抽屉原理与最不利原则(4年级培优)学生版

合集下载

抽屉原理与最不利原则学生版

抽屉原理与最不利原则学生版

抽屉原理与最不利原则学生版一、抽屉原理:抽屉原理也称为鸽巢原理,是一种用来证明或解决一些问题的方法。

它的基本思想是:如果n+1个物体分到n个盒子中,那么至少有一个盒子中会有两个或更多的物体。

在学生生活中,我们可以用抽屉原理来解决一些有关分类和分组的问题。

比如说,假设我们有7个苹果,要把它们放进5个相同大小的篮子中。

根据抽屉原理,至少有一个篮子中会有两个或更多的苹果。

因为如果每个篮子中最多只能放一个苹果,那么最多只能放进5个苹果,无法满足7个苹果的要求。

除了物体的数目和盒子的数量,抽屉原理还可以用来解决其他类型的问题。

比如说,如果我们有8个球,每个球只能涂成红色或蓝色,并且要求有至少3个球的颜色相同。

根据抽屉原理,我们可以将这8个球分成两组,至少有一组有3个球的颜色相同。

总之,抽屉原理告诉我们,在一些情况下,我们可以利用物体和盒子的数量来判断是否存在其中一种情况或解决一些问题。

二、最不利原则:最不利原则也称为最坏情况原则,是一种在决策或解决问题时常常采用的方法。

它的基本思想是:在做出决策或解决问题时,我们应该假设最坏的情况会发生,然后选择对这种情况最有利的方法或策略。

在学生生活中,最不利原则可以帮助我们制定合理的学习计划。

比如说,假设我们要在一周内准备3门考试,每门考试的内容都很多。

根据最不利原则,我们应该预估最坏的情况是每门考试内容都很难,然后制定学习计划,确保在考试前充分复习每门课程。

除了学习计划,最不利原则还可以应用在其他方面的决策中。

比如说,我们要出去玩,但是天气预报说可能会下雨。

根据最不利原则,我们应该假设最坏的情况是会下雨,然后带上雨伞或选择室内活动,以免被雨水淋湿。

总之,最不利原则教会我们在面对各种决策或问题时,要充分考虑最坏的情况,并选择最有利的方法来解决问题或应对情况。

小学数学竞赛:抽屉原理.学生版解题技巧 培优 易错 难

小学数学竞赛:抽屉原理.学生版解题技巧 培优 易错 难

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -p p , 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.(一)、直接利用公式进行解题 (1)求结论【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.知识精讲知识点拨教学目标抽屉原理【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【巩固】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【巩固】试说明400人中至少有两个人的生日相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

抽屉原理 最不利原则

抽屉原理 最不利原则

抽屉原理最不利原则
抽屉原理,又称为鸽巢原理,是一种数学原理,用于描述在一定条件下,将若
干物品放入有限数量的容器中,必然会有至少一个容器里放入多于一个物品的情况。

