活性炭吸附箱设备技术原理及应用
活性炭吸附箱设备废气处理设备工艺原理

活性炭吸附箱设备废气处理设备工艺原理废气治理是环境保护领域的一个重要工作。
在工业生产过程中,难免会产生一些废气,其中含有一定的有害物质。
如果不进行治理,这些废气就会排放到大气中,对环境和人类健康产生危害。
因此,需要对废气进行治理,并保证排放达标。
目前,活性炭吸附箱设备是一种比较常用的废气处理设备,下面就介绍一下其工艺原理。
活性炭先让我们来了解一下什么是活性炭。
活性炭是一种极其微细的多孔性固体,表面积大、孔隙结构丰富,能够吸附气体、蒸汽、液体等物质。
活性炭一般有两种形态:一种是颗粒状活性炭,用于气体吸附;另一种是柱状活性炭,用于液体吸附。
在废气治理中,主要采用颗粒状活性炭进行吸附。
活性炭吸附箱设备活性炭吸附箱设备是一种采用颗粒状活性炭为吸附剂的废气处理设备。
其构造简单、操作方便,能够治理一些有机废气、酸雾等废气。
其基本构造包括吸附箱、吸附剂、加热设备、风机、出口管道、控制系统等。
吸附过程活性炭吸附箱设备的主要处理原理就是吸附作用。
吸附过程是一种物理吸附过程,即废气中的有害物质经过与颗粒状活性炭接触,被吸附在活性炭的表面和孔隙中。
这个过程可以使用吸附等温线来描述。
一般来说,在吸附初期,吸附速率较快;随着吸附物质在活性炭表面的覆盖度逐渐增加,吸附速率会逐渐减缓。
再生过程随着时间的推移,活性炭表面的吸附物质越来越多,影响了吸附效果。
此时需要对活性炭进行再生,将其表面的吸附物质清除掉,以恢复其吸附性能。
再生过程也分为两种,热再生和化学再生。
热再生热再生是指将使用过的活性炭放在高温条件下进行再生。
这种方法的原理是,利用吸附剂中物质的热解或汽化,将物质从活性炭完全生的岀来,以恢复其吸附性能。
热再生有两种方法,一种是直接用加热方式进行再生,另一种是用活性炭再生炉。
化学再生化学再生是指通过对活性炭表面的吸附物质进行化学反应,将其分解或转化为其他物质从而清除。
常见的化学再生方法有氧化再生、酸碱再生和生物再生等。
活性炭吸附箱设备的工艺原理简单,应用广泛。
活性炭吸附箱工作原理及参数

活性炭吸附箱工作原理及参数首先是吸附过程。
当污染的空气通过活性炭吸附箱时,其中的污染物质会被活性炭吸附剂表面的孔道吸附。
活性炭具有非常大的内表面积,因此可以有效地吸附空气中的污染物质。
吸附的原理主要是物质间的吸附力。
有机物质通常是极性分子,而活性炭表面是非极性的,所以有机物质会以物理吸附的方式吸附在活性炭表面上。
然后是再生过程。
当活性炭表面吸附饱和后,需要进行再生,使其恢复吸附能力。
再生通常使用热解或蒸汽吹扫法。
热解是指通过加热活性炭,将吸附在其上的污染物质分解释放出来,从而使活性炭再次变得可用。
蒸汽吹扫法则是通过注入高温水蒸汽,使吸附在活性炭上的污染物质被挥发出来,从而实现再生。
1.吸附剂种类和质量:不同种类的活性炭具有不同的吸附性能,所以在选择活性炭吸附箱时需要根据具体污染物质的种类和浓度来选择合适的吸附剂。
2.空气流量:空气流量是指单位时间内通过活性炭吸附箱的空气体积。
空气流量越大,吸附箱的处理能力就越大,但同时也会增加系统的能耗。
3.压力损失:活性炭吸附箱对空气流通的阻力称为压力损失。
压力损失越大,系统的运行效率越低,所以需要在设计吸附箱时要考虑减小压力损失。
4.吸附箱的体积:吸附箱的体积决定了它的吸附能力。
体积越大,吸附能力越大。
5.装置的再生方式和再生周期:不同的再生方式和再生周期会对活性炭吸附箱的使用寿命和维护成本产生影响。
综上所述,活性炭吸附箱主要通过活性炭的吸附作用来去除空气中的污染物质。
