完全平方公式教学设计

合集下载

完全平方公式的详细教案

完全平方公式的详细教案

完全平方公式的详细教案
一、教学目标
1. 知识目标:
(1)学习完全平方公式;
(2)掌握完全平方公式的应用。

2. 技能目标:
能够熟练运用完全平方公式解决实际问题。

二、教学重点
掌握完全平方公式的应用。

三、教学难点
掌握完全平方公式的应用。

四、教学准备
1. 教学用书:《高中数学》
2. 教学器材:多媒体课件
3. 教学过程:
(1)热身:
1)复习一下完全平方的概念,让学生回忆一下完全平方的定义;
2)让学生说出一些完全平方的例子,让学生熟悉完全平方的概念。

(2)正式教学:
1)介绍完全平方公式,让学生熟悉完全平方公式的概念;
2)让学生观察完全平方公式的特点,让学生熟悉完全平方公式的特点;
3)让学生练习一些完全平方公式的应用,让学生熟悉完全平方公式的应用;
4)让学生解决一些实际问题,让学生熟悉完全平方公式的应用。

(3)结束:
1)总结完全平方公式的概念;
2)总结完全平方公式的特点;
3)总结完全平方公式的应用。

五、教学反思
本节课教学内容设计合理,学生能够较好地掌握完全平方公式的概念、特点及应用,但是学生在解决实际问题时,还需要更多的练习,以便更好地掌握完全平方公式。

完全平方公式教案

完全平方公式教案

完全平方公式教案一、教学目标1. 理解完全平方公式的概念和用途。

2. 能够运用完全平方公式计算平方值和开方值。

3. 学会利用完全平方公式解决实际问题。

二、教学准备1. 教师准备:黑板、白板、彩色粉笔、教学PPT。

2. 学生准备:课本、笔记本。

三、教学过程1. 导入教师简要介绍完全平方公式在数学中的重要性和应用,以引发学生的兴趣和好奇心。

2. 理论讲解(1)完全平方公式的概念完全平方公式是指一个二次多项式的平方差可以写成两个一次多项式的乘积的形式。

(2)完全平方公式的推导设一个一次多项式为:(a+b)^2=a^2+2ab+b^2将这个一次多项式展开,可以得到平方差的形式。

教师通过具体的算式演算和图形演示,让学生理解完全平方公式的推导过程。

(3)完全平方公式的应用教师以具体的例题,如求多项式的平方、平方根等,引导学生灵活应用完全平方公式进行计算。

3. 实例演练教师从简单到困难,逐步引导学生运用完全平方公式解决各种类型的问题,并提醒学生注意计算过程中的细节和技巧。

4. 拓展运用教师出示一些与完全平方公式相关的实际问题,并帮助学生分析问题、抽象问题,运用完全平方公式进行求解。

通过实际问题的拓展运用,加深学生对完全平方公式的理解和掌握。

5. 总结归纳教师与学生一起总结完全平方公式的基本概念、推导过程以及应用方法,并鼓励学生提出自己的疑问和思考。

6. 课堂练习教师提供一些练习题,让学生在课堂上进行解答,并及时给予指导和纠正。

7. 展示与分享鼓励学生将自己解答的问题或思考的心得进行展示和分享,促进学生之间的相互学习和交流。

四、作业布置布置相关的课后作业,要求学生进一步巩固和运用完全平方公式的知识。

五、教学反思总结教学过程中的亮点和不足之处,并根据学生的反馈和表现,进一步调整和完善教学内容和方法。

通过以上的教学过程,学生可以全面地了解、掌握和应用完全平方公式的知识和技巧,提高数学解题的能力和思维能力,为深入学习和应用相关数学知识打下基础。

完全平方公式优秀教案

完全平方公式优秀教案

完全平方公式优秀教案
一、教学目标
1、认识完全平方公式的概念;
2、掌握完全平方公式的使用;
3、正确应用完全平方公式解方程组。

二、教学准备
1、讲义;
2、黑板、白板;
3、实验用草稿纸和毛笔。

三、教学过程
(1)板书讲解:
(a)完全平方公式的定义:一元二次方程的完全平方公式有三种形式,分别为:
ax2 + bx + c = 0;
x2 + bx = c;
x2 + c = 0;
其中a、b、c为实数,且b2 - 4ac ≥ 0。

