2020年福州市九年级质量检测数学试题(含答案)
福州市2019-2020年九年级上期末质量检测数学试卷及答案

福州市2019-2020年九年级上期末质量检测数学试卷及答案—学年度第一学期九年级期末质量检测数 学 试 卷(满分150分;考试时间120分钟)一、选择题(共10小题,每小题4分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列根式中,不是最简二次根式的是 A .10 B .8 C . 6 D . 22.下列图形依次是圆、正方形、平行四边形、正三角形,其中不是中心对称图形的是3.如图,△ABC 内接于⊙O ,∠A =50°,则∠BOC 的度数是 A .100° B .80° C .50° D .40° 4.下列事件中,为必然事件的是A .购买一张彩票,一定中奖B .打开电视,正在播放广告C .一个袋中只有装有5个黑球,从中摸出一个球是黑球D .抛掷一枚硬币,正面向上5.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是A .0.2B .0.3C .0.4D .0.5 6.方程x 2=x 的解是A .x =1B .x =0C .x 1=1,x 2=0D .x 1=-1,x 2=07.在平面直角坐标系中,将抛物线y =x 2先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式是A .y =(x -2)2+2B .y =(x ―2)2―2C .y =(x +2)2+2D .y =(x +2)2-2 8.若n (n ≠0)是关于x 的方程x 2+mx +3n =0的一个根,则m +n 的值是 A .-3 B .-1 C .1 D .39.已知⊙O 1和⊙O 2的半径分别是方程x 2-6x +5=0的两根,且两圆的圆心距等于4,则⊙O 1与⊙O 2的位置关系是A .外离B .外切C .相交D .内切10.二次函数y =ax 2+bx +c 的图象如图所示,则点A (4a +2b +c ,abc )在 A .第一象限 B .第二象限C.第三象限D .第四象限A BCD 第3题图第5题图 第10题图 ABC D O 第14题图二、填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置) 11.使x -1有意义的x 的取值范围是_______________.12.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字为6的概率是______________.13.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个相等的实数根,则k =_________.14.如图,一条公路的转弯处是一段圆弧(图中的⌒AB ),点O 是这段弧的圆心,C 是⌒AB 上一点,OC ⊥AB ,垂足为D ,AB =160m ,CD =40m ,则这段弯路的半径是___________m .15.已知二次函数y =―x 2―4x +3,则y 的最大值是____________;x +y 的最大值是____________.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.计算:(每小题7分,共14分)(1) 8×12×18÷27; (2) 9x +6 x 4-2x 1x.17.(本题15分)如图,△ABC 的顶点坐标分别为A (-3,1),B (0,1),C (0,3),将△ABC 绕原点O 顺时针旋转90°,得到△A 1B 1C 1.(1) 画出△A 1B 1C 1;(2) 直接写出△A 1B 1C 1各顶点坐标;(3) 若二次函数y =ax 2+bx +c 的图象经过点C 、B 1、C 1,求二次函数的解析式;(4) 请在右边的平面直角坐标系中画出(3)的二次函数y =ax 2+bx +c18.(本题12分)在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,5.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x ,小强摸出球的标号为y .小明和小强在此基础上共同协商一个游戏规则:当x 与y 的积为偶数时,小明获胜;否则小强获胜.(1) 若小明摸出的球不放回,求小明获胜的概率;(2) 若小明摸出的球放回后小强再随机摸球,问他们制定的游戏公平吗?请说明理由. 19.(本题10分)据媒体报道,某年旅游纯收入约2000万元,年旅游纯收入约2880万元,若年、年旅游纯收入逐年递增,请解答下列问题:(1) 求这两年该旅游纯收入的年平均增长率;(2) 如果今后两年仍保持相同的年平均增长率,请你预测到年该旅游纯收入约多少万元?20.(本题12分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,且∠A =∠PCB .(1) 求证:PC 是⊙O 的切线; (2) 若CA =CP ,PB =1,求⌒BC 的弧长.第20题图21.(本题13分)在△ABC 中,AC =BC =2,∠C =90°.将一块三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交边AC 、CB 于点D 、E .(1) 如图①,当PD ⊥AC 时,则DC +CE 的值是____________.(2) 如图②,当PD 与AC 不垂直时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3) 如图③,在∠DPE 内作∠MPN =45°,使得PM 、PN 分别交DC 、CE 于点M 、N ,连接MN .那么△CMN 的周长是否为定值?若是,求出定值;若不是,请说明理由.22.(本题14分)如图,抛物线y =x 2-4x +1与x 轴交于A 、B 两点,与y 轴交于点C .(1) 求点A 、B 的坐标及线段AB 的长; (2) 求△ABC 的外接圆⊙D 的半径;(3) 若(2)中的⊙D 交抛物线的对称轴于M 、N 两点(点M 在点N 的上方),在对称轴右边的抛物线上有一动点P ,连接PM 、PN 、PC ,线段PC 交弦MN 于点G .若PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,当这两部分面积之差等于4时,求出点P 的坐标.A C DEP 第21题图① 第21题图② A B C DE P 第21题图③ A C D E MPN 第22题图①第22题图②福州市—学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.D 3.A 4.C 5.B 6.C 7.A 8.A 9.D 10.D 二、填空题(每小题4分,共20分):11.x ≥1 12. 1 6 13.1 14.100 15.7; 214(正确一个得2分)三、解答题:(满分90分) 16.(每小题7分,共14分)解:(1) 8×12×18÷27=22×23×32÷3 3 ……………………………………………………………4分 =8. ……………………………………………………………………………………7分(2) 9x +6x 4-2x 1 x=3x +3x -2x ……………………………………………………………………6分=4x . …………………………………………………………………………………7分17.解:(1) △A 1B 1C 1如右下图; ………………………………………………………………3分(2) A 1(1,3),B 1(1,0),C 1(3,0); …………………………………………………6分(3) 由抛物线y =ax 2+bx +c 经过点C 、B 1、C 1,可得:⎩⎪⎨⎪⎧c =3a +b +c =09a +3b +c =0, ………………………………………………………………9分解得:⎩⎪⎨⎪⎧a =1b =-4c =3, …………………………………10分∴抛物线的解析式为:y =x 2-4x +3. ……………11分 (答案用一般式或顶点式表示,否则扣2分)18.解:(1) 列树状图如下:………………3分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有6种.…………………………………………………………………………………4分∴小明获胜的概率P (x 与y 的积为偶数)=6 12 = 12. (6)分(2) 列树状图如下:……………9分由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有7种. ……………………………………………………………………………10分∴小明获胜的概率P (x 与y 的积为偶数)=7 16 < 12, (11)1 2 3 51 2 3 5 1 2 3 5 1 2 3 5 小明 小强 小明 小强 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5分(或证明7 16 ≠916也可) ∴游戏规则不公平. ……………………………………………………………………12分19.解:(1) 设这两年该旅游纯收入的年平均增长率为x .根据题意得: ………………1分2000(1+x )2=2880. (4)分解得:x 1=0.2=20%,x 2=-2.2 (不合题意,舍去). ………………………6分答:这两年该旅游纯收入的年平均增长率为20%. (7)分(2) 如果到2015年仍保持相同的年平均增长率,则2015年该旅游纯收入为 2880(1+0.2)2=4147.2(万元). ………………………9分答:预测2015年该旅游纯收入约4147.2万元. ………………………10分 20.解:(1) 连接OC . …………………………………………1分∵AB 是⊙O 的直径, ∴∠ACB =90°,即∠ACO +∠OCB =90°. ………2分 ∵OA =OC ,∴∠A =∠ACO , ………………………………3分 ∵∠A =∠PCB ,∴∠ACO =∠PCB . ………………………………4分 ∴∠PCB +∠OCB =∠ACO +∠OCB =90°,即∠PCO =90°. ∴PC ⊥OC . ………………………………5分 又∵OC 为⊙O 的半径,∴PC 是⊙O 的切线. ………………………………6分(2) ∵AC =PC ,∴∠A =∠P , ………………………………………7分 ∴∠PCB =∠A =∠P .∴BC =BP =1. ………………………………………8分 ∴∠CBO =∠P +∠PCB =2∠PCB . 又∵∠COB =2∠A =2∠PCB ,∴∠COB =∠CBO , …………………………………9分 ∴BC =OC . 又∵OB =OC ,∴OB =OC =BC =1,即△OBC 为等边三角形. ……10分 ∴∠COB =60°. ………………………………11分∴l ⌒BC = 1×60π 180= 13π. ……………………………12分 21.解:(1) DC +CE =2; …………………………………3分(2) 结论成立.连接PC ,如图. …………………………4分 ∵△ABC 是等腰直角三角形,P 是AB 的中点,∴CP =PB ,CP ⊥AB ,∠ACP = 12∠ACB =45°.∴∠ACP =∠B =45°,∠CPB =90°. …………………5分A B C OA DP∴∠BPE =90°-∠CPE . 又∵∠DPC =90°-∠CPE ,∴∠DPC =∠EPB . ………………………………6分 ∴△PCD ≌△PBE .∴DC =EB , …………………………………………7分 ∴DC +CE =EB +CE =BC =2. ……………………8分(3) △CMN 的周长为定值,且周长为2. …………9分在EB 上截取EF =DM ,如图, …………………10分 由(2)可知:PD =PE ,∠PDC =∠PEB ,∴△PDM ≌△PEF , ………………………………11分∴∠DPM =∠EPF ,PM =PF . ∵∠NPF =∠NPE +∠EPF =∠NPE +∠DPM =∠DPE -∠MPN =45°=∠NPM .∴△PMN ≌△PFN ,∴MN =NF . ……………………………………………12分 ∴MC +CN +NM =MC +CN +NE +EF=MC +CE +DM =DC +CE =2.∴△CMN 的周长是2. …………………………………13分 22.解:(1) 令y =0,得:x 2-4x +1=0, …………………1分解得:x 1=2+3,x 2=2-3. …………………3分∴点A 的坐标为(2-3,0),点B 的坐标为(2+3,0). …4分 ∴AB 的长为23. ………………………………5分 (由韦达定理求出AB 也可)(2) 由已知得点C 的坐标为(0,1),由y =x 2-4x +1=(x ―2)2―3, 可知抛物线的对称轴为直线x =2, ……………………6分 设△ABC 的外接圆圆心D 的坐标为(2,n ),连接AD 、CD ,∴DC =DA ,即22+(n -1)2=[2―(2―3)]2+n 2,……………8分 解得:n =1, …………………………………………9分 ∴点D 的坐标为(2,1),∴△ABC 的外接圆⊙D 半径为2. ……………………10分 (3) 解法一:由(2)知,C 是弧MN 的中点.在半径DN 上截取EN = MG , ……………………11分 又∵DM =DN ,∴DG =DE .则点G 与点E 关于点D 对称,连接CD 、CE 、PD 、PE .由圆的对称性可得:图形PMC 的面积与图形PECN 的面积相等. …………………………………………12分 由PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,这两部分面积之差为4.可知△PCE 的面积为4.设点P 坐标为(m ,n ) ∴S △CEP =2S △CDP =2× 12·CD ·n -1=4,∴n 1=3,n 2=-1. ……………………………………13分由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);A CD E MP N F或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分 解法二:设点P 坐标为(m ,n ),点G 坐标为(2,c ),直线PC 的解析式为y =kx +b ,得:⎩⎨⎧b =1n =km +b ,解得:⎩⎪⎨⎪⎧k = n -1 m b =1, ∴直线PC 的解析式为y = n -1mx +1. …………………11分当x =2时,c = 2(n -1)m+1.由(2)知,C 是弧MN 的中点,连接CD , 图形PCN 的面积与图形PMC 的面积差为: =S 扇形DCN +S △GCD +S △PGN -(S 扇形MCD -S △GCD +S △PMG ) =2S △GCD +S △PGN -S △PMG=2×1 2 ×2(c -1)+1 2 (1+c )(m ―2)―12 (3―c )(m ―2)=2(c -1)+12 (2c ―2)(m ―2)=(c -1)(2+m ―2) =[ 2(c -1) m +1―1]m=2(n -1)=4.∴n 1=3,n 2=-1. ……………………………………13分 由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分。
2020年福建省福州市初中毕业班质量检测卷(数学卷)附详细解析