在选择和设计活性炭吸附箱时,需要考虑吸附剂种类和质量、空气流量、压力损失、吸附箱的体积和再生方式等参数。
活性炭吸附净化设备设计方案

活性炭吸附净化设备设计方案一、设计原理活性炭是一种具有高度多孔性的材料,具有极大的比表面积,通过吸附作用可以有效地去除空气中的有害气体和异味。
活性炭吸附净化设备的设计原理基于以下几点:1.活性炭材料选择:选择具有大孔径和高比表面积的活性炭材料,以增加吸附容量和效果。
2.吸附介质的设计:活性炭吸附剂通常以颗粒状或块状存在,需要设计合适的吸附介质来保持活性炭的稳定性,并提供通气性。
3.空气处理系统:包括风机、过滤器和管道等组成,用于将空气输送到活性炭吸附装置中,并将处理后的空气排放出去。
4.吸附效果检测:设计合适的监测仪器,用于监测活性炭吸附装置的吸附效果,以确保其正常运行。
二、设备组成1.活性炭吸附装置:包括活性炭吸附层、吸附介质和支撑结构等。
活性炭吸附层通常由多层活性炭组成,以增加吸附效果。
2.风机:用于将空气送入活性炭吸附装置中,通常选择低噪音、高效率的离心风机。
3.空气过滤器:用于去除空气中的颗粒物和杂质,保护活性炭吸附层的稳定性和使用寿命。
4.管道系统:用于连接各个组件,保证空气的流动畅通。
5.监测仪器:包括空气质量检测仪器和吸附效果监测仪器,用于监测活性炭吸附装置的工作状态和吸附效果。
三、设计要点针对活性炭吸附净化设备的设计,需要注意以下几个要点:1.活性炭选择:根据空气中的污染物种类和浓度选择合适的活性炭材料,以及适当的装填方式和厚度,以提高吸附效果。
2.吸附介质设计:设计合适的吸附介质,保持活性炭的稳定性和通气性,同时考虑吸附剂的更换周期和维护成本。
3.空气流速:控制空气的流速,避免过高或过低,以提高吸附效果和系统的运行效率。
4.过滤器选择:选择合适的过滤器,去除空气中的颗粒物和杂质,保护活性炭吸附层的使用寿命。
5.排放处理:对处理后的空气进行适当的处理,保证排放的气体符合环境要求。
四、应用领域1.家用空气净化:如净化室内空气中的甲醛、苯等有害气体和异味。
2.工业废气处理:如处理化工厂、印染厂等工作场所的废气中的有机物和挥发性有机物。
活性炭吸附 吸附法治理废气

吸附法作为一种常用的VOCs治理方法,因其局限性通常与其他工艺相联合来治理废气,以达到最优的治理效果。
而活性炭作为一种优秀的吸附剂,因为对多种废气都能进行吸附而广泛应用于多种有机废气的治理中。
一、工艺简介活性炭吸附塔是处理有机废气、臭味处理效果好的净化设备。
活性炭吸附能有效的去除水的臭味、天然和合成溶解有机物、轻度污染物质等的措施。
大部分比较大的有机物分子、芳香族化合物、卤代烃等能牢固地吸附在活性炭表面上或空隙中,并对腐殖质、合成有机物和低分子量有机物有明显的去除效果.活性炭吸附作为深度净化工艺,经常用于废水的末级处理,也可用于生产用水、生活用水的纯化处理。
二、技术原理该活性炭吸附装置主要由活性炭层和承托层组成。
活性炭具有发达的空隙,比表面积大,具有很高的吸附能力。
正是由于活性炭的这种特性,它在水的深度处理中被广泛应用,如生活给水,污水后段的(净水)深度处理等。
活性炭使用一段时间后,吸附了大量的吸附质,逐步趋向饱和,丧失了工作能力,严重时将穿透滤层,因此应进行活性炭的再生或更换。
承托层的主要作用是防止活性炭从设备中流失,在出水及反冲洗时起到一定的均匀布水作用。
三、适用范围家具木业、化工涂料行业。
有机废气活性碳吸附塔广泛用于家具木业、化工涂料、金属表面处理等喷涂、喷漆、烘干等产生有机废气及异味场所,采用优质吸附活性碳作为吸附媒介,有机废气通过多层吸附层进行过滤吸附,从而达到净化废气的目的。