(b)完全平方公式的求解:
① 将二次方程化为完全平方公式;
②利用完全平方公式将问题分解为两个相等的完全平方;
③ 把每一个完全平方分解为两个和式;
④ 将每个和式求出根,最后得到结果。

(2)解题演示:
接下来,我就利用以上四步法来解一道完全平方公式的方程组。

让我们来看看方程:x2 + 2x = 8。

解:
① 将二次方程化为完全平方式:
x2 + 2x = 8
② 利用完全平方公式将问题分解为两个相等的完全平方:
x2 + 2x = 8
(x + 1)2 = 9
③ 把每一个完全平方分解为两个和式:
x + 1 = 3
x + 1 = -3
④ 将每个和式求出根,最后得到结果:
x = 2, -4 。

(3)习题训练:
最后,进行习题训练,教师根据学生的实际上课情况,提供适量的习题。

4.3第2课时完全平方公式(教案)

4.3第2课时完全平方公式(教案)
-灵活运用完全平方公式解决实际问题:学生在解决实际问题时,可能不知道如何将问题转化为完全平方公式的形式。教师应指导学生分析问题,找到合适的切入点,并给出解题策略。
举例:
(1)难点解析:对于公式推导的难点,教师可以通过以下步骤进行讲解:
a.展示一个边长为a的正方形,并在其内部添加一个边长为b的小正方形,形成一个由四个部分组成的大正方形。
b.让学生计算大正方形的面积,引导他们发现面积可以分解为a²、2ab和b²这三个部分。
c.将这个过程抽象化,得出完全平方公式(a±b)²=a²±2ab+b²。
(2)难点突破:在解决实际问题时,教师可以指导学生按照以下步骤进行:
a.分析问题,找出涉及完全平方公式的关键信息。
b.将实际问题转化为完全平方公式的形式,如求(x+3)²的面积等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的基本概念、推导过程、重要性和应用。通过实践活动和小组讨论,我们加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在数学学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.3第2课时完全平方公式(教案)
一、教学内容
本节课选自教材第四章第三节,第2课时,主题为“完全平方公式”。教学内容主要包括以下两个方面:
1.掌握完全平方公式的推导过程:即(a±b)²=a²±2ab+b²,并能灵活运用该公式进行计算。
2.学会运用完全平方公式解决实际问题,提高解题能力。通过例题讲解和练习,让学生掌握完全平方公式的应用技巧,并能够熟练运用到实际题目中。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。

引导学生通过实际例子发现完全平方公式的规律。

1.2 教学内容完全平方公式的定义和表达式。

完全平方公式的推导和证明。

1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。

1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。

观察学生在练习中的表现,及时给予指导和帮助。

第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。

引导学生通过证明理解完全平方公式的正确性。

2.2 教学内容完全平方公式的推导方法。

完全平方公式的证明过程。

2.3 教学方法使用图表和动画演示完全平方公式的推导过程。

引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。

2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。

观察学生在证明过程中的思路和推理是否清晰。

第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。

引导学生通过完全平方公式简化计算过程。

3.2 教学内容完全平方公式在实际问题中的应用。

完全平方公式在简化计算过程中的作用。

3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。

使用图表和动画演示完全平方公式在计算过程中的应用。

3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。

观察学生在解题过程中的思路和计算是否准确。

第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。

引导学生通过完全平方公式的扩展形式解决更复杂的问题。

4.2 教学内容完全平方公式的扩展形式。

完全平方公式的扩展形式在解决问题中的应用。

4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。

使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。

4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。

2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。

3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。

二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。

2. 教学难点:运用完全平方公式进行整式的乘法运算。

三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。

2. 知识讲解:讲解完全平方公式的推导过程和结构特点。

(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。

3. 练习环节:学生进行练习,教师进行个别指导。

4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。

5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。

五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。

在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。

不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案章节一:完全平方公式的探究与理解1. 导入:通过实际问题引入完全平方公式的概念,例如求(x + 2)²的值。

