . (1+x)2=100D . 1+x+x2=1007. (2分)正五边形的每一个外角的度数是()A . 60°B . 108°C . 72°D . 120°8. (2分)已知函数y=k(x+1)(x﹣),下列说法:①方程k(x+1)(x﹣)=﹣3必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k>3时,抛物线顶点在第三象限;④若k<0,则当x<﹣1时,y随着x的增大而增大.其中正确的序号是()A . ①②B . .②③C . .①③D . .①③④9. (2分)如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A . 2B . 4C . 8D . 1610. (2分)(2020·湖州模拟) 如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD的面积为()A . πB . πC . πD . 2π11. (2分)平面内一个点到一个半径为3cm的圆的圆心的距离为4cm,那么此点在圆的().A . 圆上B . 圆外C . 圆内D . 不确定12. (2分)(2020·江州模拟) 若A(-4,),B(-3,),C(1,)为二次函数y=x2+4x-m 的图象上的三点,则,,的大小关系是()A . <<B . <<C . <<D . <<二、填空题 (共6题;共7分)13. (1分) (2020八下·萧山期末) 把关于y的方程(2y-3)2=y(y-2)化成一般形式为________。
肇庆市八年级下学期数学期末考试试卷
肇庆市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2012·淮安) 下列图形中,是中心对称图形的是()A .B .C .D .2. (2分)(2018·秀洲模拟) 如图,△ABC中,D,E分别为AB,AC的中点,CD⊥BE于点F.当AB=8,AC=6时,BC的长度为()A . 4B .C .D . 53. (2分)小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小明等五位同学年龄的方差()A . 不变B . 增大C . 减小D . 无法确定4. (2分)设计方案,推断车牌号的末位数是偶数的概率为()A .B .C .D . 无法确定5. (2分)在用配方法解下列方程时,配方有错误的是()A . x2﹣2x﹣99=0⇒(x﹣1)2=100B . 2t2﹣7t﹣4=0⇒C . x2+8x﹣9=0⇒(x+4)2=25D . y2﹣4y=2⇒( y﹣2 )2=66. (2分)方程3x2﹣2x+2=0的根的情况是()A . 无实根B . 有两个等根C . 有两个不等根D . 有分数根7. (2分) (2017八下·老河口期末) 若函数y=kx的图象经过(1,﹣2)点,那么它一定经过()A . (2,﹣1)B .C . (﹣2,1)D .8. (2分)一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是()A .B .C .二、填空题 (共5题;共5分)9. (1分) (2019九上·灌阳期中) 如果关于的一元二次方程的一个根为1,则另一为________.10. (1分) (2017七下·栾城期末) 如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是________.11. (1分) (2019九上·东台月考) 若菱形的两条对角线长分别是方程的两实根,则菱形的面积为________.12. (1分)某农科院在相同条件下做了某种玉米种子发芽率的试验,结果如下:种子总数100400800100035007000900014000发芽种子数9135471690131645613809412614发芽的频率0.910.8850.8950.9010.9040.9020.8990.901则该玉米种子发芽的概率估计值为________(结果精确到0.1).13. (1分)(2018·长清模拟) 如图,△ABC的三个顶点分别为,, .若反比例函数在第一象限内的图象与△ABC有公共点,则k的取值范围是________.三、解答题 (共14题;共130分)14. (15分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以P,B,C三点为顶点的三角形是等腰三角形.请直接写出P点坐标.15. (5分) (2016九上·永登期中) 如图,在矩形ABCD中,E是BC上一点且AE=AD,又DF⊥AE于点F,证明:EC=EF.16. (10分) (2020九下·盐城月考) 已知关于的一元二次方程有两个不相等的实数根,(1)求m的取值范围;(2)当时,求出此时方程的两个根.17. (5分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.18. (5分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,商场经调查发现,如果每件衬衫降价0.5元,商场平均每天可多售出1件,若商场平均每天想盈利1200元,是否可能,若可能则每件衬衫应降价多少元?19. (5分)(2017·武汉模拟) 如图,点A是反比例函数y=﹣在第二象限内图象上一点,点B是反比例函数y= 在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,求△AOB的面积.20. (7分)(2017·宛城模拟) 如图,在△OAB中,OA=OB,以点O为圆心的⊙O经过AB的中点C,直线AO 与⊙O相交于点E、D,OB交⊙O于点F,P是的中点,连接CE、CF、BP.(1)求证:AB是⊙O的切线.