八年级数学下册 16章分式提高题 华东师大版
2021-2022学年度强化训练华东师大版八年级数学下册第十六章分式专项测试试卷(含答案详解)

华东师大版八年级数学下册第十六章分式专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若分式3x y y +中的x ,y 都扩大到原来的2倍,则分式的值( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的12 2、某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x 名工人生产,由题意列方程,下列选项错误的是( )A .x +3x =60B .1603x x -= C .6013x x -= D .x =3(60-x )3、若式子11x -有意义,则x 的取值范围是( ) A .1x ≠B .1≥xC .1x >D .1x < 4、若a b ,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b -=-C .22a a b b =D .22a a b b=5、要使式子5a b a b -+值为0,则( ) A .a ≠0B .b ≠0C .5a =bD .5a =b 且b ≠0 6、计算341()()a a -⋅-的结果是( )A .aB .a -C .1a D .1a- 7、使分式211x x -+等于0的x 的值是( ) A .1B .1-C .±1D .不存在8、计算11a a a -+的结果为( ) A .1 B .﹣1 C .2a a + D .2a a- 9、根据分式的基本性质,分式22m -可以变形为( ) A .11m - B .22m -- C .22m -+ D .21m- 10、若关于x 的一元一次不等式组()21122x x x m ⎧+-<+⎨-≤⎩的解集为1x <;关于x 的分式方程2422x m m x x++=--的解为非负整数.则满足条件的整数m 的值之和是( ) A .13 B .12 C .14 D .15第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、某中学八年级学生去距学校10千米的景点参观,一部分学生骑自行车先走,过了30分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x 千米/小时,则所列方程是________.2、如果分式4123x x -+的值为0,则x 的值是__________. 3、一种花的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为_____.4、计算:()022 3.14π---________. 5、已知非零实数,x y 满足21x y x =+,则3x y xy xy-+的值等于________. 6、人类进入5G 时代,科技竞争日趋激烈.据报道,我国已经能大面积生产14纳米的芯片,14纳米即为0.00000014米,将其用科学记数法表示为______米.7、甲做360个零件与乙做480个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x 个零件,则可列方程______.8、方程12131x x =-+的解为___. 9、化简:23222y xy x y x xy+--的计算结果是______. 10、新型冠状病毒外包膜直径最大约140纳米(1纳米0.000001=毫米).用科学记数法表示其最大直径为_____毫米.三、解答题(5小题,每小题6分,共计30分)1、解分式方程:2323422x x x x -=--+. 2、已知x ,y 为有理数,且满足x 2+4y 2+6x ﹣4y +10=0,求代数式yx 的值.3、(1)计算:2201()2(2)2π--+--; (2)分解因式:22363x xy y -+.4、计算:0123(3)2(3)||2π--+----. 5、计算:(1)()()()2222x y x y x y +---(2)222111a a a a a a --⎛⎫+-÷ ⎪++⎝⎭-参考答案-一、单选题1、A【解析】【分析】根据分式的基本性质可把x ,y 都扩大到原来的2倍代入原式得进行求解.【详解】解:把x ,y 都扩大到原来的2倍代入原式得,()22232233x y x y x y y y y+++==⨯⨯; 分式的值不变.故选A .【点睛】本题主要考查分式的基本性质,熟练掌握分式的基本性质,把握分子与分母的代数式的次数,分子与分母同次,不变,分子次数比分母次数高变大,分子的次数比分母点,变小是解题的关键.2、A【解析】【分析】设分配x 名工人生产,由题意可知,完成组装的工人有(60-x )人,根据生产工人数和组装工人数的倍数关系,可列方程.【详解】解:设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,由3位工人生产,1位工人恰好能完成组装,可得:x=3(60-x)①故D正确;将①两边同时除以3得:60-x=13x,则B正确;将①两边同时除以3x得:60xx=13,则C正确;A选项中,x为生产工人数,而生产工人数是组装工人数的3倍,而不是相反,故A错误.综上,只有A不正确.故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,明确题中的数量关系,是解题的关键.3、A【解析】【分析】根据分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.【详解】解:根据题意得:x-1≠0,解得:x≠1,故选:A.【点睛】本题考查了分式有意义的条件.要使得本题分式有意义,必须满足分母不等于0.4、C【解析】【分析】由a b ,令3a =,4b =再逐一通过计算判断各选项,从而可得答案.【详解】解:当3a =,4b =时,34a b =,2526a b +=+,故A 不符合题意; 2122a b -=-,故B 不符合题意; 而2,2a a b b = 故C 符合题意; 22916a b =.故D 不符合题意 故选:C .【点睛】本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.5、D【解析】【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:50a b -= 且0a b +≠ ,∴5a b = 且0b ≠ .【点睛】本题主要考查了,熟练掌握分式有意义的条件是分式的分子等于0且分母不等于0是解题的关键.6、A【解析】【分析】根据分式的乘法解决此题.【详解】 解:()341a a ⎛⎫-⋅- ⎪⎝⎭ ()431a a =-⋅- a =.故选:A .【点睛】本题主要考查分式的乘法,熟练掌握分式的乘法法则是解决本题的关键.7、A【解析】【分析】根据分式值为零的条件可得:x 2﹣1=0且x +1≠0,再求解即可.【详解】解:由题意得:x 2﹣1=0且x +1≠0,解得:x =1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.8、A【解析】【分析】根据b c b ca a a++=计算即可.【详解】∵11 aa a -+=111a aa a-+==,故选A.【点睛】本题考查了同分母分式的加法,熟练掌握计算法则是解题的关键.9、B【解析】【分析】根据分式的基本性质即可求出答案.【详解】解:原式2222m m=---,故选B.本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.10、B【解析】【分析】由关于x 的一元一次不等式组可得m ≥-1,关于x 的分式方程的解为83m x -=,根据题意得出所有满足条件的整数m 的值,求和即可.【详解】解:解不等式组2(1)122x x x m +-<+⎧⎨-≤⎩得,12x x m <⎧⎨≤+⎩, 因为不等式组的解集为1x <;所以21m +≥,解得,1m ≥-; 解分式方程2422x m m x x ++=--得,83m x -=, 因为关于x 的分式方程2422x m m x x ++=--的解为非负数. 所以,803m -≥且823m -≠, 解得,8m ≤且2m ≠,又因为方程的解是非负整数,则整数m 的值为-1,5,8;它们的和为:-1+5+8=12;故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算.考虑解分式方程可能产生增根是解题的关键.1、1010122 x x-=【解析】【分析】根据等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,即可列出方程.【详解】由题意,骑自行车的学生所用的时间为10x小时,乘汽车的学生所用的时间为102x小时,由等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,得方程:1010122x x-=故答案为:1010122 x x-=【点睛】本题考查了分式方程的应用,关键是找到等量关系并根据等量关系正确地列出方程.2、14##0.25【解析】【分析】分式的值为零时,分子等于零,即410x-=.【详解】解:由题意知,410x-=.解得14x=.此时分母07223x +=≠,符合题意. 故答案是:14. 【点睛】本题主要考查了分式的值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零.3、46.510-⨯【解析】【分析】用科学记数法表示绝对值小于1的正数时,一般形式为10n a -⨯,指数中的n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00065=46.510-⨯.