这一原理在计算机科学、组合数学、概率论等领域都有着广泛的应用。

而在实际生活中,抽屉原理也经常被用来解决各种问题,特别是在排列组合、概率统计等方面。

抽屉原理最不利原则是指在利用抽屉原理解决问题时,要选择最不利的情况进
行考虑和分析。

也就是说,当我们面对一个问题时,要假设最不利的情况出现,然后再进行解决方案的制定。

这样可以确保我们的解决方案在最不利的情况下依然是有效的,从而提高问题解决的可靠性和稳定性。

在实际应用中,抽屉原理最不利原则可以帮助我们更好地解决各种问题。

比如
在安排会议室的座位时,我们可以假设每个人都会选择最不利的情况,即每个人都会选择和自己关系最密切的人坐在一起,然后再进行座位的安排。

这样可以确保无论哪种情况出现,座位安排都是合理的。

又比如在进行资源分配时,可以假设资源最为紧缺的情况,然后再进行资源的合理分配,以确保资源的最优利用。

抽屉原理最不利原则的应用还可以帮助我们在决策和规划中更好地考虑各种可
能出现的情况,从而制定出更加全面和周密的方案。

在管理和领导中,也可以运用这一原则来预防和化解各种风险,提高决策的科学性和有效性。

总之,抽屉原理最不利原则是一种重要的思维方式和方法论,可以帮助我们更
好地解决问题,提高解决问题的可靠性和稳定性。

在实际应用中,我们应该充分发挥抽屉原理最不利原则的作用,从而更好地应对各种复杂的情况和问题,取得更好的效果。

小学教学心得 最不利原则-----抽屉原理的逆向应用

小学教学心得 最不利原则-----抽屉原理的逆向应用

精心整理
小学教学心得 最不利原则-----抽屉原理的逆向应用
在讲抽屉原理(一)的时候,我先用抢椅子、摸扑克牌等游戏抛出问题,激发学生的探究欲望,接着用简单的数据举例让学生经历比较、归纳等过程,然后带领学生采用枚举法、假设法等引导学生从直观走向抽象,对于六年级的大多数孩子来说,理解不成问题,关键是如何用数学语言表达出来,为克服这一难点,我带孩子们用最简单的问题多次强调说的过程,特别注意语言中的关键词“总有”“至少”,“总有”是“一定有”,“至少”意思是最少,或者更多,有了这个关键,孩子们的叙述重点很快就准确而明晰起来,最后,看大家理解和表达都差不多清楚了,我又引出了“苹果数”比“抽屉数”不止多1的情况,引导学生建立数学模型,顺向引出“平均分”的思路,整个水到渠
把例3如果有3 更要允。

四年级三大原理抽屉原理学生版

四年级三大原理抽屉原理学生版

抽屉原理知识要点最不利原则所谓“最不利原则”是指完成某一项工作先从最不利的情况下考虑,然后研究任意情况下可能的结果。

由此得到充分可靠的结论。

抽屉原理又称鸽巢原理或Dirichlet原理如果把1n+个苹果任意放入n个抽屉,那么必定有一个抽屉里至少有两个苹果。

这个现象就是我们所说的抽屉原理。

抽屉原理在国外又称为鸽巢原理。

(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是由德国数学家狄利克雷(G.Lejeune Dirichlet,18051859~)首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

抽屉原理1:如果把多于n件物品任意放到n个抽屉中,那么必有1个抽屉至少有2件物品。

抽屉原理2:如果把多于m nm+件物品。

⨯件物品任意放到n个抽屉中,那么必有1个抽屉至少有1抽屉原理3:如果把无穷多件物品任意放到n个抽屉中,那么必有1个抽屉至少有无穷多件物品。

最不利原则【例 1】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?【例 2】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证至少有3张牌是红桃?【例 3】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么至少从中摸出多少张牌,才能保证有5张牌是同一花色的?【例 4】(2004年第九届“华罗庚金杯”少年数学邀请赛小学组初赛第8题)一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?【例 5】(1988年第二届“华罗庚金杯”少年数学邀请赛小学组初赛第11题)一副扑克牌有四种花色,每种花色有13张,从中任意抽牌。

问:最少要抽多少张牌,才能保证有4张牌是同一花色?【例 6】(2006年3月8日第十一届“华罗庚金杯”少年数学邀请赛小学组初赛第13题)自制的一幅玩具牌共计52张(含4种牌:红桃、红方、黑桃、黑梅。

四年级奥数之简单抽屉原理与最不利原则(二)

四年级奥数之简单抽屉原理与最不利原则(二)

简单抽屉原理与最不利原则(二)
本讲主线
1.最不利原则
2.最不利原则与抽屉
1. 最不利原则:
这是一种从反面考虑的思想,要保证能够在最坏的情况下都能保证事情肯定发生的思考方式
实例:盒子里,有
双完整的筷子
相同的点数?
相的点数
只兔子在埋头偷吃胡萝卜.
“砰”的一枪打死了一只兔子. 请问:菜园里还剩多少只兔子?
3.抽屉原理:
抽屉原理:
⑴10个苹果放到
个苹果
⑵本质:平均数思想,肯定有人要不低于平均数
⑶用途:证明题
知识大总结平均数思想,肯定有人要不低于平均数;。

四年级奥数之简单抽屉原理与最不利原则(一)

四年级奥数之简单抽屉原理与最不利原则(一)

把3个苹果放进
屉里定会怎样呢?
屉里一定会怎样呢?
结论:一定有一个抽屉里至少有2个苹果.
实例:现在将个苹果放入到9个抽屉中
结论:一定有一个抽屉里面至少有2个苹果.
年出生的学生,那么必定至少有几个同学的生日是
清晨,一只母鸡先向着太阳飞奔了一会儿. 然后回到草堆旁
一只母鸡先向着太阳飞奔了一会儿
右跑了一会儿,然后向左边的同伴跑去,它与左边的同伴在草堆里转了半圈
个蛋请问蛋是朝着什么方向落下的?
后,忽然下了一个蛋. 请问:蛋是朝着什么方向落下的?
抽屉原理Ⅱ:
把m个苹果放入
1.如果m÷n没有余数,那么就一定有抽屉至少放了“
如果有余数,那
2.如果m÷n有余数,那么就一定有抽屉至少放了“
苹果.
抽屉原理Ⅱ:
原(实例
1.如果把8个苹果放到
2.如果把9个苹果放到
如果把
3.如果把10个苹果放到
果.
个抽屉中,一定有一个抽屉里面至少有
,尽量平均分,结果是必有
.抽屉原理本质:“至少”,尽量平均分,结果是必有一个抽屉里的苹果不
某件事情的可能性
__________________________________________________________________.
_________________________________________________________________.。