(2)若OA=4,则①当长为________时,四边形OECF是菱形;②当长为________时,四边形OCBP是正方形.21. (10分)(2011·南京) 如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点;(2)在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.22. (11分)(2017·高邮模拟) 体育中考前,抽样调查了九年级学生的“1分钟跳绳”成绩,并绘制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)补全频数分布直方图;(2)扇形图中m=________;(3)若“1分钟跳绳”成绩大于或等于140次为优秀,则估计全市九年级5900名学生中“1分钟跳绳”成绩为优秀的大约有多少人?23. (15分) (2018九上·来宾期末) 如图,一次函数y=kx+b与反比例函数y= 的图象相较于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.24. (8分)(2017·苏州) 初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)________, ________;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________ ;(3)从选航模项目的名学生中随机选取名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的名学生中恰好有名男生、名女生的概率.25. (15分)码头工人每天往一艘轮船上装载货物,装载速度y(吨/天)与装完货物所需时间x(天)之间的函数关系如图.(1)求y与x之间的函数表达式;(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?(3)若原有码头工人10名,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?26. (12分) (2016九上·赣州期中) 把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为________;(2)当△CBD是等边三角形时,旋转角a的度数是________(a为锐角时);(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.27. (7分) (2020八上·历下期末) 某旅行团去景点游览,共有成人和儿童20人,且旅行团中儿童人数多于成人.景点规定:成人票40元/张,儿童票20元/张.(1)若20人买门票共花费560元,求成人和儿童各多少人?(2)景区推出“庆元旦”优惠方案,具体方案为:方案一:购买一张成人票免一张儿童票费用;方案二:成人票和儿童票都打八折优惠;设:旅行团中有成人a人,旅行团的门票总费用为W元.①方案一: ________;方案二: ________;②试分析:随着a的变化,哪种方案更优惠?参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共5题;共5分)9-1、10-1、11-1、12-1、13-1、三、解答题 (共14题;共130分)14-1、14-2、14-3、15-1、16-1、16-2、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、26-4、27-1、27-2、。
2017—2018学年度第二学期期末考试初二数学试题及答案
2017—2018学年度第二学期期末考试初二数学试题题目一二三总分评卷人得分一、选择题(每小题3分,共30分)1.下列调查中,适合用普查方式的是()A.调査绥化市市民的吸烟情况B.调查绥化市电视台某节目的收视率C.调查绥化市市民家庭日常生活支出情况D.调査绥化市某校某班学生对“文明佛山”的知晓率2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三角形三个顶点的坐标分别是()A.(1,7)、(-2,2)、(3,4)B.(1,7)、(2,2)、(3,4)C.(1,7)、(2,-2)、(3,3)D.(1,7)、(2,2) 、( 3,4)3.已知直线a外有一点P,则点P到直线a的距离是()A.点P到直线的垂线的长度B.点P到直线的垂线段C.点P到直线的垂线段的长度D.点P到直线的垂线4.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE,∠2:∠1=4:1,则∠AOF的度数是()A.130°B.125°C.140°D.135°5.已知关于x的不等式(1-a)x>3的解集为x<31a-,则a的取值范围是()A.a>0 B.a<0 C.a<1 D.a>16.如果点P(5,y)在第四象限,那么y的取值范围是()A.y>0 B.y<0 C.y≤0D.y=07.下列说法正确的是()A.2π是分数B.2π是无理数C.如果a为实数,那么2a为正数D.如果a为实数,那么-a为负数7.若点A(a,4)和点B(3,b)关于y轴对称,则a,b的值分别是()A.3,4 B.2,-4 C.-3,4 D.-3,-49.有40个数据,共分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.20 B.0.30 C.0.25 D.0.1510.已知4520430X Y ZX Y Z-+=⎧⎨+-=⎩(xyx≠0),则x:y:x的值是()A.2:1:3 B.1:2:3 C.3:2:1 D.不能确定二、填空题: (每题3分,共33分)11.如果点P(a+6,a-3)在x轴上,那么其坐标是。
广东省肇庆市初中物理八年级下学期数学期末考试试卷