故答案为:46.510-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4、3-4【解析】【分析】20212 3.14π12-=-=,(),进而得到结果. 【详解】解:202 3.14π---()2112=- 34=- 故答案为:34-.【点睛】本题考查了零指数幂,负整数幂.解题的关键在于正确的求值.5、5【解析】【分析】 由条件21x y x =+变形得,x -y =2xy ,把此式代入所求式子中,化简即可求得其值. 【详解】 解:由21x y x =+得:2xy +y =x ,即x -y =2xy ∴23553x x y xy xy xy xyy xy xy +==+=- 故答案为:5【点睛】 本题考查了求代数式的值,分式的化简,整体代入法求代数式的值,关键是根据条件21x y x =+,变形为x -y =2xy ,然后整体代入.6、81.410-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000014=1.4×10−8,故答案为:1.4×10−8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7、360480140x x=- 【解析】【分析】设甲每天做x 个零件,则乙每天做()140x - 个零件,根据“甲做360个零件与乙做480个零件所用的时间相同,”列出方程,即可求解.【详解】解:设甲每天做x 个零件,则乙每天做()140x - 个零件,根据题意得:360480140x x=- . 故答案为:360480140x x=- 【点睛】 本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.8、x =-3【解析】【分析】先去分母,然后再求解方程即可.【详解】 解:12131x x =-+ 去分母得:()3121x x +=-,去括号得:3122x x +=-,移项、合并同类项得:3x =-,经检验:3x =-是原方程的解,故答案为3x =-.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.9、722y x y- 【解析】【分析】通分并利用同分母分式的加法法则进行计算即可求出答案.【详解】 解:23222y xy x y x xy+-- =()()3422xy xy x x y x x y +-- =()72xy x x y - =722y x y-故答案为:722y x y-. 【点睛】 本题考查了分式的加法,题目比较简单,在进行计算时要注意把最后结果进行化简是本题的关键. 10、41.410-⨯【解析】【详解】解:因为1纳米0.000001=毫米610-=毫米,所以140纳米261.41010-=⨯⨯毫米41.410-=⨯毫米,故答案为:41.410-⨯.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.三、解答题1、5x =-【解析】【分析】先去分母,去括号,然后移项合并同类项,系数化为1,最后进行检验.【详解】 解:2323422x x x x +=--+ 去分母去括号得:32436x x x ++=-解得:5x =-检验:当5x =-时,()()220x x +-≠∴分式方程的解为5x =-.【点睛】本题考查了解分式方程.解题的关键与难点在于将分式方程转化成整式方程.2、8【解析】【分析】利用完全平方公式把条件的式子进行变形,根据偶次方的非负性求出x 、y 的值,代入进行计算即可.【详解】解:∵x 2+4y 2+6x -4y +10=0,∴x 2+6x +9+4y 2-4y +1=0,(x +3)2+(2y -1)2=0,∴x +3=0,2y -1=0,解得:x =-3,y =12,∴yx =()331312282---⎛⎫=== ⎪⎝⎭. 【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.3、(1)12-;(2)23()x y -【解析】【分析】(1)利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)提取公因式,再利用完全平方公式分解即可.【详解】(1)原式11144=+- 112=- 12=-; (2)原式223(2)x xy y =-+23()x y =-.【点睛】本题考查了提公因式法与公式法的综合运用,以及实数的运算,熟练掌握因式分解的方法是解本题的关键.4、-9【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质分别化简得出答案.【详解】解:原式=131922+--=-9【点睛】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质,正确化简各数是解题关键.5、 (1)22234x y xy -+ (2)1a a - 【解析】【分析】(1)利用平方差公式及完全平方公式展开,然后合并同类项计算即可得;(2)先通分,然后去括号计算分式的除法,最后进行化简即可得.(1)解:原式()2222422x y x xy y =---+,22224242x y x xy y =--+-,22234x y xy =-+;(2) 解:原式2222111a a a a a a-+-+=⋅+-, ()()21111a a a a a -+=⋅+-, 1a a-=. 【点睛】题目主要考查整式的混合运算及分式的混合运算,完全平方公式及平方差公式的运用,熟练掌握两个运算法则是解题关键.。
华东师大版八年级数学下册 第16章 分式 单元综合提升练习(含答案)

华东师大版八年级数学下册 第16章 分式 单元综合提升练习一、精心选一选:1. 下列方程中,不是分式方程的是( )(A )131x x =- (B )1x x x-= (C )152x x += (D )11122x --= 2. 把分式方程224x -=32x 化为整式方程,方程两边需同时乘以( ) (A )2x (B )24x - (C )()22x x - (D )()224x x -3. 下列说法中,错误的是( )(A )分式方程的解等于0,就说明这个分式方程无解(B )解分式方程的基本思路是把分式方程转化为整式方程(C )检验是解分式方程必不可少的步骤(D )能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解4. 满足方程2211-=-x x 的x 值是( ) (A )1 (B )2(C )0 (D )没有5. 已知)1(≠--=e an a m e ,则a 等于( ) (A )e n m --1 (B )eme n --1 (C )ene m --1 (D )以上答案都不对. 6. 若3x =-是分式方程312ax x=-的根,则a 的值为( ) (A )95- (B )95 (C )59 (D )59- 7. 一个分数的分母比它的分子大5,如果这个分数的分子加上14,分母减去1,得到的分数正好是原分数的倒数,那么原分数是( )(A )38 (B )83 (C )49 (D )948. 某化肥厂原计划每天生产化肥x 吨,由于采取了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x 的方程是( )(A )1201803x x =+ (B )1201803x x =-(C )1201803x x =+ (D )1201803x x =- 二、认真填一填:9. 要使分式15x x++的值为13,则x 的值为____________. 10. 若11x -与11x +互为相反数,则可得方程___________,解得x =_________. 11.请你给x 选择一个合适的值,使方程2112x x =--成立,你选择的x =____________. 12. 已知2x =时,分式31x k x ++的值为零,则k =__________. 13. 分式方程22510x x x x -=+-的解是 . 14. 新农村,新气象,农作物播种全部实现机械化.已知一台甲型播种机4天播完一块地的一半,后来又加入一台乙型播种,两台合播,1天播完这块地的另一半.求乙型播种单独播完这块地需要几天?设乙型播种单独播完这块地需要x 天,根据题意可列方程 .三、细心解答,运用自如!15.解方程:(1)411x =-; (2)321+-x =x x --21.16.设23111x A B x x ==+--,,当x 为何值时,A 与B 的值相等?17.在一次“奉献爱心”捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班共捐款2400元,乙班共捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的45倍.求甲、乙两班各有多少人捐款?18.在社会主义新农村建设中,县交通局决定对某乡的村级公路进行改造,由甲工程队单独施工,预计180天能完成。
华师版八年级下册数学第16章 分式 全章整合与提升

x2+x2y4-xy4+y34y2·x-4xy2y+x,再求值.
解: x-y=3,① 3x-8y=14,②
①×3-②,得5y=-5,解得y=-1.
把y=-1代入①得x=2.∴
x=2, y=-1.
x2+x2y4-xy4+y34y2·x-4xy2y+x=y(x+(2xy+)2(y)x-2 2y)·x(xx-+22yy)=xy. 当xy==-2,1时,原式=xy=2×(-1)=-2.
(1)若二号施工队单独施工,完成整个工程需要多少天?
解:设二号施工队单独施工完成整个工程需要x天,依题意可得 解得x=60.
经答检:验二,号施x=工60队是单4原10独分×施5式+工方完程41成0的+整解个1x,工×且程(符4需0合-要题65意0-天..14)=1.
(2)若此工程一号、二号施工队同时进场施工,完成整个工程需要多少天?