2020年福建省(福州市)初中毕业班质量检测数 学 试 题(测试范围:中考范围 测试时间:120分钟 满分:150分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在实数π4,-227,2.02002,38中,无理数的是( )A .π4B .-227C .2.02002D .382.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .赵爽弦图 笛卡尔心形线 科克曲线 斐波那契螺旋线3.下列运算中,结果可以为3-4的是( ) A .32÷36B .36÷32C .32×36D .(-3)×(-3)×(-3)×(-3)4.若一个多边形的内角和是540°,则这个多边形是( ) A .四边形B .五边形C .六边形D .七边形5.若a <28-7<a +1,其中a 为整数,则a 的值是( ) A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六。
问人数、鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( )A .⎩⎪⎨⎪⎧9x -11=y 6x +16=yB .⎩⎪⎨⎪⎧9x -11=y 6x -16=yC .⎩⎪⎨⎪⎧9x +11=y 6x +16=yD .⎩⎪⎨⎪⎧9x +11=y 6x -16=y7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是( )A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作⌒EF ,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是( ) A .63+2πB .63+3πC .93-3πD .93-2π第8题 第9题10.小明在研究抛物线y =-(x -h )2-h +1(h 为常数)时,得到如下结论,其中正确的是( ). A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x -1上C .当-1<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2 二、填空题:本题共6小题,每小题4分,共24分. 11.计算:2-1+cos60°= .12.能够成为直角三角形三条边长的三个正整数称为勾股数,若从2,3,4,5中任取3个数,则这3个数能够构成一组勾股数的概率是 .13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于 度.第13题15.如图,在⊙O 中,C 是⌒AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于 度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数y =k x(x>0)的图像上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是 .第15题 第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组⎩⎪⎨⎪⎧2x ≤6, ①3x +12>x . ②并把不等式组的解集在数轴上表示出来.18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分)先化简,再求值:x 2+1x 2+2x +1÷1x +1-x +1,其中x =3-1.20.(本小题满分8分)如图,已知∠MON ,A ,B ,分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息,图1是甲出发后行走的路程y (单位:m)与行走时间x (单位:min)的函数图象,图2是甲,乙两人之间的距离s (单位:m)与甲行走时间x (单位:min)的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.图1 图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m(单位:t)的部分按平价收费,超出m的部分按议价收费,为此拟召开听证会,以确定一个合理的月均用水量标准m,通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t),将这1000个数据按照0≤x<4,4≤x<8…,28≤x<32分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.23.(本小题满分10分)如图,在Rt△ABC中,AC<AB,∠BAC=90°,以AB为直径作⊙O交BC于点D,E是AC的中点,连接ED,点F在⌒BD上,连接BF并延长交AC的延长线于点G.(1)求证:DE是⊙O的切线;(2)连接AF,求AFBG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°. (1)如图1,若AE =DE , ①求证:CD 平分∠ACB ; ②求ADDB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图225.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:y=kx2+(4k2-k)x的对称轴是y轴,过点F(0,2)作一直线与抛物线C相交于点P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=-2上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=-2于点M,N,求MF2-NF2的值.2019-2020学年度福建省质量检测数学试题参考答案一、选择题(本题共10小题,每小题4分,共40分,每小题只有一个选项正确)1 2 3 4 5 6 7 8 9 10 ACABBABCCD二、填空题(本题共6小题,每小题4分,共24分)11.1 12.14 13.15 14.4 15.18 16.94三、解答题(共9题,满分86分) 17.(本小题满分8分)解:解不等式①,得x ≤3. ……………………………………………………………………3分解不等式②,得 x >-1. …………………………………………………………………5分 ∴原不等式组的解集是-1<x ≤3, ………………………………………………………6分 将该不等式组解集在数轴上表示如下:……………………………………………………………8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ∴BE +EF =CF +EF∴BF =CE ……………………………………………………………………………………3分在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧AB =DC ∠B =∠C BF =CE∴△ABF ≌△DCE ……………………………………………………………………………6分 ∴∠A =∠D …………………………………………………………………………………8分 19.(本小题满分8分)x 2+1=x 2+1x +1-(x +1)(x -1)x +1…………………………………………………………………4分=x 2+1x +1-x 2-1x +1…………………………………………………………………………5分=2x +1…………………………………………………………………………………6分 当x =3-1时,原式=23-1+1………………………………………………………………7分=23=233…………………………………………………………………………8分20.(本小题满分8分) 解:画法一: 画法二:………………………………………4分 (1)如图,点C 、D 分别为(1),(2)所求作的点. ……………………………5分(2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA ,∴△DBC ∽△DAO ,…………………………………………………………7分 ∴DC DO =BC AO =12, ∴OD =2CD ……………………………………………………………………8分21.(本小题满分8分)解:(1)由图1可得甲的速度是120÷2=60m /min . …………………………………………………2分由图2可知,当x =43时,甲,乙两人相遇,故(60+v 乙)×43=200,解得v 乙=90m /min . …………………………………………………………………………4分(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴b =20090=209,………………………………………………………………………………6分 a =20060=103. ………………………………………………………………………………8分 ∴a 的值为103,b 的值为209. 22.(本小题满分10分)(1)依题意a =100 ·································································································· 2 分 这1000户家庭月均用水量的平均数 为:72.141000203060261002222018280114180101006402=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=x , ∴估计这1000户家庭月均用水量的平均数是14.72.·······················································6分(2)解法一:不合理.理由如下·····················································································7分 由(1)可得14.72在12≤x <16内,这1000户家庭中月均用水量小于16t 的户数有40+100+180+280=600(户),····················································································8分 ∴这1000家庭中月均用水量小于16t 的家庭所占的百分比是%60%10010060=⨯ ∴月均用水量不超过14.72t 的户数小于60%··································································9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m而60%<70%,∴用14.72作为标准m 不合理.····················································································10分 解法二:不合理.理由如下··························································································7分 ∵该市政府希望70%的家庭的月均用水量不超过标准m∴数据中不超过m 的频数应为700,·············································································8分 即有300户家庭的月均用水量超过m又20+60+100=160<300,20+60+100+220=380>300∴m 应在16≤x <20内·································································································9分 而14.72<16∴用14.72作为标准m 不合理.·····················································································10分23.(本小题满分10分)(1)证明:连接OD ,AD∵AB 为⊙O 直径,点D 在⊙O 上∴∠ADB=90°…………………………………………………………………………………………1分∴∠ADC=90°∵E是AC的中点∴DE=AE∴∠EAD=∠EDA……………………………………………………………………………………2分∵OA=OD∴∠OAD=∠ODA……………………………………………………………………………………3分∵∠OAD+∠EAD=∠BAC=90°∴∠ODA+∠EAD=90°即∠ODE=90°…………………………………………………………………………………………4分∴OD⊥DE∵D是半径OD的外端点∴DE是⊙O的切线……………………………………………………………………………………5分(2)解法一:过点F作FH⊥AB于点H,连接OF∴∠AHF=90°∵AB为⊙O的直径,点F⊙O在上∴∠AFB=90°∴∠BAF+∠ABF=90°∵∠BAC=90°∴∠G+∠ABF=90°∴∠G=∠BAF…………………………………………………………………………………………6分∵∠AHF=∠GAB=90°∴△AFH∽△GBA ……………………………………………………………………………………7分∴AFGB=FHBA………………………………………………………………………………………………8分由垂线段最短可得FH≤OF……………………………………………………………………………9分当且仅当点H,O重合时等号成立∵AC<AB∴⌒BD上存在点F使得FO⊥AB,此时点H,O重合∴AFGB=FHBA≤OFBA=12……………………………………………………………………………………10分即AFGB的最大值为12解法二:取GB 中点M ,连接AM∵BAG =90°∴AM =12GB ……………………………………………………………………………………………6分 ∵AB 为⊙O 的直径,点F ⊙O 在上∴∠AFB =90°∴∠AFG =90°∴AF ⊥GB ………………………………………………………………………………………………7分 由垂线段最短可得AF ≤AM …………………………………………………………………………8分 当且仅当点F ,M 重合时等号成立此时AF 垂直平分GB即AG =AB∵AC <AB∴⌒BD 上存在点F 使得F 为GB 中点∴AF ≤12GB ……………………………………………………………………………………………9分 ∴AF GB ≤12………………………………………………………………………………………………10分 即AF GB 的最大值为1224.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA =180°-45°2=67.5°·················································································· 1 分 ∵AB =AC ,∠BAC =90°,∴∠ACB =∠ABC =45°,∠DCA =22.5°, ································································· 2 分 ∴∠DCB =22.5°,即∠DCA =∠DCB ,∴CD 平分∠ACB . ······························································································· 3 分 ②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA .又CD 平分∠ACB ,∴AD =FD ,········································································································· 4分 ∴ AD DB =FD DB在Rt △BFD 中,∠ABC =45°,∴sin ∠DBF =FD DB =22····························································································· 5 分 ∴ AD DB =22··········································································································· 6 分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°.又∠BAC =90°,∠AED =45°,∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°, ························································ 7 分 ∴∠AGE =∠AEG ,∴AG =AE . ··········································································································8 分 ∵AB =AC ,∴△AGB ≌△AEC , ································································································ 9 分 ∴∠AGB =∠AEC =135°,CE =BG ,∴∠BGE =90°. ·····································································································10 分 ∵AE ⊥BE ,∴∠AEB =90°,∴∠BEG =45°,在Rt △BEG 和Rt △AGE 中,BE =GE cos45°=2GE ,AE =GE •cos 45°=22GE , ······························································ 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22GE GE =12. ································································ 12 分 (也可以将△AEB 绕点 A 逆时针旋转 90°至△AFC 得到AE =22EF ,CF =2EF ) 证法二:∵AE ⊥BE ,∴∠AEB =90°,∴∠BAE =∠ABE =90°.∵∠AED =45°,∴∠BED =45°,∠EAC =∠ECA =45°,∴∠AEC =∠BEC =135°. ······················································································ 7 分∵∠BAC =90°,∴∠BAE =∠EAC =90°,∴∠ABE =∠EAC .∵∠ABC =45°,∴∠ABE +∠EBC =45°,∴∠ECA =∠EBC , ······························································································· 8 分 ∴△BEC ∽△CEA ,∴ BE CE =EC EA =BC CA. ································································································ 9 分 在Rt △ABC 中,BC =CA cos45°=2CA , ··································································· 10 分 ∴BE CE =EC EA =2, ∴ BE =2CE ,AE =22CE . ·················································································· 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22CE CE =12································································ 12 分 25.(本小题满分14分)解:(1)∵抛物线C 的对称轴是y 轴,∴-4k 2-k 2k= 0且k ≠0,…………………………………………………………………………1分 ∴4k -12=0 解得k =14,………………………………………………………………………………………3分 ∴抛物线C 的解析式为y =14x 2……………………………………………………………………4分 (2)点A 在直线y =-2上……………………………………………………………………………5分 理由如下:∵过F (0,2)的直线与抛物线C 交于P ,Q 两点∴直线PQ 与x 轴不垂直设直线PQ 的解析式为y =tx +2将y =tx +2带入y =14x 2得x 2-4tx -8=0 ∴ △ =16t 2+32>0∴该方程有两个不相等的实数根x 1,x 2不妨设P (x 1,y 1),Q (x 2,y 2)∴直线OP 的解析式为 y =y 1x 1x ………………………………………………………………………6分设A (m ,n ),∵QA ⊥x 轴交直线OP 于点A∴m =x 2∴n =y 1x 1•x 2=14x 12•x 2x 1=14x 1x 2……………………………………………………………………………7分 又方程x 2-4tx -8=0的解为x =2t ±2t 2+2∴x 1x 2=(2t +2t 2+2)(2t -2t 2+2)=4t 2-4(t 2+2)=-8∴14x 1x 2=-2 即点A 的纵坐标为-2………………………………………………………………………………9分 ∴点A 在直线y =-2上(3)∵切线l 不过抛物线C 的顶点∴设切线l 的解析式为y =ax +b (a≠0)将y =ax +b 代入y =14x 2 得x 2-4ax -4b =0………………………………………………10分 依题意得△=0即(-4a )2-4×(-4b )=16a 2+16b =0∴b =-a 2∴切线l 的解析式为y =ax -a 2……………………………………………………………………11分当y =2时,x =a 2+2a ,∴(a 2+2a,2)………………………………………………………………12分 当y =-2时,x =a 2-2a ,∴(a 2-2a,2) …………………………………………………………13分 ∵F (0,2)∴MF 2=(a 2+2a)2, 由勾股定理得NF 2=(a 2-2a )2+(-2-2)2 ∴MF 2-NF 2=(a 2+2a )2-[(a 2-2a)2+(-2-2)2] =(a 2+2a +a 2-2a )(a 2+2a -a 2-2a)-16 =2a 2a •4a-16 =8-16=-8……………………………………………………………………………14分。
2020年福州市九年级质量检测数学试题(含答案)

准考证号:姓名:(在此卷上答题无效)2020年福州市九年级质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,完卷时间120分钟,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数π4,227-,2.02002A .π4B .227-C .2.02002D2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图笛卡尔心形线科克曲线斐波那契螺旋线A BC D3.下列运算中,结果可以为3-4的是A .32÷36B .36÷32C .32×36D .(3-)×(3-)×(3-)×(3-)4.若一个多边形的内角和是540°,则这个多边形是A .四边形B .五边形C .六边形D .七边形5.若a<a +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为A .911616x yx y -=⎧⎨+=⎩B .911616x y x y -=⎧⎨-=⎩C .911616x y x y+=⎧⎨+=⎩D .911616x y x y+=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是A .b 一定增大,c 可能增大B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作 EF,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是A.2π+B.3π+C.3πD.2π-10.小明在研究抛物线2()1y x h h =---+(h 为常数)时,得到如下结论,其中正确的是A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x 1-上C .当1-<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2ADBCFE46主视图76左视图俯视图第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.计算:12cos 60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于度.14.若m (m -2)=3,则(m -1)2的值是.15.如图,在⊙O 中,C 是 AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数k y x =(x >0)的图象上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解不等式组26312x x x ⎧⎪⎨+>⎪⎩,①②. 并把不等式组的解集在数轴上表示出来.12345-1-2-3-4-518.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .AF DE B C19.(本小题满分8分)先化简,再求值:22111121x x x x x +÷-++++,其中1x =-.AC FED Bxy BCDEAO如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象.(1)求甲,乙两人的速度;(2)求a ,b 的值.y x 1202Oxsb a O43图1图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.4048121620242832280220180a 6020月均用水量(单位:t )频数(户数)如图,在Rt △ABC 中,AC <AB ,∠BAC =90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在 BD上,连接BF 并延长交AC 的延长线于点G .(1)求证:DE 是⊙O 的切线;(2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°.(1)如图1,若AE =DE ,①求证:CD 平分∠ACB ;②求AD DB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.BACDEBACDE图1图225.(本小题满分14分)在平面直角坐标系xOy 中,抛物线C :22(4)y kx k k x =+-的对称轴是y 轴,过点F (0,2)作一直线与抛物线C 相交于P ,Q 两点,过点Q 作x 轴的垂线与直线OP 相交于点A .(1)求抛物线C 的解析式;(2)判断点A 是否在直线y =2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C 上的任意一点(除顶点外)作该抛物线的切线l ,分别交直线y =2和直线y =2-于点M ,N ,求22MF NF -的值.A F D EB C数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂. 1.A 2.C 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答. 11.1 12.1413.15 14.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答. 17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1 . ···························································································· 5分 ∴原不等式组的解集是1 <x ≤3, ··············································································· 6分 将该不等式组解集在数轴上表示如下:······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE CF ,∴BE EF CF EF , 即BF CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE,,, ∴△ABF ≌△DCE , ······························································································· 6分 ∴∠A ∠D . ······································································································· 8分12345-1-2-3 -4-519.