广东省肇庆市初中物理八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)(2017·桂林模拟) 下列说法正确的是()A . 了解飞行员视力的达标标率应使用抽样调查B . 从2000名学生中选出200名学生进行抽样调查,样本容量为2000C . 一组数据3,6,6,7,9的中位数是6D . 一组数据1,2,3,4,5的方差是102. (2分)在频数分布表中,各小组的频数之和()A . 小于数据总数B . 等于数据总数C . 大于数据总数D . 不能确定3. (2分)(2017·陕西模拟) 如图,直线a∥b,若∠1=40°,∠2=55°,则∠3的度数为()A . 115°B . 105°C . 95°D . 85°4. (2分)将点P(-4,3)先向左平移2个单位,再向下平移2个单位得到点P′,则点P′的坐标为()A . (-6,1)B . (-6,5)C . (-2,5)D . (一2,1)5. (2分) (2019七下·香洲期末) 如果点P(m+3,m+1)在平面直角坐标系的x轴上,则m=()A . 0B . -1C . -2D . 36. (2分)(2019·秀洲模拟) 已知反比例函数的图象,在每一象限内,的值随值的增大而减少,则一次函数的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分) (2017八下·高阳期末) 一次函数y=kx-k(k<0)的图象大致是()A .B .C .D .8. (2分)已知关于x的一次函数y=mx+1,如果y随x的增大而增大,则m的取值范围是()A . m>0B . m<0C . m≥0D . m≤09. (2分)(2016·包头) 如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A . CE= DEB . CE= DEC . CE=3DED . CE=2DE10. (2分)在平面直角坐标系中,点(﹣3,﹣2)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限11. (2分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E 在AB上,当△CDE的周长最小时,点E的坐标为()A . (3,1)B . (3,)C . (3,)D . (3,2)12. (2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A . 180°B . 220°C . 240°D . 300°13. (2分) (2019九上·孝义期中) 如图,在四边形ABCD中,∠ABC=∠ACB=∠ADC= ,若AD=4,CD=2,则BD的长为()A . 6B .C . 5D .14. (2分)(2017·揭西模拟) 如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M,N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是()A .B .C .D .15. (2分) (2019九上·定州期中) 如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是()A .B . 5C .D . 316. (2分)直线y=x+b(b>0)与直线y=kx(k<0)的交点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共4题;共5分)17. (1分) (2017八上·江津期中) 如图,在△ABC中,∠A=40°,有一块直角三角板DEF的两条直角边DE、DF分别经过点B、C,若直角顶点D在三角形外部,则∠ABD+∠ACD的度数是________ .18. (1分)小明从A地出发行走到B地,并从B地返回到A地,同时小张从B地骑车匀速到达A地后,发现忘带东西,立刻以原速返回取到东西后,再以原速赶往A地,结果与小明同时到达A地,如图为小明离A地距离s(单位:km)与所用时间t(单位:h)之间关系,则小明与小张第2次相遇时离A地________km.19. (1分)如图,要测量一条小河的宽度AB的长,可以在小河的岸边作AB的垂线 MN,然后在MN上取两点C,D,使BC=CD,再画出MN的垂线DE,并使点E 与点A,C在一条直线上,这时测得DE的长就是AB的长,其中用到的数学原理是:________20. (2分) (2017八下·重庆期中) 如图,菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EG⊥CD于点G,则∠FGC=________.三、解答题 (共6题;共37分)21. (8分)(2019·蒙自模拟) 为积极响应创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A,B,C, D四等.从中随机抽取了部分学生的成绩进行统计,绘制成如图的两幅不完整的统计图,根据统计图信息,回答下列问题(1)此次被抽取的学生成绩共有多少份?(2) D等学生成绩所在扇形的圆心角的度数是多少度?补全条形统计图.(3)估计该校学生成绩为A等的学生大约有多少人?22. (6分) (2017七下·东莞期中) 已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1 . (图中每个小方格边长均为1个单位长度) .(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标.________;________;________;(3)求出△ABC的面积23. (7分)(2017·新野模拟) 已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.24. (2分) (2016八下·广饶开学考) 如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.25. (3分) (2017八下·福清期末) 如图,A、B两地相距600km,一辆动车从A地开往B地,一辆高铁从B 地开往A地,高铁先出发,一小时后,动车才出发,设动车离A地的距离为y2(km),高铁离A地的距离为y1(km)高铁出发时间为t(h),变量y2和y1之间的关系图像如图所示:(1)根据图像,高铁和动车的速度分别是________;(2)高铁出发多少小时与动车相遇;(3)高铁出发多长时间两车相距50km。