四、性能特点1、分为手动式和自动式两种,结构紧凑一体化,易于安装和操作维护;2、滤速高,处理量大,运行效果稳定,设备占地少;3、滤料截污容量大,孔隙率高,耐摩擦,比重适中根据提供客户需求或现场情况,可进行设计、定制非标产品。
更多详情请拨打联系电话或登录杭州博尔环保科技有限公司官网/咨询。
光氧活性炭一体机说明书

光氧活性炭一体机说明书一, 光氧技术原理:1. DFUV光解除臭过滤组合装置利用特制的高能高臭氧UV紫外线光束照射恶臭气体,裂解恶臭气体如:氨、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子链结构,使有机或无机高分子恶臭化合物分子链,在高能紫外线光束照射下,降解转变成低分子化合物,如CO2、H2O等。
利用高能UV光束裂解恶臭气体中细菌的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应,彻底达到脱臭及杀灭细菌的目的。
2、利用高能高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧。
UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对恶臭气体及其它刺激性异味有立竿见影的清除效果。
3、纳米光催化TiO2,其作用机理简单来说:纳米光催化剂TiO2在特定波长的光的照射下受激生成"电子一空穴"对(一种高能粒子),这种"电子一空穴"对和周围的水、氧气发生作用后,就具有了极强的氧化-还原能力,能将空气中醛类、烃类等污染物直接分解成无害无味的物质,以及破坏细菌的细胞壁,杀灭细菌并分解其丝网菌体,从而达到了消除空气污染的目的。
4、恶臭气体利用收集排风设备输入到本净化设备后,净化设备运用高能UV紫外线光束、臭氧O3及纳米光催化TiO2等技术组合起来对废气进行协同分解氧化反应,使废气降解转化成无害无味化合物、水和二氧化碳,再通过活性炭吸附净化.二【活性炭特点】1、适用范围广:净化效率高,尤其适用于其它方法难以处理的多组分废气,如化工、医药等行业,电子能量高,几乎可以和所有的废气分子作用;运行费用低;反应快,设备启动、停止十分迅速,随用随开。
2、高效灵活:高效捕集不同粒径的油雾粒子,净化效率高,从根本上解决了复杂的废气组成不能逐一净化的难题,净化单元可以灵活组合,根据不同的净化处理量及净化率要求,单元数量可作调整。
活性炭吸附净化设备设计方案( word 版)

活性炭吸附净化设备设计方案1. 引言活性炭是一种广泛应用于工业和环境领域的吸附材料,具有良好的吸附性能和高度的表面活性。
活性炭吸附净化设备适用于处理废气、废水和有机物污染物的去除。
本文将介绍活性炭吸附净化设备的设计方案。
2. 设计目标活性炭吸附净化设备的设计目标包括但不限于以下几个方面: - 提供高效的吸附性能,达到净化要求; - 实现设备的稳定运行和长寿命; - 目标污染物的去除率达到要求; - 设备操作和维护简便。
3. 设计原理活性炭吸附净化设备的设计原理是利用活性炭材料对污染物进行吸附,从而达到净化的目的。
活性炭具有高度发达的孔结构和巨大的比表面积,能够有效吸附各种有机物和气体。
通过在设备中设置适当的流动路径和吸附床层,使气体或液体中的污染物与活性炭接触并吸附到活性炭表面,从而实现净化效果。
4. 设计步骤(1)确定处理介质:根据实际情况,确定要处理的废气或废水污染物的组成和浓度,以及处理量。
(2)选型活性炭:根据处理介质的特性和目标污染物的吸附性能要求,选择适合的活性炭材料。
考虑活性炭的孔径分布、比表面积、强度等指标。
(3)确定处理设备结构:设计活性炭吸附净化设备的结构,包括吸附床、进出气口、流动路径等。