14.已知关于x的-方34程有增根,x则-1k的2+值为x+_k__2_=__x__2.-3 4
15.【2021·商丘民权期末】某校举行“停课不停学,名师陪你在家学”活动,计 划投资10000元建设几间直播教室,为了保证教学质量,实际每间直播教 室的建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追 加了5000元,则原计划每间直播教室的建设费用是( )
3(a-1)(a+2)(a+1)2
4A..下①列②方B.程②:③,C其.①中③是x④-分5D式3.=方②程1③;的④是②(3x=)2;③15++xx=12;④x2+2x=5
D
5.下列用科学记数法表示的式子:①2364.5=2.3645×103;②5.792= 5.792×101;③0.001001=1.001×10-2;④-0.000083=-8.3×10-5. 其中不正确的个数是( )
完整版华师大版八年级下册数学第16章 分式含答案

华师大版八年级下册数学第16章分式含答案一、单选题(共15题,共计45分)1、遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万kg,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万kg,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万kg?设原计划每亩平均产量x万kg,则改良后平均每亩产量为1.5x万kg,根据题意列方程为()A. ﹣=20B. ﹣=20C. ﹣=20 D. + =202、甲、乙两人分别从距目的地6km和10km的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前h到达目的地,设甲的速度为3xkm/h,下列方程正确的是()A. B. C. D.3、下列计算正确的是()A.a 2•a 3=a 6B.(﹣2xy 2)3=﹣8x 3y 5C.2a ﹣3=D.(﹣a)3÷(2a)2=﹣ a4、钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A.634×10 4B.6.34×10 6C.63.4×10 5D.6.34×10 75、函数中自变量x的取值范围是()A.x≠2B.C.D. 且x≠06、如果,,那么等于()A.1B.2C.3D.47、用科学记数法表示5700000,正确的是()A.5.7×10 6B.5.7×10 5C.570×10 4D.0.57×10 78、我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.167×10 3B.16.7×10 4C.1.67×10 5D.0.167×10 69、若代数式+ 有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠110、下列函数中,自变量x的取值范围是x≥2的是()A. B. C. D.11、下列各式运算正确的是()A.a 2+a 3=a 5B.a 2•a 3=a 6C.(a 2)3=a 6D.a 0=112、新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿13、﹣()]=中,在()内填上的数是()A. B. C. D.14、若分式有意义,则x的取值范围是()A.x≠2B.x≠﹣2C.x>﹣2D.x>215、计算的结果是()A.x 2﹣1B.x﹣1C.x+1D.1二、填空题(共10题,共计30分)16、把1020000用科学记数法表示为________;2.236×107的原数是________;17、 ________.18、分式的最简公分母是________.19、化简分式的结果是________.20、计算:(﹣x2y)2=________(﹣2)﹣2=________﹣2x2•(﹣x)3=________(﹣0.25)2014×42015=________.(﹣1)2015+(﹣π)0+2﹣2=________.21、当x________时,分式无意义.22、要使代数式有意义,则的取值范围是________.23、分式有意义的条件是________.24、已知分式的值为零,那么x的值是________.25、第一季度,我国国民经济开局平稳,积极因素逐渐增多.社会消费品零售总额约为97790亿元,同比增长8.3%;网上零售额为22379亿元,同比增长15.3%.其中22379亿用科学记数法表示为________.三、解答题(共5题,共计25分)26、﹣(π﹣3)0﹣(﹣1)2017+(﹣)﹣2+tan60°+| ﹣2|27、列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造10%,结果提前3天完成了任务,求原计划每天改造道路多少米?28、先化简,然后a在﹣1,1,2三个数中任选一个合适的数代入求值.29、列方程或方程组解应用题几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.30、解分式方程:+1=参考答案一、单选题(共15题,共计45分)1、A2、B4、B5、A6、B7、A8、C9、D10、C11、C12、C13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
2022年华东师大版八年级数学下册第十六章分式专题测试试题(含答案及详细解析)

华东师大版八年级数学下册第十六章分式专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x 的不等式组45253m x x x ->⎧⎨+≥+⎩所有整数解中非负整数解有且仅有三个,且关于y 的分式方程2301322my y y --=--有正整数解,则符合条件的整数m 有( )个 A .1 B .2 C .3 D .42、若数a 既使得关于x 的不等式组12326x a x a x a -+⎧+≤⎪⎨⎪->⎩无解,又使得关于y 的分式方程122y a a y y +-=+-的解不大于4,则满足条件的所有整数a 的个数为( )A .3B .4C .5D .63、PM 2.5是大气中直径小于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .62.510-⨯D .52.510-⨯ 4、计算341()()a a -⋅-的结果是( )A .aB .a -C .1a D .1a-5、要使式子5a b a b -+值为0,则( ) A .a ≠0 B .b ≠0 C .5a =b D .5a =b 且b ≠06、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 7、长郡中学官方微信曾连续两次入选获评“长沙十大最具影响力政务微信”,全年发布的图文消息总阅读量超220万,220万这个数用科学记数法表示应为( )A .22.210⨯B .62.210⨯C .52210⨯D .62.210-⨯ 8、已知分式2ab a b +的值为25,如果把分式2ab a b+中的,a b 同时扩大为原来的3倍,那么新得到的分式的值为( )A .25 B .45 C .65 D .4259、若关于x 的一元一次不等式组2(3)4152x x x a +-<+⎧⎨-≤⎩的解集为1x <-,且关于y 的分式方程1144y a y y++=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .-15B .-10C .-7D .-4 10、分式方程21133x x x --=--的解为( ) A .x =2 B .无解 C .x =3 D .x =﹣3第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、如果分式(1)x x x+的值为零,那么x 的值是________. 2、若4x =是关于x 的方程233x m x -=-的解,则m 的值为________.3、 “绿水青山就是金山银山”.某地为美化环境,计划种植树木2000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前4天完成任务.则实际每天植树_________棵.4、若30a b -=,且0a ≠,则分式中a b a b+-的值为______. 5、当x =_____时,式子||22x x --的值为0. 6、城际铁路开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?设由北京到天津的平均速度是每小时x 千米,则可列方程为__________.7、计算:201(2π-⎛⎫-= ⎪⎝⎭__________. 8、若0(25)x y +-无意义,且3210,x y +=则x =_________,y =________.9、某中学八年级学生去距学校10千米的景点参观,一部分学生骑自行车先走,过了30分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x 千米/小时,则所列方程是________.10、红细胞也称红血球,是血液中数量最多的一种血细胞,也是我们体内通过血液运送氧气的最主要的媒介,同时还具有免疫功能.红细胞的直径单位一般用微米(μm),1μm=0.000001m ,人类的红细胞直径通常是6μm~8μm.6μm 用科学记数法可以表示为______m .三、解答题(5小题,每小题6分,共计30分)1、计算:(1)(2a ﹣b )2﹣b (2a +b );(2)(2a a 1-﹣a ﹣1)÷221-a a .2、火锅是重庆美食之一,沙坪坝三峡广场某火锅店在“十一黄金周”期间,总营业额达120000元,麻辣口味火锅的营业额是微辣口味火锅营业额的两倍,来店内就餐选择麻辣的游客比选择微辣的游客多500人,两种口味火锅的人均消费相同.(1)求“十一黄金周”期间有多少人选择麻辣口味的火锅.