(本小题满分8分)解:原式221(1)(1)(1)x x x x······················································································· 3分 2(1)(1)111x x x x x ·························································································· 4分 221111x x x x ·································································································· 5分 21x . ··········································································································· 6分当1x时,原式 ················································································· 7分. ····················································································· 8分 20.(本小题满分8分) 解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分 (2)证明如下:由(1)得BC ∥OA ,BC 12OA ,∴∠DBC ∠DAO ,∠DCB ∠DOA ,∴△DBC ∽△DAO , ············································································ 7分 ∴12DC BC DO AO , ∴OD 2CD . ····················································································· 8分21.(本小题满分8分) 解:(1)由图1可得甲的速度是1202=60 m/min . ································································ 2分由图2可知,当43x 时,甲,乙两人相遇,故4(60)2003v 乙,解得90v 乙m/min . ···························································································· 4分 答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b , ······························································································· 6分20010603a . ································································································ 8分∴a 的值为103,b 的值为209.22.(本小题满分10分) 解:(1)依题意得100a . ······························································································ 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x , ········· 6分∴估计这1000户家庭月均用水量的平均数是14.72.(2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有 40100180280600 (户), ···························································· 8分 ∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000,∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m ,∴数据中不超过m 的频数应为700, ·························································· 8分 即有300户家庭的月均用水量超过m .又2060100160300 ,2060100220380300 ,∴m 应在16≤x <20内. ·········································································· 9分 而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分 23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB 90°,分∴∠ADC 90°.∵E 是AC 的中点,∴DE =AE ,∴∠EAD ∠EDA . ·分 ∵OA OD ,∴∠OAD ∠ODA . ······················································································· 3分 ∵∠OAD ∠EAD ∠BAC 90°, ∴∠ODA ∠EDA 90°,即∠ODE 90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点,∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF 90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB 90°, ∴∠BAF ∠ABF 90°.∵∠BAC 90°,∴∠G ∠ABF 90°, ∴∠G ∠BAF . ························································································· 6分 又∠AHF ∠GAB 90°,∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立. ∵AC <AB ,∴ BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合, ∴AF FH GB BA ≤12OF BA , ············································································ 10分即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG 90°,∴AM 12GB . ·分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°,∴∠AFG 90°,∴AF ⊥GB .分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立, 此时AF 垂直平分GB , 即AG =AB . ∵AC <AB ,∴ BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED 45°,AE DE ,∴∠EDA 18045267.5°. ······································································· 1分∵AB AC ,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°, ························································· 2分 ∴∠DCB 22.5°, 即∠DCA ∠DCB ,∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB 90°.∵∠BAC 90°, ∴DA ⊥CA . 又CD 平分∠ACB , ∴AD FD , ································································································· 4分 ∴AD FD DB DB. 在Rt △BFD 中,∠ABC 45°, ∴sin ∠DBF FD DB ················································································ 5分∴AD DB . ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE ,∠AGE 45°,∠AEC 135°, ·············································· 7分 ∴∠AGE ∠AEG , ∴AG AE . ······························································································· 8分 ∵AB AC ,∴△AGB ≌△AEC , ···················································································· 9分 ∴∠AGB ∠AEC 135°,CE BG ,∴∠BGE 90°. ························································································ 10分 ∵AE ⊥BE ,FB AC DE。
2020年福建省九年级初中学业质量检查数学试卷

2020年初中学业质量检查数学试卷(满分150分,时间:120分钟)一、选择题(4×10=40)1、2020的相反数为( )B. 2020C. −2020D. ±2020A. 120202、地球与月球平均距离约为384000千米,将数字384000用科学记数法表示为( )A. 3.84×106B. 3.84×105C. 3.84×104D. 3.84×1053、下列运算正确的是( )A. a+a+a=a3B. (2a)3=6a3C. a•a•a=3aD. a8÷a2=a64、如图是由5个相同的正方体组成的立体图形,则它的主视图是( )5、现有一列数:6,3,3,4,5,4,3,则这列数的众数是( )A. 3B. 4C. 5D. 66、如图,数轴上有A、B、C、D四个点,下列说法正确的是( )、A. 点A表示的数约为√2 B. 点B表示的数约为√3C. 点C表示的数约为√5D. 点D表示的数约为√67、已知点P的坐标是(−2−√m,1),则点P在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8、关于x的一元二次方程ax2+a=0根的情况是( )A. 有两个实数根B. 有两个相等的实数根C. 有两个不等的实数根D. 无实数根9、如图,AB切⊙O于点B,OA与⊙O相交于点C,AC=CO,点D为BĈ上任意一点(不与点B、C 重合),则∠BDC等于( )A. 120°B. 130°C. 140°D. 150°10、已知点A(a-m,y1)、B(a-n,y2)、C(a+b,y3)都在二次函数y=x2−2ax+1的图象上,若0<m<b<n,则y1、y2、y3的大小关系是( )A. y1<y2<y3B. y1<y3<y2C. y3<y1<y2D. y2<y3<y1二、填空题(4×6=24)11、计算:2−1+ (−√3)0=_______________;12、甲、乙两人在相同的条件下,各射靶10次,经统计:甲、乙两人射击的平均成绩都是8环,甲、乙两人射击成绩的方差分别是1.2、2.6,由此可知甲、乙两人中_____________的成绩比较稳定(填“甲”或“乙”);13、不等式组{x−2>02x−3<0的解集为_____________;14、如图,在△ABC中,AB=AC=5,BC=8,中线AD、CE相交于点F,则AF的长为_____________;15、如图,在正方形ABCD中,AB=2,M、N分别为AD、BC的中点,则图中阴影部分的面积为_____________ ;16、如图,四边形ABCO为矩形,点A在反比例函数y=4x(x>0)的图象上,点C在反比例函数y=− 1x(x<0)的图象上,若点B在y轴上,则点A的坐标为_____________;三、解答题:(9小题,共86分)17、(8分) 化简:2a−1a−1+a2−1a÷a2−2a+1a18、(8分) 如图,在△ABC与△DEF中,B、E、C、F在同条直线上,AB=DE,AC∥DF,∠A=∠D,求证:BE=CF.19、(8分) 我国古代数学著作《孙子算经》中记载这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,问:几何?” 其大意为:现有一根木棍,不知道它的长短,用绳子去测量,绳子多了4尺5寸;把绳子对折后再量,绳子又短了1尺,问:木棍有多长?(提示:1尺=10寸)20、(8分)如图,将圆心角为120°的扇形AOB绕着点A按逆时针方向旋转一定的角度后,得到扇形̂上.AO'B′,使得点O′恰在AB(1) 求作点O′(尺规作图,保留作图痕迹,不写作法和证明过程);(2) 连接AB、AB'、AO',求证:AO'平分∠BAB' .21、(10分)如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上的一点,把△ABE沿着直线AE翻折得到△AFE,且点F恰好落在AD边上,连接BF.(1) 求△DEF的周长;(2) 求sin∠BFE的值。
2020年福州市中考数学试卷含答案

2020年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,共22小题,满分150分,考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本卷上一律无效。
毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.2的倒数是A. 12B. 12- C. 2 D.-22. 今年我省规划重建校舍约3890000平方米,3890000用科学记数法表示为A. 70.38910⨯ B. 63.8910⨯ C. 43.8910⨯ D.438910⨯3.下面四个图形中,能判断∠1 > ∠2的是4.下面四个中文艺术字中,不是..轴对称图形的是5.若二次根式1x -有意义,则x 的取值范围为A.1x ≠ B.1x ≥ C.1x < D.全体实数6.下面四个立体图形中,主视图是三角形的是7.已知反比例函数k y x=的图像过点P (1,3),则反比例函数图像位于A.第一、二象限B.第一、三象限C.第二、四象限 D.第三、四象限8. 有人预测2010年南非世界杯足球赛巴西国家队夺冠的概率是70%他们的理解正确的是A.巴西国家队一定夺冠B.巴西国家队一定不会夺冠C.巴西国家队夺冠的可能性比较大D.巴西国家队夺冠的可能性比较小 9.分式方程312x =-的解是 A.5x = B. 1x = C. 1x =- D. 2x =10.已知二次函数2y ax bx c =++的图像如图所示,则下列结论正确的是A.0a >B. 0c <C.240b ac -<D.0a b c ++>二、填空题(共5小题,每题4分,满分20分。