广东省肇庆市2018-2019学年八年级(下)期末数学试卷(含解析)
肇庆市端州区2018-2019学年八年级下学期期末考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.下列曲线中能够表示y 是x 的函数的有( )A 、①②③B 、①②④C 、①③④D 、②③④2.如图,点A 1、B 1、C 1分别为△ABC 的边B C 、C A 、AB 的中点,点A 2、B 2、C 2分别为△A 1B 1C 1的边B 1C 1、C 1A 1、A 1B 1的中点,若△ABC 的面积为1,则△A 2B 2C 2的面积为( )A 、13 B 、14 C 、18 D 、1163.已知|a +1|0,则b ﹣1=( ) A 、﹣1 B 、﹣2 C 、0 D 、1 4.在△ABC 中,∠C =90°,AB =c ,∠A =30°,则AC =( )A 、12c B 、2c C 、2c D c5.下列命题的逆命题能成立的有()①两条直线平行,内错角相等;②如果两个实数相等,那么它们的绝对值相等;③全等三角形的对应角相等;④在角的内部,到角的两边距离相等的点在角的平分线上.A、4个B、3个C、2个D、1个6.下列图形中,是轴对称图形的有()①正方形;②菱形;③矩形;④平行四边形;⑤等腰三角形;⑥直角三角形A、6个B、5个C、4个D、3个7.在一次科技作品制作比赛中,某小组8件作品的成绩(单位:分)分别是:7、10、9、8、7、9、9、8,对这组数据,下列说法正确的是()A、众数是9B、中位数是8C、平均数是8D、方差是78.一个正n边形的每一个外角都是45°,则n=()A、7B、8C、9D、109.∠A的余角是70°,则∠A的补角是()A、20°B、70°C、110°D、160°10.某校规定学生的数学学期评定成绩满分为100,其中平时成绩占50%,期中考试成绩占20%,期末考试成绩占30%.小红的三项成绩(百分制)依次是86、70、90,小红这学期的数学学期评定成绩是()A、90B、86C、84D、82二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卡相应的位置上11.菱形的两条对角线长分别为3和4,则菱形的面积是.12.因式分解:a3﹣9a=.13.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.14.已知正比例函数图象经过点(4,﹣2),则该函数的解析式为.15.计算:(﹣4ab2)2÷(2a2b)0=.16.不等式组21512x xxx-≤⎧⎪⎨+->-⎪⎩的解集是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(.19.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE 交CD于点F,连接DE,求证:∠DAE=∠ECD.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如果一个三角形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如题(1),菱形AEFD为△ABC的“亲密菱形”.在图(2)中,请以∠BAC为重合角用直尺和圆规作出△ABC的“亲密菱形”AEFD.21.某学校积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对所在社区的一些区域进行绿化改造,已知乙工程队每小时能完成的绿化面积是甲工程队每小时能完成的绿化面积的1.5倍,并且乙工程队完成200平方米的绿化面积比甲工程队完成200平方米的绿化面积少用2小时,甲工程队每小时能完成多少平方米的绿化面积?22.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调査了部分学生,调查结果分为五种:A非常了解,B比较了解,C基本了解,D不太了解,E完全不知.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请根据以上信息,解答下列问题:(1)本次共调查了名学生,扇形统计图中D所对应扇形的圆心角为度;(2)把这幅条形统计图补充完整(画图后请标注相应的数据);(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有名.五、解答题(三)本大题共3小题,每小题9分,共27分)23.(9分)如图,已知矩形ABCD中,点E是AB边上的一个动点,点F、G、H分别是C D、DE、CE的中点.(1)求证:四边形EHFG是平行四边形;(2)设AB=4,AD=3,求△EFG的面积.24.(9分)如图,正方形ABCD的对角线交于点O,点E、F分别在A B、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为6,OE=EM,求MN的长.25.(9分)如图,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点.(1)求直线AB的解析式;(2)若P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发生变化?若不变,请求出它的坐标;如果变化,请说明理由.肇庆市端州区2018-2019学年八年级下学期期末考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列曲线中能够表示y是x的函数的有()A、①②③B、①②④C、①③④D、②③④答案:A考点:函数的概念。