抽屉原理与最不利原则

抽屉原理与最不利原则

第十五讲抽屉原理与最不利原则
一、抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。

原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

原理2: 把多于m×n+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。

原理3: 把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

注意以下几点:
1、抽屉原理讨论的是苹果的数目与抽屉数目之间的关系,要求苹果数大于抽屉数;
2、抽屉原理用来解决存在性的问题,“必有一个”就是必然存在的意思;存在就行,不关心满足要求的抽屉到底是哪个、有多少个;常见的提示语“保证至少有一个”
3、解决问题的关键在于分辨苹果与抽屉,经常需要构造抽屉。

二、最不利原则
最不利原则,即从最坏的情况出发分析问题,如果在最坏的情况下都能满足题目要求,那么所有情况都能保证满足题目要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原理1 把多于n 个的物体放到n 个抽屉中,则至少有一个抽屉中有2个或2个以上的物体。

原理2 把多于mn (m 乘以n )个的物体放到n 个抽屉中,则至少有一个抽屉中有1+m 个
或多于1+m 个的物体。

✧ 构造“抽屉”、找出“物体”及物体的放法是应用抽屉原理解决问题的关键。

常见的构造抽屉的方法有:数的分组法;剩余类法;图形分割法;染色法。

✧ 当问题中出现“保证”二字,就要求我们必须利用“最不利”原则情况分析问题。

最不利原则就是从“极端倒霉”的情况考虑问题,将所有不利的情况都考虑进来。

我们可以用如下方法,解决简单抽屉原理的问题:
将n 个物品放到m 个抽屉中,如果a m n =÷,那么一定有一个抽屉中至少有a 个物品;如果b a m n =÷(0>b ),那么一定有一个抽屉中至少有1+a 个物品。

四年(1)班一共有42名学生,那么一定有至少几名学生的属相相同?
盒子中装有红、白、黑三种颜色的小球各20个,这些小球摸起来手感都一样。

14个小朋友闭着眼睛玩摸球游戏,每个小朋友一次只能摸出一个小球。

那么一次至少有几个小朋友摸出的小球颜色相同?
有3个不同的自然数,至少有两个数的和是偶数,为什么?
4个连续自然数分别被3除后,必有两个余数相同,为什么?
布袋中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出多少块才能保证其中至少有3块颜色相同?
一副扑克牌一共有54张,至少从中取出多少张才能保证:
(1)至少有4张牌的花色相同;
(2)4种花色的牌都有;
(3)至少有4张牌是黑桃。

2012名冬令营营员去游览长城、颐和园、天坛,规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同?
某班组织全班45人进行体育比赛,项目有A、B、C三种,规定每人至少参加一项,最多参加三项,至少有几人参加的项目是相同的?
从1、2、3、…,2011这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4?
从1至2011这2011个自然数中最多能取出多少个数,使得其中任意的两个数都不连续且差不等于4?
某班有16名学生,每个月教师把学生分成两个小组。

问:最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?
什么是莫比乌斯带
莫比乌斯带是拓扑学家们的杰作之一。

它使人感到古怪的
是:只有一侧的曲面。

它的制作是极为简单的。

我们把一个双侧环带随意在一处
剪开,然后扭转一半,即180°。

再粘合到一起来形成封闭的环,
就得到了莫比乌斯带。

但如果描述为没有“另一侧”,这是很难理解和想象的。

但做起来却很容易,你可随意从一处开始涂色(不离开这面)最终你将会发现莫比乌斯带都被你涂上了颜色,也就说明这的确是一个单侧面的带子。

莫比乌斯具有各种意想不到的性质,有人称之为“魔术般的变化”。

如果我们把莫比乌斯带沿中线剪开,出乎意料地得到了一条双侧袋子而不是两条。

数学家对这种奇妙的现象解释为:一条莫比乌斯带只有一条边,剪开却使它增加了第二条边与另一侧。

如果把莫比乌斯带沿三等分线剪开将使你又获新奇之感。

剪刀将环绕纸带子走整整两圈,但只是一次连续的剪开,剪的结果是两条卷绕在一起的纸条,其中的一条是双侧纸圈,另一条则是新的莫比乌斯带。

你看,这真是一个奇妙的带子。

某小学四(1)班有46名同学,至少有几个同学在同一个月过生日?
某小学有369位1996年出生的学生,那么至少有几个同学的生日是在同一天?
35名同学参加数学考试,试卷中有2道选择题,每题有A、B、C、D四个选项。

每位同学都写出的答案,那么一定有至少几名同学的答案是相同的。

一个不透明的袋子里有红色、黄色、黑色袜子各20只。

至少要拿几只袜子,才能保证其中至少有2双颜色不相同的袜子。

从2、4、6、…、30这15个偶数中,任取9个数,说明其中一定有两个数之和是34。

相关文档
最新文档