(2)随着“十一黄金周”的结束,来店就餐人数逐渐减少,据接下来的第二周统计数据显示,选择麻辣口味的人数下降10a ,选择微辣口味的人数不变,但选择麻辣口味的人均消费增长a 元,选择微辣口味的的人均消费增长了2a 元.请用含a 的代数式表示十月第二周的营业总额并化简.3、计算:0123(3)2(3)||2π--+----. 4、计算:(1)a (2a ﹣3b )﹣(a ﹣b )2; (2)22293()211x x x x x x--÷--+-.5、计算:()03.14π--参考答案-一、单选题1、B【解析】【分析】解不等式组和分式方程得出关于x 的范围,根据不等式组有且仅有非负整数解和分式方程的解为正整数解得出m 的范围,继而可得整数m 的个数.【详解】解:解不等式45m x ->,得:54m x -<, 解不等式253x x +≥+,得:2x ≥-,不等式组有且仅有三个非负整数解,4234m -∴<≤,解得:1216m <≤,解关于y 的分式方程2301322my y y --=--, 23013(2)my y --=-,(13)58m y -=, 得:1358y m =-, 分式方程有正整数解, ∴58013m >-,且58213m ≠-,即42m ≠, 解得:13m >且42m ≠,综上,1316m <≤,所以所有满足条件的整数m 的值为14,15,一共2个.故选:B .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,解题的关键是熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m 的范围.2、B【解析】【分析】先解不等式组中的两个不等式,由不等式组的解集可得4a ≤,再解分式方程,由分式方程的解为负数可得:1a ≥-,且a ≠0,2,结合a 为整数,从而可得答案.【详解】 解:12326x a x a x a -+⎧+≤⎪⎨⎪->⎩①②解不等式①得56x a ≤-,解不等式②得26x a +>,∵不等式组无解,5626a a ∴-≤+解得,4a ≤,解关于y 的分式方程122y a a y y +-=+-得22y a =-+, ∵关于y 的分式方程122y a a y y +-=+-的解不大于4, 224a ∴-+≤,解得,1a ≥-,∵y +2≠0,y -2≠0∴y ≠2±,222a ∴-+≠±,解得,0a ≠,214a ∴-≤≤且0a ≠,2,∵a 为整数,∴a =-1或1或3或4,故选:B .【点睛】本题主要考查分式方程的解及解分式方程,一元一次不等式组的解及解一元一次不等式组,通过解不等式组及分式方程求解a 的取值范围是解题的关键.3、C【解析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到2的后面,所以 6.n =-【详解】解:0.000002562.510-=⨯故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.4、A【解析】【分析】根据分式的乘法解决此题.【详解】 解:()341a a ⎛⎫-⋅- ⎪⎝⎭ ()431a a =-⋅- a =.故选:A .【点睛】本题主要考查分式的乘法,熟练掌握分式的乘法法则是解决本题的关键.5、D【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:50a b -= 且0a b +≠ ,∴5a b = 且0b ≠ .故选:D【点睛】本题主要考查了,熟练掌握分式有意义的条件是分式的分子等于0且分母不等于0是解题的关键.6、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A .方程分母中不含未知数,故不是分式方程,不符合题意;B .方程分母中不含未知数,故不是分式方程,不符合题意;C .方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D .方程分母中含未知数x ,故是分式方程,符合题意.故选:D .【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).7、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】220万用科学记数法表示为2.2×106,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.8、C【解析】【分析】直接利用分式的基本性质进而化简得出答案.【详解】解:把分式2aba b+中的,a b都扩大为原来的3倍,则分式223392263333()55ab a b aba b a b a b===⨯=+++,故选:C.【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式.9、B【解析】【分析】解出一元一次不等式组的解集,根据不等式组的解集为1x<-,在数轴上标出x的解集求出a的范围;根据分式方程分母不能为0的性质得出y-4≠0,再在分式方程两边同乘以y-4,解出分式方程的解,再根据a的范围求出y的取值范围,找出符合条件的y的正整数解,分别代入求出a的值,求和即可.【详解】解:2(3)4152x xx a+-<+⎧⎨-≤⎩ ① ②,解不等式①得:x<-1,解不等式②得:x≤25a+,∵不等式组的解集为1x<-,∴25a+≥-1,∴a≥-7;要想分式方程有意义,则y-4≠0,∴y≠4分式方程两边同乘以(y-4)得:y+y-4=-a-1,解得:y=32a-,∵a≥-7∴y=32a-≤5,∵方程的解是正整数且y≠4∴ y 的正整数解有:1,2,3,5.把y =1,2,3,5分别代入32a -,可得整数a 的值为1,-1,-3,-7. ∴所有满足条件的整数a 的值之和是:1+(-1)+(-3)+(-7)=-10故选:B .【点睛】解一元一次不等式组可通过数轴求解解集,注意不等式两边同乘以负号的时候不等号的方向一定要改变.解分式方程时,防止增根产生,要保证分母不为0.10、B【解析】【分析】首先将分式方程化为整式方程求解,然后对整式方程的解进行检验,成立则有解,否则分式方程无解.【详解】 解:21133x x x--=-- 两边同时乘以3x -得:213x x -+=-解得:3x =经检验得3x =不是分式方程的解∴该分式方程无解故选B .【点睛】本题考查了解分式方程.解题的关键在于将分式方程化为整式方程.易错点在于是否对解进行检验.二、填空题【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:(1)0x x +=且0x ≠,解得1x =-.故答案为:1-.【点睛】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.2、5【解析】【分析】把4x =代入方程233x m x -=-,得到关于m 的一元一次方程,再解方程即可. 【详解】 解: 4x =是关于x 的方程233x m x -=-的解, 243,43m83,m解得:5,m =故答案为:5本题考查的是分式方程的解,掌握“把分式方程的解代入原方程求解未知系数的值”是解本题的关键.3、125【解析】【分析】设原计划每天植树x棵,则实际每天植树(1+25%)x棵,根据工作时间=工作总量÷工作效率,结合实际比原计划提前4天完成任务,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其代入(1+25%)x中即可求出结论.【详解】解:设原计划每天植树x棵,则实际每天植树(1+25%)x棵,依题意得:200020004(125%)x x-=+,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴(1+25%)x=125.故答案为:125.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.4、2【解析】【分析】直接利用已知代入分式化简得出答案.【详解】解:∵a−3b=0,且a≠0,∴a=3b,则分式a ba b+-=33b bb b+-=42bb=2.故答案为:2.【点睛】此题主要考查了分式化简求值,正确对式子进行变形,化简求值是解决本题的关键.在解题过程中要注意思考已知条件的作用.5、2-【解析】【分析】根据分式值为0的条件,进行分析即可求得x的值.【详解】式子||22xx--的值为020,20x x∴-=-≠2x∴=-故答案为:2-【点睛】本题考查了分式值为0的条件,解题的关键是掌握分式值为0的条件是“分子为0,分母不为0” .6、1(40)16 2260 xx+-=【解析】【分析】设这次试车时,由北京去天津时平均每小时行驶x千米,则返回是每小时行驶(x+40)千米.预计高速列车在北京、天津间单程直达运行时间为半小时,则北京与天津之间的距离是12(x+40)千米.然后根据试验列车由北京到天津的行驶时间比预计时间多用了6分钟即可列方程.【详解】解:设这次试车时,由北京去天津时平均每小时行驶x千米,则返回是每小时行驶(x+40)千米.预计高速列车在北京、天津间单程直达运行时间为半小时,则北京与天津之间的距离是12(x+40)千米.根据题意,得1(40)162260xx+-=.故答案为:1(40)162260xx+-=.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.7、3【解析】【分析】根据实数的运算法则即可求出答案.【详解】解:原式41=-3=.【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.8、 0 5【解析】根据0(25)x y +-无意义,得出250x y +-=,结合3210x y +=,求解即可.【详解】解:0(25)x y +-无意义,250x y ∴+-=,且3210x y +=,解得0,5x y ==.故答案为:0,5.【点睛】本题考查了零指数幂无意义的条件,解二元一次方程组,解题的关键是得出250x y +-=. 9、1010122x x -= 【解析】【分析】根据等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,即可列出方程.