2. 探究:引导学生通过具体例子,如(x + 2)²= x²+ 4x + 4,发现完全平方公式的规律。

4. 练习:布置一些简单的练习题,让学生运用完全平方公式进行计算。

章节二:平方差公式的探究与理解1. 导入:通过实际问题引入平方差公式的概念,例如求(x 2)²的值。

2. 探究:引导学生通过具体例子,如(x 2)²= x²4x + 4,发现平方差公式的规律。

4. 练习:布置一些简单的练习题,让学生运用平方差公式进行计算。

章节三:完全平方公式与平方差公式的应用1. 导入:通过实际问题引入完全平方公式与平方差公式的应用,例如求(x +1)(x 1) 的值。

2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 1)(x 1) 进行展开和简化。

4. 练习:布置一些实际问题,让学生运用完全平方公式与平方差公式进行解决。

章节四:完全平方公式与平方差公式的巩固与拓展1. 导入:通过实际问题引入完全平方公式与平方差公式的巩固与拓展,例如求(x + 2)(x 2) 的值。

2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 2)(x 2) 进行展开和简化。

4. 练习:布置一些更复杂的实际问题,让学生运用完全平方公式与平方差公式进行解决。

1. 回顾:引导学生回顾本节课学习的完全平方公式与平方差公式。

3. 评价:对学生的学习情况进行评价,鼓励学生积极参与课堂讨论和练习。

4. 布置作业:布置一些相关的练习题,让学生巩固所学知识。

章节六:完全平方公式与平方差公式的综合应用1. 导入:通过实际问题引入完全平方公式与平方差公式的综合应用,例如求(x + y)²(x y)²的值。

2. 探究:引导学生运用完全平方公式与平方差公式,将(x + y)²(x y)²进行展开和简化。

初中数学《完全平方公式》教学设计范文(精选7篇)

初中数学《完全平方公式》教学设计范文(精选7篇)

初中数学《完全平方公式》教学设计初中数学《完全平方公式》教学设计范文(精选7篇)作为一名教师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的初中数学《完全平方公式》教学设计范文,欢迎阅读,希望大家能够喜欢。

初中数学《完全平方公式》教学设计篇1学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

2、会推导完全平方公式,了解公式的几何背景,会用公式计算。

3、数形结合的数学思想和方法。

学习重点:会推导完全平方公式,并能运用公式进行简单的计算。

学习难点:掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。

学习过程:一、学习准备1、利用多项式乘以多项式计算:(a+b)2 (a—b)22、这两个特殊形式的多项式乘法结果称为完全平方公式。

尝试用自己的语言叙述完全平方公式:3、完全平方公式的几何意义:阅读课本64页,完成填空。

4、完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是()注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△25、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()二、合作探究1、利用乘法公式计算:(3a+2b)2 (2)(—4x2—1)2分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b2、利用乘法公式计算:992 (2)()2分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。