请将答案填入答题卡相应的位置)11.实数a 、b 在数轴上对应点的位置如图所示,则a b(填“>”、“<”或“=”)。
12.因式分解:21x -= 。
13.某校七年(2班)6位女生的体重(单位:千克)是:36,38,40,42,42,45,这组数据的众数为 。
2020年福州市九年级质量检测数学试题答案及评分参考(0526)

2020 年福州市九年级质量检测数学试题答案及评分参考评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考 查内容比照评分参考制定相应的评分细则. 2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半; 如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共 10 小题,每小题 4 分,满分 40 分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A2.C3.A4.B5.B6.A7.B8.C9.C10.D二、填空题:共 6 小题,每小题 4 分,满分 24 分,请在答题卡的相应位置作答.11.112. 1 413.1514.415.1816. 9 4三、解答题:共 9 小题,满分 86 分,请在答题卡的相应位置作答.17.(本小题满分 8 分) 解:解不等式①,得 x≤3. ······························································································3 分 解不等式②,得 x> 1.····························································································5 分 ∴原不等式组的解集是 1<x≤3,···············································································6 分 将该不等式组解集在数轴上表示如下:-5 -4 -3 -2 -1 0 1 2 3 4 5·······························································8 分18.(本小题满分 8 分)证明:∵点 E,F 在 BC 上,BE CF,∴BE EF CF EF,即 BF CE.·········································································································3 分在△ABF 和△DCE 中,AD AB DC,B C,BF CE,BEFC∴△ABF≌△DCE, ·······························································································6 分∴∠A ∠D.·······································································································8 分九年级数学试题答案及评分参考第1页(共 6 页)19.(本小题满分 8 分)解:原式x2 1 (x 1)2 (x 1)(x1)······················································································· 3分 x2 1 (x 1)(x 1) ··························································································4 分x 1x 1 x2 1 x2 1 ··································································································5 分 x 1 x 1x2 1. ··········································································································· 6分当 x 3 1时,原式 2 ·················································································7 分 3 112 323 3. ·····················································································8分20.(本小题满分 8 分) 解: 画法一:M AOC DBN画法二:M AOCD BN·······························································4 分如图,点 C,D 分别为(1),(2)所求作的点.························································5 分(2)证明如下:由(1)得 BC∥OA,BC 1 OA, 2∴∠DBC ∠DAO,∠DCB ∠DOA,∴△DBC∽△DAO, ············································································7 分∴DC DOBC AO1 2,∴OD 2CD.·····················································································8 分21.(本小题满分 8 分)解:(1)由图 1 可得甲的速度是120 2=60 m/min.································································2 分由图2可知,当x4 3时,甲,乙两人相遇,故(60v乙 )4 3200,解得 v乙 90 m/min.····························································································4 分 答:甲的速度是 60 m/min,乙的速度是 90 m/min. (2)由图 2 可知:乙走完全程用了 b min,甲走完全程用了 a min,∴b200 9020 9,······························································································· 6分a200 6010 3. ································································································ 8分∴a的值为10 3,b的值为20 9.22.(本小题满分 10 分) 解:(1)依题意得 a 100 .······························································································2 分 这 1000 户家庭月均用水量的平均数为:九年级数学试题答案及评分参考第2页(共 6 页)x24061001018014280 18 1000220221002660302014.72,········· 6分∴估计这 1000 户家庭月均用水量的平均数是 14.72.(2)解法一:不合理.理由如下: ···············································································7 分由(1)可得 14.72 在 12≤x<16 内,∴这 1000 户家庭中月均用水量小于 16 t 的户数有40 100 180 280 600(户),····························································8 分∴这1000户家庭中月均用水量小于16t的家庭所占的百分比是600 1000100%60%,∴月均用水量不超过 14.72 t 的户数小于 60%. ·············································9 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,而 60%<70%,∴用 14.72 作为标准 m 不合理.·······························································10 分解法二:不合理.理由如下: ···············································································7 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,∴数据中不超过 m 的频数应为 700, ··························································8 分即有 300 户家庭的月均用水量超过 m.又 20 60 100 160 300 , 20 60 100 220 380 300,∴m 应在 16≤x<20 内.··········································································9 分而 14.72<16,∴用 14.72 作为标准 m 不合理.·······························································10 分23.(本小题满分 10 分)(1)证明:连接 OD,AD.∵AB 为⊙O 直径,点 D 在⊙O 上,B∴∠ADB 90°, ····························································································1 分∴∠ADC 90°. ∵E 是 AC 的中点,F OD∴DE=AE,∴∠EAD ∠EDA.····················································A········E·······C··········G···········2 分 ∵OA OD,∴∠OAD ∠ODA. ·······················································································3 分∵∠OAD ∠EAD ∠BAC 90°,∴∠ODA ∠EDA 90°,即∠ODE 90°, ····························································································4 分∴OD⊥DE.∵D 是半径 OD 的外端点,∴DE 是⊙O 的切线. ·····················································································5 分(2)解法一:过点 F 作 FH⊥AB 于点 H,连接 OF,∴∠AHF 90°.B∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°, ∴∠BAF ∠ABF 90°.HFO D∵∠BAC 90°,∴∠G ∠ABF 90°,A ECG∴∠G ∠BAF.·························································································6 分又∠AHF ∠GAB 90°,∴△AFH∽△GBA, ····················································································7 分∴AF GBFH BA.··························································································· 8分由垂线段最短可得 FH≤OF, ········································································9 分当且仅当点 H,O 重合时等号成立.∵AC<AB,∴ B»D 上存在点 F 使得 FO⊥AB,此时点 H,O 重合,∴AF GBFH BA≤OF BA1 2,············································································10分九年级数学试题答案及评分参考第3页(共 6 页)即 AF 的最大值为 1 .GB2解法二:取 GB 中点 M,连接 AM.∵∠BAG 90°,∴AM 1BGB.···························································································6分2∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°,FOMD∴∠AFG 90°,∴AF⊥GB. ···························································A········E········C·········G··········7 分 由垂线段最短可得 AF≤AM, ········································································8 分当且仅当点 F,M 重合时等号成立,此时 AF 垂直平分 GB,即 AG=AB.∵AC<AB,∴ B»D 上存在点 F 使得 F 为 GB 中点,∴AF≤1 2GB,··························································································· 9分∴AF GB≤1 2,····························································································10分即 AF 的最大值为 1 .GB224.