【详解】 由题意,骑自行车的学生所用的时间为10x 小时,乘汽车的学生所用的时间为102x小时,由等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,得方程:1010122x x -= 故答案为:1010122x x -= 【点睛】 本题考查了分式方程的应用,关键是找到等量关系并根据等量关系正确地列出方程.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:6μm=6×0.000001m=6×10-6m.故答案为:6×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题1、 (1)4a2-6ab(2)12 aa+ -【解析】【分析】(1)先利用完全平方公式和单项式乘多项式的运算法则计算乘方和乘法,然后再算加减;(2)先将小括号内的式子进行通分计算,然后再算括号外面的.【小题1】解:原式=4a2-4ab+b2-2ab-b2=4a2-6ab;【小题2】原式=()()()()21111112a a a a a a a a +-+-⎡⎤-⋅⎢⎥--⎣⎦=()()2211112a a a a a a-+--+⋅- =12a a+- 【点睛】本题考查整式的混合运算,分式的混合运算,掌握完全平方公式的结构及通分和约分的技巧是解题关键.2、 (1)“十一黄金周”期间有1000人选择麻辣口味的火锅(2)21006000120000a a --+【解析】【分析】(1)设“十一黄金周”期间有x 人选择麻辣口味的火锅,根据题意列出分式方程进行求解;(2)根据题意中选择麻辣口味的人数下降10a ,选择微辣口味的人数不变,但选择麻辣口味的人均消费增长a 元,选择微辣口味的的人均消费增长了2a 元的信息,列出代数式即可.(1)解:设“十一黄金周”期间有x 人选择麻辣口味的火锅,由题意得:麻辣口味火锅的营业额为80000元,微辣口味火锅营业额为40000元, ∴ 8000040000500x x =- ∴1000x =经检验:1000x =为原方程的解,且符合实际,∴500500x -=,人均消费为80元,答:“十一黄金周”期间有1000人选择麻辣口味的火锅.(2) 解:1000(1)(80)500(802)10a a a -⋅+++, =(1000100)(80)500(802)a a a -⋅+++,=28000010008000100400001000a a a a +--++,=21006000120000a a --+.【点睛】本题考查了分式方程的应用、例代数式,解题的关键是读懂题意列出相应的等式或式子.3、-9【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质分别化简得出答案.【详解】解:原式=131922+--=-9【点睛】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质,正确化简各数是解题关键.4、 (1)22a ab b -- (2)31x x +-- 【解析】【分析】(1)先利用单项式乘多项式的运算法则和完全平方公式计算乘法和乘方,然后去括号,合并同类项进行化简;(2)先将小括号里面的式子进行通分计算,然后再算括号外面的.(1)解:原式22223(2)a ab a ab b =---+222232a ab a ab b =--+-22a ab b =--;(2) 原式22(3)(3)3(1)[](1)11x x x x x x x x +---=÷----222(3)(3)3(1)1x x x x x x x +---+=÷--2(3)(3)1(1)3x x x x x+--=⋅-- 31x x +=--. 【点睛】本题考查整式的混合运算,分式的混合运算,理解整式混合运算,分式混合运算的运算顺序和计算法则,掌握通分和约分的技巧是解题关键.5、6【解析】【分析】先运用零次幂、算术平方根的性质、立方根的知识化简,然后计算即可.【详解】解:()03.14π-=1+2-(-3)=1+2+3=6.【点睛】本题主要考查了零次幂、算术平方根、立方根等知识点,灵活运用相关知识是解答本题的关键.。
华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)

华东师大版八年级下册第16章《分式》单元测试卷(原卷版)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。
题号一二三全卷总分总分人1718 19 20 21 22 得分1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。
)1、在代数式m 1,3b ,π1-x ,y x +2,aa 1+中,分式的个数是( )A 、2B 、3C 、4D 、52、下列各分式中,是最简分式的是( )A 、x x 22B 、1122+++x x xC 、x x 1+ D 、112--x x 3、将分式yx x42-中的x ,y 的值同时扩大为原来的2022倍,则变化后分式的值( )A 、扩大为原来的2022倍B 、缩小为原来的20221C 、保持不变D 、以上都不正确4、已知0132=+-x x ,则xx 1-的值是( ) A 、5B 、7±C 、5±D 、35、若b a ≠,则下列分式化简正确的是( )A 、b a b a =--22B 、b a mb a m =+C 、b ab a =22D 、b abab =26、下列运算正确的是( )A 、692432b b a a b =•B 、2323132b a b ab =+ C 、a a a 32121=+ D 、1211112-=+--a a a 7、分式方程13132=----xx x 的解为( ) A 、2=xB 、无解C 、3=xD 、3-=x8、若关于x 的分式方程2113+-=--x mx x 产生增根,则m 的值为( ) A 、1-B 、2-C 、1D 、29、随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升、某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x 套,根据题意,下列方程正确的是( )A 、42600400=-x x B 、42400600=-x x C 、46002400=-xx D 、44002600=-xx 10、若关于x 的分式方程21121=----x k x kx 无解,则k 的值为( ) A 、31-=kB 、1=kC 、31=k 或2 D 、0=k 11、已知关于x 的分式方程xkx x -=--343的解为负数,则k 的取值范围是( ) A 、12-≤k 且3-≠k B 、12->k C 、12-<k 且3-≠k D 、12-<k 12、若关于x 的不等式组()⎪⎩⎪⎨⎧-≤+-≥-+12224131x a x x x 有解,且使关于y 的分式方程32221-=--+--yya y y 的解为非负数、则满足条件的所有整数a 的和为( ) A 、9- B 、8- C 、5- D 、﹣4二、填空题(本大题共4个小题,每小题4分,共16分) 13、已知611=+y x ,则yxy x y xy x +-++525的值为 ; 14、对于实数a 、b ,定义一种新运算“*”为:ba ab a -=*,这里等式右边是实数运算。
2021-2022学年度强化训练华东师大版八年级数学下册第十六章分式专项测试试题(含答案及详细解析)

华东师大版八年级数学下册第十六章分式专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若分式3x y y +中的x ,y 都扩大到原来的2倍,则分式的值( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的12 2、在物联网时代的所有芯片中,14nm 芯片正在成为需求的焦点. 已知nm 即纳米,是长度的度量单位,1nm =9110-⨯m .将14nm 用科学记数法表示正确的是( )A .81.410-⨯mB .91.410-⨯mC .91410-⨯mD .101.410-⨯m3、已知a ,b ,c ,d 都是正实数,且a c b d<,其中b B a b =+,d C c d =+,则B 与C 的大小关系是( )A .BC > B .B C ≥ C .B C <D .B C ≤4、对于两个有理数a 、b ,定义一种新的运算:1b a b a ab ⊕=++,若20m ⊕=,则2m ⊕的值为( )A .32-B .3-C .0D .12-5、2020年,引发疫情的冠状病毒被命名为SARS -CoV -2的新型冠状病毒.形态结构冠状病毒粒子呈不规则形状,直径约0.00000022m ,用科学计数法表示为( )A .72.210⨯B .72.210-⨯C .60.2210⨯D .60.2210-⨯6、小张和小李同学相约利用周末时间到江津科技馆参观,小张家离科技馆3000米,小李家离科技馆2500米,小张同学和小李同学同时从家出发,结果小张比小李晚10分钟到达科技馆,已知小李步行的速度是小张步行速度的1.2倍,为了求他们各自步行的速度,设小张同学的步行速度是x 米/分,则可列得方程为( )A .25003000101.2x x-= B .30002500101.2x x -= C .30002500101.2x x -= D .3000250010601.2x x-=⨯ 7、已知一个三角形三边的长分别为6,8,a ,且关于y 的分式方程34233y a a y y ++=--的解是非负数,则符合条件的所有整数a 的和为( )A .20B .18C .17D .158、若关于x 的不等式组()32212x a x x -<-⎧⎨->+⎩无解,且关于y 的分式方程()25155a y y y ++=---有正整数解,则符合条件的所有整数a 的和为( )A .2-B .1-C .0D .1 9、如果把分式2xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变10、下列各分式中,当x =﹣1时,分式有意义的是( )A .121x +B .11x +C .21x x -D .22x x+ 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、当x ≠4时,(x ﹣4)0=___.2、当12a b =时,式子2222+2a b a b b a a b⎛⎫+-⋅ ⎪-⎝⎭的值为________. 