要考虑介质的流动性、污染物的浓度以及设备操作和维护的便利性。
(4)计算吸附床层高度:根据目标污染物的浓度和去除率要求,计算吸附床层的高度。
考虑吸附床层中活性炭的用量和密度,以及污染物的吸附速度。
(5)确定进出口管道:根据设备的处理能力和处理介质的流量,确定进出口管道的直径和设计。
考虑流体的流速和压降。
(6)设备组装和测试:将各个部件组装到一起,并进行测试和调试。
确保设备能够正常运行和达到设计要求。
5. 设计优化活性炭吸附净化设备的设计可以通过以下方式进行优化: - 选择更高效的活性炭材料,提高吸附性能; - 优化吸附床层的高度和体积,使设备更稳定; - 设计合理的流动路径,提高介质的接触效果; - 增加附加设备,如预处理设备、再生装置等,提高设备的综合性能。
活性炭吸附箱设备工艺原理

活性炭吸附箱设备工艺原理前言活性炭吸附箱设备是一种用于工业废气和工业废水处理的设备。
活性炭吸附是利用活性炭的吸附性能来吸附有机物等废气中的污染物的技术。
本文将介绍活性炭吸附箱设备的工艺原理,以及活性炭吸附的原理和几种常见的活性炭。
活性炭吸附箱设备的工艺原理活性炭吸附箱设备主要由进气口、出气口、进水口、出水口、配重设备和活性炭床等组成。
废气或废水经过进气口进入活性炭床层,经过活性炭吸附后,净化后的气体/水流经出口排除,废气/废水中的污染物则固定在活性炭床层上。
活性炭床层的寿命是有限的,一般经过一定周期(一般几周至几个月)后床层中的活性炭会吸附满,此时需要进行更换活性炭。
活性炭吸附箱设备工艺流程如下:进气口→ 活性炭层→ 出气口(或进水口→ 活性炭层→ 出水口)。
活性炭吸附的原理活性炭吸附是调节平衡的工艺,通过充分利用活性炭的特性对特定废气中的物质进行吸附。
活性炭吸附的原理是利用活性炭具有的高比表面积、微孔结构、表面化学反应等性质对污染物进行吸附、分离和浓缩,从而达到净化废气、净化废水的目的。
常见的活性炭有以下几种:1.木质活性炭:木质活性炭是以松树、柳树等木材为原料,经过碳化、氧化、蒸汽活化处理而成的。
木质活性炭具有孔隙度大、比表面积大、吸附性强、机械强度高、重量轻、稳定性好的特点。
2.椰壳活性炭:椰壳活性炭是以椰壳为原料,经过碳化、氧化、蒸汽活化处理而成的。
椰壳活性炭具有制造成本低、吸附效果良好、可再生利用等特点。
3.煤质活性炭:煤质活性炭是以煤炭为原料,经过碳化、氧化、蒸汽活化处理而成的。
煤质活性炭具有吸附性能强、排放标准高、操作便捷等特点。
以上三种活性炭均具有吸附有机物等废气中的污染物的能力,但其孔隙度、比表面积等性能有所不同,因此在应用中需要根据实际情况选择不同的活性炭。
结语活性炭吸附箱设备是一种处理工业废气和工业废水的重要设备,其工艺原理基于活性炭吸附的原理。
常见的活性炭有木质、椰壳、煤质等几种,它们的吸附性能强、可再生利用等特点使其成为了净化废气、净化废水的好选择。
等离子光催化活性炭吸附一体机机器使用说明书

一、产品概述低温等离子光催化氧化活性炭吸附一体机综合了低温等离子、光催化氧化、活性炭吸附的综合特点,综合利用各处理工艺的特点。
1.1低温等离子工艺原理等离子体就是处于电离状态的气体,由大量的带电粒子、中性原子、激发态原子、光子和自由基等组成。
电子和正离子的电荷数表现出电中性。
具有导电和受电磁影响的性质。
许多方面与固体、液体和气体不同,因此有人把它称为物质的第四种状态。
介质阻挡放电过程中,等离体子内部产生富含极高化学活性的粒子,如电子、离子、自由基和激发态分子等。
废气中的污染物质与这些具有较高能力的活性集团发生反应,最终转化为CO2、H2O等物质,从而达到净化废气的目的。