(本小题满分 12 分)(1)①证明:∵∠AED 45°,AE DE,∴∠EDA 180 45 67.5°. ·······································································1 分 2∵AB AC,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°,·························································2 分 ∴∠DCB 22.5°,即∠DCA ∠DCB,∴CD 平分∠ACB. ·····················································································3 分②解:过点 D 作 DF⊥BC 于点 F,A∴∠DFB 90°.∵∠BAC 90°,D∴DA⊥CA.E又 ∴ACDD平FD分,∠·A··C··B·,····················································B········F······················C·········4 分∴ AD FD . DB DB在 Rt△BFD 中,∠ABC 45°,∴sin∠DBF FD DB2 2, ················································································5分∴ AD DB2 2.······························································································· 6分(2)证法一:过点 A 作 AG⊥AE 交 CD 的延长线于点 G,连接 BG,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE,∠AGE 45°,∠AEC 135°,··············································7 分∴∠AGE ∠AEG,∴AG AE.·······························································································8 分∵AB AC,∴△AGB≌△AEC, ····················································································9 分∴∠AGB ∠AEC 135°,CE BG,∴∠BGE 90°. ························································································10 分∵AE⊥BE,九年级数学试题答案及评分参考第4页(共 6 页)。
福州市初三数学质量检查

B .A .C .D .第3题图第8题图福州市初三数学质量检查2020年福州市初中毕业班质量反省数 学 试 卷〔全卷共4页,三大题,共22小题;总分值150分;考试时间120分钟〕友谊提示:一切答案都必需填涂在答题卡上,答在本试卷上有效.学校 姓名 考生号一、选择题〔共10小题,每题4分,总分值40分;每题只要一个正确的选项,请在答题卡的相应位置填涂〕1.-2020的相对值是〔 〕.A .2020 B.-2020 C.20101 D.-201012.2020年福州市参与中考的先生数约79000人,这个数用迷信记数法表示为〔 〕. A .3109.7⨯ B. 31079⨯ C. 4109.7⨯ D. 51079.0⨯ 3.如图是由4个大小相反的正方体搭成的几何体,其仰望图是〔 〕.4.以下计算不正确的选项是〔 〕.A .a +b =2abB .2a a ⋅=3a C .63a a ÷=3a D .()2ab =22b a5.⊙O 1和⊙O 2的半径区分为5和2,O 1O 2=7,那么⊙O 1和⊙O 2的位置关系是〔 〕. A .外离 B .外切 C . 相交 D .内含 6.以下事情中是肯定事情的是〔 〕.A .翻开电视机,正在播旧事B .掷一枚硬币,正面朝下C .太阳从西边落下D .明天我市晴天 7.三角形的三边长区分为5,6,x ,那么x 不能够是〔 〕. A .5 B. 7 C. 9 D.118.假定一次函数y=kx+b 的图象如下图,那么k 、b 的取值范围是〔 〕. A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <0第13题图第17(1)题图第15题图第10题图9.在等边三角形、正方形、菱形、矩形、等腰梯形、圆这几个图形中,既是轴对称图形又是中心对称图形的有〔 〕.A .3个B .4个C .5个D .6个10.如图,在平面直角坐标系中,△PQR 可以看作是△ABC 经过以下变换失掉:①以点A 为中心,逆时针方向旋转90; ②向右平移2个单位; ③向上平移4个单位. 以下选项中,图形正确的选项是〔 〕.二、填空题〔共5小题,每题4分,总分值20分.请将答案填入答题卡的相应位置〕 11.因式分解:=-42a .12.某电视台综艺节目从接到的500个热线 中,抽取10名〝幸运观众〞,小英打通了一次热线 .她成为〝幸运观众〞的概率是 .13.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOG=60°,那么∠DCF 等于 .14.一次函数11+-=x y 与正比例函数x ky =2的图象交于点A 〔2,m 〕,那么k 的值是 .15.如图,1A 〔1,0〕,2A 〔1,-1〕,3A 〔-1,-1〕,3A 〔-1,1〕,4A 〔2,1〕,…,那么点2010A 的坐标是 .三、解答题〔总分值90分.请将解答进程填入答题卡的相应位置〕 16.〔每题7分,总分值14分〕 〔1〕计算:9)3(2201+---+-π.〔2〕12=-x y ,求代数式)()1(22y x x ---的值.17.〔每题7分,总分值14分〕〔1〕如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.①填空:∠ABC= °;∠DEF= °;BC= ;DE= ; ②判别△ABC 与△DEF 能否相似,并证明你的结论.第19题图第18题图①第18题图②第17(2)题图〔2〕如图,四边形ABCD 是正方形,G 是BC 上恣意一点〔点G 与B 、C 不重合〕,AE ⊥DG 于E ,CF ∥AE 交DG 于F. 求证:△ADE ≌△DCF .18.〔此题总分值12分〕〝五一〞时期,新华商场贴出促销海报.在商场活动时期,王莉同窗随机调查了局部参与活动的顾客,并将调查结果绘制了两幅不完整的统计图.请你依据图中的信息回答以下效果: 〔1〕王莉同窗随机调查的顾客有__________人; 〔2〕请将统计图①补充完整;〔3〕在统计图②中,〝0元〞局部所对应的圆心角是_________度;〔4〕假定商场每天约有2000人次摸奖,请预算商场一天送出的购物券总金额是多少元?19.〔此题总分值11分〕如图等腰梯形ABCD 是⊙O 的内接四边形,AD ∥BC ,AC 平分∠BCD ,∠ADC =120°,四边形ABCD 的周长为15.〔1〕求证:BC 是直径; 〔2〕求图中阴影局部的面积.20.〔此题总分值12分〕为了援助云南人民抗旱救灾,某品牌矿泉水自动承当了为灾区消费300吨矿泉水的义务.〝五一〞大派送为了回馈广阔顾客,本商场在4月30日至5月6日时期举行有奖购物活动.每购置100元的商品,就有一次摸奖的时机,奖品为:一等奖:50元购物卷 二等奖:20元购物卷 三等奖:5元购物卷第21题图第21题备用图第22题图第22题备用图〔1〕由于义务紧急,实践加工时每天的任务效率比原方案提高了20%,结果提早2天完成义务.该厂实践每天加工消费矿泉水多少吨?〔2〕该公司组织A 、B 两种型号的汽车共16辆,将300吨矿泉水一次性运往灾区.A 型号汽车每辆可装20吨,运输本钱500元/辆.B 型号汽车每辆可装15吨,运输本钱300元/辆.运输本钱不超越7420元的状况下,有几种契合题意的运输方案?哪种运输方案更省钱?21.〔此题总分值13分〕如图,Rt △ABC 中,∠A =30°,AC =6.边长为4的等边△DEF 沿射线AC 运动〔A 、D 、E 、C 四点共线〕,使边DF 、EF 与边AB 区分相交于点M 、N 〔M 、N 不与A 、B 重合〕. 〔1〕求证:△ADM 是等腰三角形;〔2〕设AD =x ,△ABC 与△DEF 堆叠局部的面积为y ,求y 关于x 的函数解析式,并写出x 的取值范围;〔3〕能否存在一个以M 为圆心,MN 为半径的圆与边AC 、EF 同时相切,假设存在,央求出圆的半径;假设不存在,请说明理由.22.〔此题总分值14分〕在平面直角坐标系xOy 中,抛物线c bx x y ++-=2与x 轴交于A 〔-1,0〕,B 〔-3,0〕两点,与y 轴交于点C .〔1〕求抛物线的解析式;〔2〕设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; 〔3〕点Q 在直线BC 上方的抛物线上,且点Q 到直线BC 的距离最远,求点Q 坐标.第17(2)题图2020年福州市初中毕业班质量反省数学试卷参考答案和评分规范评分规范说明:1. 规范答案只列出试题的一种或几种解法. 为了阅卷方便,解答题中的推导步骤写得较为详细,考生只需写明主要步骤即可. 假设考生的解法与规范答案中的解法不同,可参照规范答案中的评分规范相应评分.2. 第一、二大题假定无特别说明,每题评分只要总分值或零分.3. 评阅试卷,要坚持每题评阅究竟,不能因考生解答中出现错误而中缀对此题的评阅. 假设考生的解答在某一步出现错误,影响后继局部而未改动此题的内容和难度,视影响的水平决议后继局部的给分,但原那么上不超事先继局部应得分数的一半.4. 规范答案中的解答右端所注分数,表示考生正确做到这一步应得的累加分数.5. 评分进程中,只给整数分数.一、选择题〔共10小题,每题4分,总分值40分.〕 题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCDBBA二、填空题:〔共5小题,每题4分,总分值20分.〕 11. )2)(2(+-a a ;12.501; 13.30°; 14. -2; 15. (503,-503) . 三、解答题:(总分值90分) 16.〔每题7分,总分值14分〕 〔1〕解:原式=31221+-+-------------------------------------------------4分 =214--------------------------------------------------------------7分〔2〕解:原式=y x x x +-+-2212-------------------------------------4分=12++-y x -----------------------------------------------5分 ∵12=-x y ,∴原式=1+1=2------------------------------------------------7分17.〔每题7分,总分值14分〕17〔1〕①135,135,22,2;------------------------------------------4分②△ABC 与△DEF 相似--------------------------------------------5分理由:由图可知,AB=2,EF=2 ∴21==EF DE BC AB .------------------------------------------6分 ∵∠ABC =∠DEF =135°,∴△ABC ∽△DEF .--------------------------------------------7分(2) 证明: ∵四边形ABCD 是正方形 ∴AD=DC, ∠ADC =90°,∴∠ADG+∠CDG =90°.--------------------------------------2分 又∵AE ⊥DG ,∴∠AED =∠AEF =90°. ∴∠DAE+∠ADE =90°,∴∠DAE=∠CDG .-----------------------------------------------4分 ∵CF ∥AE ,∴∠CFD =∠AEG =90°.∴∠AED =∠CFD .----------------------------------------------6分 ∴△ADE ≌△DCF .-----------------------------------------------7分〔注:假设先生有不同的解题方法,只需正确,可参考评分规范,酌情给分.〕 18.〔此题总分值12分〕解:⑴200------------------------------------------------------3分. 〔2〕画图正确------------------------------------------------6分 〔3〕216-----------------------9分 〔4〕5.6200501020305400120=⨯+⨯+⨯+⨯=x.∴6.5×2000=13000〔元〕----------------------------12分 ∴估量商场一天送出的购物券总金额是13000元.19.〔此题总分值11分〕解:(1)证明:∵等腰梯形ABCD 是⊙O 的内接四边形, ∴∠ADC +∠ABC =180°.∴∠ABC =180°―∠ADC =180°―120°=60°.---------------1分 ∴∠DCB =∠ABC =60°.-----------------------------------------------2分 ∵AC 平分∠BCD ,∴∠ACD=∠ACB=30°.----------------------------------------------------3分 ∵∠ABC +∠ACB +∠BAC =180°,∴∠BAC =90°.----------------------------------------------------------4分 ∴BC 是直径.--------------------------------------------------------------5分 (2)∵AD ∥BC ,∴∠DAC =∠ACB =30°. ∴∠DAC =∠DCA .∴AD =DC .---------------------------------------------------------------6分 设CD=x ,得AB=AD=DC =x , ∵∠BAC =90°,∠ACB =30°, ∴BC =2x .∵四边形ABCD 的周长为15,∴x =3.----------------------------------------------8分 ∴BC=6,AO=DO=3. 衔接AO 、DO ,∠AOD =2∠ACD =60°.----------------------------------------------9分 ∵△ADO 和△ADC 同底等高,∴S △ADO =S △ADC .------------------------------------------------------10分第21题图 1∴图中阴影局部的面积=扇形AOD 的面积=ππ233360602=⨯⨯.------------------------------------------------11分〔注:假设先生有不同的解题方法,只需正确,可参考评分规范,酌情给分.〕 20. 〔此题总分值12分〕〔1〕设该厂实践每天加工消费矿泉水x 吨,依题意得:2%)201(300300++=xx ∴解得x =25------------------------------------------------------------5分 经检验:x =25是原方程的解.-------------------------------------6分 答:该公司原方案布置750名工人消费矿泉水。