3、如果方程0224k x x x +=++不会产生增根,那么k 的取值范围是_____. 4、当x =_________时,分式22+1x x -的值为零. 5、计算下列各题:(1)|3﹣4|﹣1=_____;(2=_____;(3)30=_____;(4)32y xy x+=_____. 6、某中学八年级学生去距学校10千米的景点参观,一部分学生骑自行车先走,过了30分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x 千米/小时,则所列方程是________.7、将()232aa b -写成不含分母的形式,其结果为_______.8、新型冠状病毒外包膜直径最大约140纳米(1纳米0.000001=毫米).用科学记数法表示其最大直径为_____毫米.9、已知244a b a b =--- ,则a b +的值为__________ . 10、若12x -有意义,则实数x 的取值范围是____________. 三、解答题(5小题,每小题6分,共计30分)1、生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任,某小区准备购进A 型和B 型两种垃圾桶,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花20元,用250元购进A 型垃圾桶的数量与用350元购进B 型垃圾桶的数量相等.(1)求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(2)小区决定用不超过600元购进A 、B 两种型号的垃圾桶共10台,且A 型垃圾桶的个数不多于B 型垃圾桶的个数的2倍,问小区有几种购买方案?2、已知T =244()2m m m m m ++⋅+. (1)化简T .(2)若m 2+2m ﹣3=0,求此时T 的值.3、(1)先化简再求值:21()(1)1x x x x x-÷+--,其中x (2)解方程:2216124x x x --=+-. 4、元宵节是中国的传统节日,元宵节吃汤圆,寓意着团团圆圆,和和美美,日子越过越红火.元宵佳节,二娃家共15人在家团聚.元宵节当天,二娃和妈妈一起包汤圆,按平均每人吃6个汤圆的量准备.妈妈先包了70个汤圆后,剩下的让二娃一个人完成,两人共用了27.5分钟.已知每分钟妈妈包汤圆的速度是二娃速度的2倍.(1)元宵节当天,二娃每分钟包多少个汤圆?(2)第二天,二娃的弟弟也参与进来一起包汤圆,弟弟每分钟包汤圆的速度是妈妈元宵节当天速度的14;妈妈和二娃决定提升包汤圆的速度,已知妈妈第二天包汤圆的速度比元宵节当天的速度提升了54a %,二娃第二天包汤圆的速度比元宵节当天的速度提升了52a %,12分钟后,母子三人包的汤圆比元宵节当天多包了(a ﹣2)个,求a 的值.5、计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭-参考答案-一、单选题1、A【解析】【分析】根据分式的基本性质可把x ,y 都扩大到原来的2倍代入原式得进行求解.【详解】解:把x ,y 都扩大到原来的2倍代入原式得,()22232233x y x y x y y y y+++==⨯⨯; 分式的值不变.故选A .【点睛】本题主要考查分式的基本性质,熟练掌握分式的基本性质,把握分子与分母的代数式的次数,分子与分母同次,不变,分子次数比分母次数高变大,分子的次数比分母点,变小是解题的关键.2、A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 14nm =91410-⨯m =81.410-⨯m故选:A【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3、A【解析】【分析】作差,通分后利用同分母分式的减法法则计算,判断即可.【详解】解:∵a 、b 、c 、d 都是正实数,a c b d<, ∴ad <bc ,即bc -ad >0,∵B -C =b a b +-d c d+ =0()()()()bc bd ad bd bc ad a b c d a b c d +---=>++++, ∴B >C ,故选A .【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.4、D【解析】【分析】根据新定义的运算法则得到()210m +=,求解m 的值,再按照新定义对2m ⊕进行运算即可.【详解】 解: 1b a b a ab ⊕=++,∴ 22210m m m ⊕=++=,210m ,解得:1,m =-()()111=2122111.222m -⊕⊕-=+⨯-+=-=-∴ 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.5、B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:0.00000022=2.2×10-7.故选:B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.6、C【解析】【分析】设小张同学的步行速度是x /分,则设小李同学的步行速度是1.2x 米/分,根据“小张比小李晚10分钟到达科技馆”列方程即可.【详解】解:设小张同学的步行速度是x/分,则设小李同学的步行速度是1.2x米/分,根据题意可列方程30002500101.2x x-=,故选:C.【点睛】本题主要考查根据实际问题列分式方程,理解题意找到题目蕴含的相等关系是解题的关键.7、D【解析】【分析】根据三边关系,即可求出a的取值范围,再求出分式方程的解,利用分式方程的解为非负数建立不等式,即可求出a的范围,注意分母不能为0.最后综合比较即可求解.【详解】解:∵一个三角形三边的长分别为6,8,a,∴8−6<a<8+6.即:2<a<14,∵34233y a ay y++=--,∴y=6−a,∵解是非负数,且y≠3,∴6−a≥0,且6−a≠3,∴a≤6且a≠3,∴2<a≤6且a≠3,∴符合条件的所有整数a为:4或5或6.∴符合条件的所有整数a 的和为:4+5+6=15.故选:D .【点睛】本题考查了三角形三边关系、求解分式方程、一元一次不等式等知识,关键在于利用分式方程的解为非负数,建立不等式,同时一定要注意分母不为0的条件.属于中考填空或者选择的常考题.8、C【解析】【分析】先解不等式组,由于无解,故可推出a 的取值范围,再解分式方程得103y a =+,由于解是整数,即可确定a 的可能值,相加即可得出答案.【详解】 322(1)2x a x x -<-⎧⎨->+⎩①②, 由①得:32x a <-,由②得:4x >,∵不等式组无解,∴324a -≤,解得:2a ≤,()25155a y y y++=---, 解得:103y a =+, ∵方程的解为正整数,∴31a +=或32a +=或35a +=或310a +=,∴2a =-或1a =-或2a =或7a =,∵2a ≤,∴2a =-或1a =-或2a =,∵5y ≠,即1a ≠-,∴2a =-或2a =,∴符合条件的所有整数a 的和为0.故选:C .【点睛】本题考查解分式方程和一元一次不等式组,掌握求解的步骤是解题的关键.9、A【解析】【分析】将x ,y 用3x ,3y 代入化简,与原式比较即可.【详解】解:将x,y 用3x ,3y 代入得233y 3233x xy x y x y ⨯⨯⨯=++, 故值扩大到3倍.故选A .【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.10、A【解析】【分析】根据分式有意义的条件:分母不为零,进行逐一判断即可.【详解】解:A 、当x =﹣1时,分母2x +1=﹣1≠0,所以分式121x +有意义;故本选项符合题意; B 、当x =﹣1时,分母x +1=0,所以分式11x +无意义;故本选项不符合题意; C 、当x =﹣1时,分母x 2﹣1=0,所以分式21x x -无意义;故本选项不符合题意; D 、当x =﹣1时,分母x 2+x =0,所以分式22x x+无意义;故本选项不符合题意; 故选A .【点睛】 本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键.二、填空题1、1【解析】【分析】根据零指数幂的定义:a 0=1(a ≠0),求解即可.【详解】解:∵x ≠4,∴x -4≠0,∴(x -4)0=1.故答案是:1.【点睛】本题考查了零指数幂,掌握运算法则是解答本题的关键.2、-1【解析】【分析】先将原式括号内通分计算,再将两因式分子、分母因式分解,约分后代入求值即可.【详解】 解:2222+2a b a b b a a b ⎛⎫+-⋅ ⎪-⎝⎭=22222+a ab b a b a a b -+⋅- =2()+()()a b a b a a b a b -⋅+- =a b a- =1ba - ∵12a b = ∴2b a = ∴原式=1-2=-1故答案为:-1.【点睛】本题主要考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.3、k ≠1【解析】【分析】先去分母,然后再根据会产生增根的条件确定x 的值,然后代入方程确定存在增根时k 的取值范围,然后作相反回答即可.【详解】 解:0224k x x x +=++ 去分母得,2k +x =2x +4,因为x =﹣2是分式方程的增根,把x =﹣2代入整理后的方程得,2k ﹣2=﹣4+4,解得k =1,所以当k =1时,方程0224k x x x +=++会产生增根, 所以当k ≠1时,方程0224k x x x +=++不会产生增根. 故答案是:k ≠1.