1.2光催化氧化工艺原理光催化氧化法通过利用特制的高能紫外线光束照射、通过紫外线光束分解氧分子产生游离氧、以及通过光束照射纳米TiO2光触媒产生电子-空穴对等多种方式分解有机气体。
能高效快速去除挥发性有机物(VOC)、无机物、硫化氢、氨气、硫醇、硫醚、苯类等有毒有害、刺激性气体,脱臭效率可达99%以上,脱臭效果大大超过国家1993年颁布的恶臭污染物排放标准(GB14554-93)。
它具有适应性强、运行成本低、设备占在面积小等特点。
1.3活性炭吸附工艺原理活性炭是比表面积很大的细小的多孔炭粒。
炭粒上的微孔结构具有很强的吸附能力。
很大的比表面积导致炭粒能与气体(杂质)充分接触,使得气体(杂质)被微孔充分吸附,起到效果非常好的净化作用。
活性炭吸附装置利用活性炭的多孔性,存在吸引力的原理而开发的。
由于固体表面上存在着未平衡饱和的分子力或化学键力,当此固体表面与气体接触时,就能吸引气体分子,使其浓集并保持在固体表面,这种现象就是吸附现象。
二、设备特点低温等离子光催化氧化活性炭吸附一体机是治理工业生产过程中生产的有机废气的专用设备。
适用于家具厂、静电喷涂厂、印刷厂、鞋厂、电子厂等行业产生的废气。
对废气中的苯、甲苯、二甲苯、非甲烷中烃等有机废气处理效果明显(注意:严禁将易燃易爆气体引入设备内部)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性炭吸附塔设备技术原理及应用实例
一、活性炭吸附塔概述
DR系列|活性炭吸附过滤塔是杭州绿然环保设备有限公司设计、生产的一种废气净化、吸附异味的环保设备产品,活性炭吸附塔具有吸附效率高、适用面广、维护方便、能同时处理多种混合废气等优点,活性炭具有去除甲醛、苯、TVOC等有害气体和消毒除臭等作用,活性炭吸附塔现广泛用于电子原件生产、电池(电瓶)生产、酸洗作业、实验室排风、冶金、化工、医药、涂装、食品、酿造等废气处理,其中最适用于喷漆废气处理的净化。
二、工作原理
尾气由风机提供动力,正压或负压进入活性炭吸附塔体,由于活性炭固体表面上存在着未平衡和未饱和的分子引力或化学健力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,污染物质从而被吸附,废气经过滤器后,进入活性炭吸附塔体,净化气体高空达标排放。
三、技术简介
1、活性炭是一种黑色粉状、粒状或丸状的无定形具有多孔的炭。
主要成份为炭,还含有少量氧、氢、硫、氮、氯。
也具有石墨那样的精细结构,只是晶粒较小,层层不规则堆积。
具有较大的表面积(500~1000㎡/克)。
有很强的吸附能力,能在它的表面上吸附气体,液体或胶态固体。
对于气、液的吸附可接近于活性炭本身的质量的。
其吸附作用是具有选择性,非极性物质比极性物质更易于吸附。
在同一系列物质中,沸点越高的物质越容易被吸附,压越大、温度越低,浓度越高,吸附量越大,反之,减压、升温有利气体的解吸。
活性炭常用于气体的吸附、分离和提纯、溶剂的回收、糖液、油脂、甘油、药物的脱色剂,饮用水或冰箱的除臭剂,防毒面具的滤毒剂,还可用作催化剂或金属盐催化剂的截体。
2、活性炭吸附塔产品优点:
1、吸附效率高,效果明显,适用面广;
2、维护方便,无技术要求;
3、能同时处理多种混合废气。
3、活性炭吸附塔产品缺点:运行成本相对较高;
4、活性炭吸附塔分类:可分为方形或圆形。
5、活性炭吸附塔适用范围:
活性炭吸附塔主要应用于:电子原件生产、电池(电瓶)生产、酸洗作业、实验室排风、冶金、化工、医药、涂装、食品、酿造及家具生产等行业的废气净化,其中最适用于喷漆废气的处理净化。
四、DR系列|活性炭吸附塔设备型号及参数。