2020年福州市九年级质量检测数学试题答案及评分参考

A F D EB C2020年福州市九年级质量检测数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂. 1.A 2.C 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答. 11.1 12.1413.15 14.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答. 17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1-. ···························································································· 5分 ∴原不等式组的解集是1-<x ≤3, ··············································································· 6分······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ,∴BE +EF =CF +EF , 即BF =CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ABF ≌△DCE , ······························································································· 6分∴∠A =∠D . ······································································································· 8分19.(本小题满分8分)解:原式221(1)(1)(1)x x x x +=⋅+--+ ······················································································· 3分2(1)(1)111x x x x x -++=-++ ·························································································· 4分 221111x x x x +-=-++ ·································································································· 5分 21x =+. ··········································································································· 6分当1x =时,原式 ················································································· 7分=. ····················································································· 8分 20.(本小题满分8分) 解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分 (2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA , ∴△DBC ∽△DAO , ············································································ 7分 ∴12DC BC DO AO ==, ∴OD =2CD . ····················································································· 8分21.(本小题满分8分) 解:(1)由图1可得甲的速度是1202=60÷m/min . ································································ 2分由图2可知,当43x =时,甲,乙两人相遇,故4(60)2003v +⨯=乙,解得90v =乙m/min . ···························································································· 4分 答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b ==, ······························································································· 6分20010603a ==. ································································································ 8分∴a 的值为103,b 的值为209.22.(本小题满分10分) 解:(1)依题意得100a =. ····························································································· 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ········· 6分∴估计这1000户家庭月均用水量的平均数是14.72. (2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有40100180280600+++=(户), ···························································· 8分 ∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000⨯=,∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m , ∴数据中不超过m 的频数应为700, ·························································· 8分 即有300户家庭的月均用水量超过m .又2060100160300++=<,2060100220380300+++=>, ∴m 应在16≤x <20内. ·········································································· 9分 而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB =90°, ······················································· 1分∴∠ADC =90°.∵E 是AC 的中点, ∴DE =AE ,∴∠EAD =∠EDA . ··················································· 2分 ∵OA =OD ,∴∠OAD =∠ODA . ······················································································· 3分 ∵∠OAD +∠EAD =∠BAC =90°, ∴∠ODA +∠EDA =90°, 即∠ODE =90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点, ∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF =90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB =90°, ∴∠BAF +∠ABF =90°.∵∠BAC =90°, ∴∠G +∠ABF =90°, ∴∠G =∠BAF . ························································································· 6分 又∠AHF =∠GAB =90°, ∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA=. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立. ∵AC <AB ,∴»BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合,∴AF FH GB BA =≤12OF BA =, ············································································ 10分 即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG =90°,∴AM =12GB . ······················································ 6分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB =90°, ∴∠AFG =90°, ∴AF ⊥GB . ························································· 7分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立, 此时AF 垂直平分GB , 即AG =AB . ∵AC <AB ,∴»BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA 180452︒-︒==67.5°. ······································································· 1分∵AB =AC ,∠BAC =90°, ∴∠ACB =∠ABC =45°,∠DCA =22.5°,························································· 2分 ∴∠DCB =22.5°, 即∠DCA =∠DCB , ∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA . 又CD 平分∠ACB , ∴AD =FD , ································································································· 4分 ∴AD FD DB DB=. 在Rt △BFD 中,∠ABC =45°, ∴sin ∠DBF FD DB==, ················································································ 5分∴AD DB = ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°. 又∠BAC =90°,∠AED =45°, ∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°,·············································· 7分 ∴∠AGE =∠AEG , ∴AG =AE . ······························································································· 8分 ∵AB =AC ,∴△AGB ≌△AEC , ···················································································· 9分F B A C D E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