【点睛】本题主要考查了分式方程的增根,确定有增根时的x 的值是解答本题的关键.4、2【解析】【分析】分母2x +1≠0,则当x -2=0时,分式22+1x x -的值为零,解方程即可得到x 的值. 【详解】 解:∵分式22+1x x -的值为零 ∴x -2=0,且2x +1≠0,解得,x =2.故答案为2.【点睛】本题考查了分式的值为零的条件:分式的分子为零且分母不为零时,分式的值为零.5、 0 3 1 5 x【解析】【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==,故答案为:5x.【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.6、1010122x x -= 【解析】【分析】根据等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,即可列出方程.【详解】 由题意,骑自行车的学生所用的时间为10x 小时,乘汽车的学生所用的时间为102x小时,由等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,得方程:1010122x x -= 故答案为:1010122x x -= 【点睛】 本题考查了分式方程的应用,关键是找到等量关系并根据等量关系正确地列出方程.7、()232a a b --【解析】【分析】直接利用负整数指数幂的性质化简得出答案.【详解】解:将分式()232a a b -表示成不含分母的形式:()232a a b --. 故答案为:()232a a b --.【点睛】此题主要考查了负整数指数幂的性质,正确掌握1(0,,p paa a p a -=≠均为正整数) 是解题关键. 8、41.410-⨯【解析】【详解】解:因为1纳米0.000001=毫米610-=毫米, 所以140纳米261.41010-=⨯⨯毫米41.410-=⨯毫米,故答案为:41.410-⨯.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.9、8【解析】【分析】等式两边同时乘以(a -4)(b -4),去分母整理即可求解.【详解】解:等式两边同时乘以(a -4)(b -4),得(4)2(4)(4)(4)a b a b b a -=----,即42(4416)4ab a ab a b ab b -=--+-+,即4288324ab a ab a b ab b -=--+-+,即2488432ab ab ab a a b b -+-++-=,即4432a b +=,∴8a b+=,故答案为:8.【点睛】本题考查了分式的加减运算,掌握分式的运算法则是解题的关键.10、2x≠【解析】【分析】根据分式有意义的条件解答.【详解】解:∵12x-有意义,∴20x-≠,得2x≠,故答案为:2x≠.【点睛】此题考查了分式有意义的条件,熟记解题方法并正确计算是解题的关键.三、解答题1、 (1)购买一个A型垃圾桶需要50元,购买一个B型垃圾桶需要70元(2)小区共有两种购买方案【解析】【分析】(1)设购买一个A型垃圾桶需要x元,根据“用250元购进A型垃圾桶的数量与用350元购进B型垃圾桶的数量相等” 列出方程解答即可;(2)设B 型垃圾桶购进y 个,根据题意列出不等式组解决问题.(1)解:设购买一个A 型垃圾桶需要x 元,则购买一个B 型垃圾桶需要()20x +元, 根据题意得:25035020x x =+,解得:50x =, 经检验,50x =是原方程的根,且符合题意,∴2070x +=.答:购买一个A 型垃圾桶需要50元,购买一个B 型垃圾桶需要70元;(2)解:设B 型垃圾桶购进y 个,则A 型垃圾桶()10y -个.由题意得()705010600102y y y y ⎧+-≤⎨-≤⎩,解得1053y ≤≤, ∵y 是正整数,∴y 可取4,5,即小区共有两种购买方案.【点睛】本题考查一元一次不等式组与分式方程的应用,找出题目蕴含的等量关系与不等关系是解决问题的关键.2、 (1)22m m +(2)3【解析】【分析】(1)原式通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)已知等式变形得到m 2+2m =3,代入计算即可求出T 的值.【小题1】解:T =2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭ =22442m m m m m m ⎛⎫++⋅ ⎪+⎝⎭ =22442m m m m m ++⋅+ =()2222m m m m +⋅+ =22m m +;【小题2】∵m 2+2m ﹣3=0,∴m 2+2m =3,∴T =m 2+2m =3.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.3、(1)1x (2)无解 【解析】【分析】(1)根据分式的各运算法则进行化简,再代入计算即可;(2)根据分式方程的解法进行求解即可.【详解】解:(1)21()(1)1x x x x x -÷+--()()211111x x x x x x ⎡⎤=-⎢⎥--+⎣⎦()21111x x x x -=-+ ()()()11111x x x x x +-=-+ 1x =,当x =2== (2)2216124x x x --=+-, 方程两边都乘(2)(2)x x +-,得2(2)(2)(2)16x x x --+-=,解得:2x =-,检验:当2x =-时,(2)(2)0x x +-=,所以2x =-是原方程的增根,即原方程无解.【点睛】本题考查了分式的化简求值,解分式方程,熟练掌握各运算法则是解题的关键.4、 (1)二娃每分钟包2个汤圆(2)20【解析】【分析】(1)设二娃每分钟包x 个汤圆,则妈妈包汤圆的速度是2x 个汤圆每分钟,根据题意列分式方程,解方程即可解决问题;(2)由(1)可知妈妈的速度为每分钟4个汤圆,二娃的弟弟每分钟1个汤圆,进而根据题意列一元一次方程解方程求解即可.(1)(1)设二娃每分钟包x 个汤圆,则妈妈包汤圆的速度是2x 个汤圆每分钟,根据题意,701567027.52x x⨯-+= 解得2x =经检验2x =是方程的解答:二娃每分钟包2个汤圆.(2)由(1)可知妈妈的速度为每分钟4个汤圆,二娃的弟弟每分钟1个汤圆,根据题意得,()5512141%21%156242a a a ⎡⎤⎛⎫⎛⎫⨯+⨯++⨯+=⨯+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 解得20a =【点睛】本题考查了分式方程的应用,一元一次方程的应用,根据题意列出方程是解题的关键.5、 (1)243b ab -- (2)21x x -- 【解析】【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.。
第16章分式单元复习训练卷2021-2022学年华东师大版八年级数学下册(word版含答案)

华东师大版八年级数学下册第16章 分式单元复习训练卷一、选择题(共10小题,每小题4分,共40分)1. 若分式|x|-1x -1的值等于0,则x 的值为( ) A .-1 B .0 C .1 D .±12. 某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ) A .8-a b 分钟 B .8a +b分钟 C .(8-a b +1)分钟 D .8-a -b b分钟 3. 若x ,y 的值均扩大为原来的5倍,则下列分式的值保持不变的是( ) A.2+x 2+y B.x 2y 3 C.x +y x 2-y 2 D.x 3(x +y)34. 下列说法:①解分式方程一定会产生增根;②方程x -2x2-4x +4=0的根为x =2;③方程12x =12x -4的最简公分母为2x(2x -4);④x +1x -1=1+1x +1是分式方程. 其中正确的个数有( )A .1个B .2个C .3个D .4个5. 已知两个分式:A =-4x 2-4,B =1x +2+12-x,其中x≠±2,则A 与B 的关系是( ) A .相等 B .互为倒数C .互为相反数D .A 大于B6. 化简⎝⎛⎭⎫1-2x -1x 2÷⎝⎛⎭⎫1-1x 2的结果为( ) A.x -1x +1 B.x +1x -1 C.x +1x D.x -1x 7. 如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等,则x 的值为( )A .2.2B .2C .4D .38. 已知13m -12n =1,则4n +3mn -6m 9m +6mn -6n的值是( ) A .-53 B .-54 C.58 D.539.由(1+c 2+c -12 )值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( ) A .当c =-2时,A =12 B .当c =0时,A≠12C .当c <-2时,A >12D .当c <0时,A <1210. 小明用18元买售价相同的一次性医用口罩,小美用290元买售价相同的N95口罩(两人的钱恰好用完),已知每个N95口罩比一次性医用口罩贵27.2元.且小明和小美买到数量相同的口罩.设一次性医用口罩每个x 元,根据题意可列方程为( )A.18x =290x +27.2B.18x =290x -27.2C.18x +27.2=290xD.18x -27.2=290x二.填空题(共6小题,每小题4分,共24分)11. 计算:3y 10x ÷3y 25x 2 =________. 12.计算:2x x -1 -x x -1=__________. 13.若分式x 2-2x x的值为0,则x 的值是____. 14.化简:(1x -4 -8x 2-16)·(x +4)=______. 15. 中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是__ __.16.观察下列一组数:32,1,710,917,1126,…,它们是按一定规律排列的,那么这组数的第n 个数是__________.(n 为正整数)三.解答题(共6小题, 56分)17.(6分) 化简:⎝⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b.18.