3、利用完全平方公式计算:(a+b+c)2 (2)(a—b)3三、学习对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?四、自我测试1、下列计算是否正确,若不正确,请订正;(1)(—1+3a)2=9a2—6a+1(2)(3x2—)2=9x4—(3)(xy+4)2=x2y2+16(4)(a2b—2)2=a2b2—2a2b+42、利用乘法公式计算:(1)(3x+1)2(2)(a—3b)2(3)(—2x+ )2(4)(—3m—4n)23、利用乘法公式计算:99924、先化简,再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思维拓展1、如果x2—kx+81是一个完全平方公式,则k的值是()2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()3、已知(x+y)2=9,(x—y)2=5 ,求xy的值4、x+y=4 ,x—y=10 ,那么xy=()5、已知x— =4,则x2+ =()初中数学《完全平方公式》教学设计篇2一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《完全平方公式》教学设计
淮南实验中学卞贤磊
公式:(a+b)2=a 2+2ab+b 2
(a-b)2=a 2-2ab+b 2
文字叙述:
两数和(或差)的平方等于它们平方的和,加上(或减去)它们乘积的两倍.
记忆口诀:
完全平方有三项 首尾符号是同样 首平方,尾平方 首尾二倍放中央 中央符号随尾项
(a+b)2
=a 2
+2ab+b 2
练习1
练习2
课 后 反 思
1、这堂课我通过复习平方差公式,然后利用练习引出问题.学生通过多项式乘以多项式的方法得到了结论,并有同学指出))((b a b a ++的结果是有规律的.接着我通过让学生尝试用他们认为的规律直接说出2)(n m +及2)32(y x +的答案,再用多项式乘以多项式的方法验证规律的正确性.在这个环节中学生得到的规律是正确的,但在用规律直接说出2)32(y x +的答案时,却得到了
223244y xy x ++这个错误结论.事实上,学生的错误是将首末两项积的两倍错
误的做成的了每一项都乘2
,但在处理这个问题时,我过于急躁,直接让学生用多项式乘以多项式的方法得到结果后,就总结了规律,而未能让说错的同学自己找出错误的原因,我想这在今后的教学中是要注意的,因为,学生自己找出错误的原因永远比老师直接告诉他原因记得更牢.
2、在得到两数和的完全平方公式后,我让学生尝试说出公式的的特征,再用面积的方法说明完全平方公式.然后,让学生自己猜测2)(b a -的结论,并模仿第一环节,分别用多项式乘以多项式以及面积的方法说明结论的正确性,再归纳公式的结构特征,然后,利用两数和的完全平方公式说明两数差的完全平方公式,揭示出两个公式间的关系.这一环节都是按照预想的进行,效果不错,只是未能点一下为何要学公式.(方便计算)
3、公式引出后,就进入了这节课的另一个重要环节,即运用公式进行计算.运
用公式进行计算的一个难点就是如何确定首项、末项以及中间项的符号,其中最重要的就是中间项的符号问题.在这个环节中,书本上采取的方法是:(1)将2)(b a +-,2)(b a --分别转化为2)(a b -以及[]2
)(b a +-,
(2)将2)(b a +-、2)(b a --分别看成[]2
)(b a +-以及[]2
)(b a --.教参的建议是采用方法(1).对这
两种方法我在处理教材时个人的看法是,方法(2)学生容易将首项和末项以及两条公式混淆,方法(1)对2)(b a +-的处理学生是容易掌握的,而对2)(b a --的处理对学生来说又是一个难点.于是,我就采用了一种和书本上不同的方法.我采用这种方法的最初设想是:无论首末两项符号的正负,首平方,末平方后符号必为正,这一点学生是能理解的.因此,只要确定好中间项符号即可.于是,我教授的方法是中间项的符号由首末两项的符号确定,即首末两项“同号得正,异号得负.”确定好符号后,再把符号丢弃,直接运算两者积的两倍.这种方法在课堂中起到的实际效果是:掌握的学生能非常快速写出答案,正确率高.但存在的问题是,有少数同学在运用“同号得正,异号得负.”的方法判断好中间项的符号后,未将符号丢弃,而是保留符号运算积的两倍.在此专家的看法是,我的处理方法对部分学生来说也是一个难点,因此,建议是先采用书上的方法,而我的方法可以作为第二课时.我现在的认识是,(1)上课先采用将2)(b a +-,
2)(b a --分别转化为2)(a b -以及[]2
)(b a +-的方法讲评,力求人人过关.做了一
些题目巩固方法(1)后,再尝试让学生归纳出用“同号得正,异号得负.”的方法来验证结论中中间项符号的正确性.这样一来不同的学生,根据自己的需求各取所需,也可帮助学生从不同角度来验证结论的正确性.
4、由于后面时间的紧促,在进行练习巩固时,显得急躁了一点、快了一点,未能给予学生充足的训练时间,因此就感觉有点乱.这也可能是一些学生出现问题的原因所在.出现问题后,对于产生的错误,也未能详尽分析错误产生的原因,这对学生今后避免再犯这样的错误是不利的.这在今后的教学中是一定要避免的.其次,第一课时的练习题不易太复杂,应当简化一点,重在对公式的熟悉. 再次,拓展题的设置太难,应当适当降低难度. 听课教师课后评议:
1、总体的设计思想比较好,力图解决一些学生容易犯错的地方;
2、注重和学生的情感方面的交流,教态自然.
3、能根据学生的想法讲,能跟着学生的思路讲,这一点非常好.
4、整体的教学结构相当不错:由两数和的完全平方公式引入——解释——面积说明——两数差的完全平方公式.思路顺畅,符合学生认知规律.
5、总体来说前部分比较好,后部分有点问题—— (1)用文字表述的规律性的东西不要太多;
(2)“同号得正,异号得负.”的方法判断中间项符号,增加了一些同学的难度; (3)处理公式时,少了为什么要用公式的说明,即用公式的目的,应当简单说明一下; (4)用面积“说明”,对初二学生不应当讲“证明”;
(5)最后,最好有一些简单的判断的问题,例2
2
2
94)32(y x y x +=+是否正确;
(6)可以用多媒体,拓展深了一点;再多一些表扬.。

相关文档
最新文档