准考证号:姓名:(在此卷上答题无效)2020年福州市九年级质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,完卷时间120分钟,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数π4,227-,2.02002A .π4B .227-C .2.02002D2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图笛卡尔心形线科克曲线斐波那契螺旋线A BC D3.下列运算中,结果可以为3-4的是A .32÷36B .36÷32C .32×36D .(3-)×(3-)×(3-)×(3-)4.若一个多边形的内角和是540°,则这个多边形是A .四边形B .五边形C .六边形D .七边形5.若a<a +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为A .911616x yx y -=⎧⎨+=⎩B .911616x y x y -=⎧⎨-=⎩C .911616x y x y+=⎧⎨+=⎩D .911616x y x y+=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是A .b 一定增大,c 可能增大B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作 EF,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是A.2π+B.3π+C.3πD.2π-10.小明在研究抛物线2()1y x h h =---+(h 为常数)时,得到如下结论,其中正确的是A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x 1-上C .当1-<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2ADBCFE46主视图76左视图俯视图第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.计算:12cos 60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于度.14.若m (m -2)=3,则(m -1)2的值是.15.如图,在⊙O 中,C 是 AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数k y x =(x >0)的图象上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解不等式组26312x x x ⎧⎪⎨+>⎪⎩,①②. 并把不等式组的解集在数轴上表示出来.12345-1-2-3-4-518.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .AF DE B C19.(本小题满分8分)先化简,再求值:22111121x x x x x +÷-++++,其中1x =-.AC FED Bxy BCDEAO如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象.(1)求甲,乙两人的速度;(2)求a ,b 的值.y x 1202Oxsb a O43图1图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.4048121620242832280220180a 6020月均用水量(单位:t )频数(户数)如图,在Rt △ABC 中,AC <AB ,∠BAC =90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在 BD上,连接BF 并延长交AC 的延长线于点G .(1)求证:DE 是⊙O 的切线;(2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°.(1)如图1,若AE =DE ,①求证:CD 平分∠ACB ;②求AD DB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.BACDEBACDE图1图225.(本小题满分14分)在平面直角坐标系xOy 中,抛物线C :22(4)y kx k k x =+-的对称轴是y 轴,过点F (0,2)作一直线与抛物线C 相交于P ,Q 两点,过点Q 作x 轴的垂线与直线OP 相交于点A .(1)求抛物线C 的解析式;(2)判断点A 是否在直线y =2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C 上的任意一点(除顶点外)作该抛物线的切线l ,分别交直线y =2和直线y =2-于点M ,N ,求22MF NF -的值.A F D EB C数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂. 1.A 2.C 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答. 11.1 12.1413.15 14.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答. 17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1 . ···························································································· 5分 ∴原不等式组的解集是1 <x ≤3, ··············································································· 6分 将该不等式组解集在数轴上表示如下:······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE CF ,∴BE EF CF EF , 即BF CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE,,, ∴△ABF ≌△DCE , ······························································································· 6分 ∴∠A ∠D . ······································································································· 8分12345-1-2-3 -4-519.(本小题满分8分)解:原式221(1)(1)(1)x x x x······················································································· 3分 2(1)(1)111x x x x x ·························································································· 4分 221111x x x x ·································································································· 5分 21x . ··········································································································· 6分当1x时,原式 ················································································· 7分. ····················································································· 8分 20.(本小题满分8分) 解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分 (2)证明如下:由(1)得BC ∥OA ,BC 12OA ,∴∠DBC ∠DAO ,∠DCB ∠DOA ,∴△DBC ∽△DAO , ············································································ 7分 ∴12DC BC DO AO , ∴OD 2CD . ····················································································· 8分21.(本小题满分8分) 解:(1)由图1可得甲的速度是1202=60 m/min . ································································ 2分由图2可知,当43x 时,甲,乙两人相遇,故4(60)2003v 乙,解得90v 乙m/min . ···························································································· 4分 答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b , ······························································································· 6分20010603a . ································································································ 8分∴a 的值为103,b 的值为209.22.(本小题满分10分) 解:(1)依题意得100a . ······························································································ 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x , ········· 6分∴估计这1000户家庭月均用水量的平均数是14.72.(2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有 40100180280600 (户), ···························································· 8分 ∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000,∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m ,∴数据中不超过m 的频数应为700, ·························································· 8分 即有300户家庭的月均用水量超过m .又2060100160300 ,2060100220380300 ,∴m 应在16≤x <20内. ·········································································· 9分 而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分 23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB 90°,分∴∠ADC 90°.∵E 是AC 的中点,∴DE =AE ,∴∠EAD ∠EDA . ·分 ∵OA OD ,∴∠OAD ∠ODA . ······················································································· 3分 ∵∠OAD ∠EAD ∠BAC 90°, ∴∠ODA ∠EDA 90°,即∠ODE 90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点,∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF 90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB 90°, ∴∠BAF ∠ABF 90°.∵∠BAC 90°,∴∠G ∠ABF 90°, ∴∠G ∠BAF . ························································································· 6分 又∠AHF ∠GAB 90°,∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立. ∵AC <AB ,∴ BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合, ∴AF FH GB BA ≤12OF BA , ············································································ 10分即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG 90°,∴AM 12GB . ·分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°,∴∠AFG 90°,∴AF ⊥GB .分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立, 此时AF 垂直平分GB , 即AG =AB . ∵AC <AB ,∴ BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED 45°,AE DE ,∴∠EDA 18045267.5°. ······································································· 1分∵AB AC ,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°, ························································· 2分 ∴∠DCB 22.5°, 即∠DCA ∠DCB ,∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB 90°.∵∠BAC 90°, ∴DA ⊥CA . 又CD 平分∠ACB , ∴AD FD , ································································································· 4分 ∴AD FD DB DB. 在Rt △BFD 中,∠ABC 45°, ∴sin ∠DBF FD DB ················································································ 5分∴AD DB . ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE ,∠AGE 45°,∠AEC 135°, ·············································· 7分 ∴∠AGE ∠AEG , ∴AG AE . ······························································································· 8分 ∵AB AC ,∴△AGB ≌△AEC , ···················································································· 9分 ∴∠AGB ∠AEC 135°,CE BG ,∴∠BGE 90°. ························································································ 10分 ∵AE ⊥BE ,FB AC DE。