(8分) 先化简:⎝ ⎛⎭⎪⎫x -4-x x -1÷x 2-4x +4x -1,并将x 从0,1,2中选一个合理的数代入求值.19.(8分) 已知x 2+y 2+8x +6y +25=0,求x 2-4y 2x 2+4xy +4y 2-x x +2y的值.20.(10分) 解下列分式方程:(1)1-x x -2+2=12-x;(2)3x 2-9+x x -3=1.21.(12分) 某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人按原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排多少工人.22.(12分) 阅读下面的材料,解答后面的问题.解方程:x -1x -4x x -1=0. 解:设y =x -1x ,则原方程可化为y -4y=0,方程两边同时乘以y ,得y 2-4=0,解得y 1=2,y 2=-2.经检验,y 1=2,y 2=-2都是方程y -4y=0的解. 当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1或x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13. 上述这种解分式方程的方法称为换元法.问题:(1)若在方程x -14x -x x -1=0中,设y =x -1x ,则原方程可化为______________; (2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_____________; (3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.参考答案1-5ACDAA 6-10AABCA11.x 2y12. x x -113.214.115.3600x -24000.8x=4 16.2n +1n 2+117.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2a a +b. 18.解:原式=x 2-x -4+x x -1·x -1x 2-4x +4=(x +2)(x -2)x -1·x -1(x -2)2=x +2x -2.因为x -1≠0,x -2≠0,所以x≠1,x≠2.所以0,1,2中只能选0.当x =0时,原式=-1.19.解:因为x 2+y 2+8x +6y +25=0,所以(x +4)2+(y +3)2=0.所以x =-4,y =-3. x 2-4y 2x 2+4xy +4y 2-x x +2y =(x +2y )(x -2y )(x +2y )2-x x +2y =x -2y x +2y -x x +2y =-2y x +2y.当x =-4,y =-3时,原式=-35. 20.(1)解:原方程无解.(2)解:x =-4.21.解:(1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的解,且符合题意,所以规定的天数为24 000÷2 400=10(天).答:原计划每天生产的零件个数是2 400个,规定的天数是10天.(2)设原计划安排y 个工人.由题意得[5×20×(1+20%)×2 400y+2 400]×(10-2)=24 000,解得y =480.经检验,y =480是原方程的解,且符合题意.答:原计划安排480个工人.22.解:(1)y 4-1y=0 (2)y -4y=0 (3)原方程可化为x -1x +2-x +2x -1=0,①,设y =x -1x +2,则方程①可化为y -1y =0.方程两边同时乘以y ,得y 2-1=0,解得y 1=1,y 2=-1.经检验,y 1=1,y 2=-1都是方程y -1y=0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12,经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b a a
--x
x k
x x x x +=+-+2
112分式练习题
姓名:_____________
1、在
x 1、21、212
+x 、πxy 3、y x +3、m
a 1
+中分式的个数有( )
A 、2个
B 、3个
C 、4个
D 、5个 2、要使分式
1
(1)(2)
x x x ++-有意义,则x 应满足 ( )
A .x ≠-1
B .x ≠2
C .x ≠±1
D .x ≠-1且x ≠2 3、下列约分正确的是( )
A 、3
26x x x =; B 、
0=++y x y x ; C 、x xy x y x 12=++; D 、2
14222=y x xy 4、如果把分式
y
x xy
+中的x 和y 都扩大2倍,则分式的值( ) A 、扩大4倍; B 、扩大2倍; C 、不变; D 缩小2倍
5、化简2
293m
m
m --的结果是( ) A 、
3+m m B 、3+-m m C 、3-m m D 、m
m
-3 6、下列分式中,最简分式是 ( )
A.a b b a
-- B.22x y x y ++
C.242x x --
D.4
422+++a a a
7、根据分式的基本性质,分式可变形为( )
(A )b a a -- (B )b a a + (C )
b a a --
(D )b a a
+-
8、对分式
2y
x ,23x y
,14xy 通分时, 最简公分母是( )
A .24x 2y 2
B .12x2y2 C.24xy2 D.12xy2 9、下列式子(1)
y x y x y x -=--122;(2)c
a b a a c a b --=
--; (3)
1-=--b
a a
b ;(4)
y
x y
x y x y x +-=--+-中正确个数有 ( )
A 、1个
B 、2 个
C 、 3 个
D 、 4 个
10、x-y (x ≠y )的倒数的相反数 ( ) A .-
1x y + B .y x --1 C .y x -1 D .y
x --1 二、填空题(每题3分,共30分) 11、当x 时,分式
5
1
-x 有意义. 12、当x 时,分式1
1
x 2+-x 的值为零。
13、1x-y
当x=,y=1时,分式
的值为2xy-1
_________________ 14、计算:
y x y x y x ⎛⎫
÷⋅- ⎪⎝⎭
= 15、用科学计数法表示:—0.000302 =
果,那么=
+b a a
____ 。
16、如17、若
541
45=----x
x x 有增根,则增根为___________。
18、20080-22+1
13-⎛⎫
⎪⎝⎭
=
19、方程
x
x 5
27=-的解是 。
20、某工厂库存原材料x 吨,原计划每天用a 吨,若现
在每天少用b 吨,则可以多用_____ 天。
三、解答题 21、计算题
(1)112
---a a a (2) x
x x x x x +-÷-+-22
21112
22、先化简,再求值:1
1112
-÷⎪⎭⎫ ⎝⎛
-+
x x
x ,其中:x=-2
23、解方程及解答
()b a x b b x a a ≠+=+11 5221
332-=-x x x
若2
222,2b a b ab a b a ++-=则= 已知:311=-b a ,求分式b
ab a b ab a ---+232的值:
32
=b a
k 取何值时,方程会产生增根?
24、中学162班和163班的学生去河边抬砂到校园内铺路,经统计发现:162班比163班每小时多抬30kg ,162班抬900kg 所用的时间和163班抬600kg 所用的时间相等,两个班长每小时分别抬多少砂?
25、已知y=
1
23x x
--,x 取哪些值时: (1)y 的值是零; (2)分式无意义; (3)y 的值是正数; (4)y 的值是负数.
26、已知a+2b 5 =3b-c 3 =2c-a 7 ,求 c-2b
3a+2b
的值.
B 卷
1 若分式方程x
a x
a x +-=
+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 2 2.若方程
56
x x a
x x -=
--有增根,则a 的值可能是 3、若关于x 的分式方程3
232
-=--x m x x 无解,则m 的值为__________。
4.如果解分式方程14
1
32=+--+x x x 出现了增根,那么增根可能是
( )
A 、-2
B 、3
C 、3或-4
D 、-4 5. 若方程3/(x-2) = 2/x + 4/x(x-2)有增根,则增根为( )
A.0
B.2
C.0或2
D.1 6、 若分式方程
4
24-+=-x a
x x 有增根,则a 的值为( ) (A )4 (B )2 (C )1 (D )0 7若
5
32z
y x ==,且3 x+2y -z=14,求x, y , z 。
8若2X/3 = Y/2 = Z/5,且4X-5Y+3Z=22, 求X, Y, Z 的值。
9若,求(1) (2)
10、若=++=+1
,312
4
2
x x x x x 则__________。
11 若
3,111--+=-b
a a
b b a b a 则的值是( ) A -2 B 2 C 3 D -3
12解方程:
11115867
x x x x +=+++++
13、化简:
14、已知
20)1()1(2
2
-++---+x x x x 有意义,则x 的取值范围是_________________。
15、
2
31
341651222+-+
+--+-x x x x x x
16、若方程
12
2-=-+x a
x 的解是正数,求a 的取值范围。
第16章 分式参考答案 (第一次统测试卷)
一、选择题(每题3分,共30分.将答案填在表格内) 题号 1 2 3 4 5 6 7 8 9 10 答案
B
D
C
B
B
B
C
D
B
D
二、填空题 11. x ≠5 12. x=1
13. 1
14.
3
3 y x -
15. -3.02⨯4
10-
16. 2 5
17. x=4
18. 0 19. x=-5
20.
x a b -
三、解答题。