常用研究细菌的实验技术
微生物培养方法

微生物培养方法微生物培养是一种用于研究微生物生理生化特性、生长繁殖规律及其与环境条件的关系等的重要技术手段。
以下是一些常见的微生物培养方法:1、固体培养基培养法固体培养基是在培养液中加入凝固剂,使培养基成为凝固状态的培养基。
这种培养基具有良好的稳定性,可以防止培养液中的微生物在培养过程中流失,同时也可以使微生物在固体表面生长繁殖,方便观察和检测。
固体培养基一般用于细菌、放线菌、酵母菌等微生物的培养。
2、液体培养基培养法液体培养基是一种不添加凝固剂的培养基,使培养基呈液体状态。
液体培养基中,微生物在培养液中自由悬浮生长繁殖,可以充分接触培养液中的营养物质,有利于微生物的生长繁殖。
液体培养基一般用于工业生产中的微生物培养,如发酵工业中制备各种发酵产品。
3、半固体培养基培养法半固体培养基是在液体培养基中加入少量凝固剂,使培养基成为半凝固状态的培养基。
这种培养基可以固定培养液中的微生物,同时也可以使微生物在半固体表面生长繁殖。
半固体培养基一般用于观察微生物的运动和生长情况。
4、厌氧培养法有些微生物需要在无氧或低氧分压条件下生长繁殖,因此需要采用厌氧培养法。
厌氧培养法一般采用密闭容器或厌氧手套箱中进行,可以提供无氧或低氧环境。
在厌氧培养法中,需要使用专门的厌氧培养基和厌氧菌株,以保证微生物的生长繁殖。
5、富集培养法富集培养法是一种常用的分离高浓度微生物的方法。
该方法是通过在培养基中添加一些特殊成分,如高浓度营养物质、抑制剂等,以抑制其他微生物的生长繁殖,从而增加目标微生物的数量和浓度。
富集培养法一般用于从自然界或工业生产中分离特定种类的微生物。
微生物培养方法有很多种,每种方法都有其特定的适用范围和特点。
在实际操作中,需要根据具体情况选择合适的培养方法,以达到最佳的培养效果。
还需要注意无菌操作、环境控制等方面的技术细节,以保证微生物生长繁殖的良好环境和条件。
微生物的分离培养方法微生物的分离培养是微生物研究中常用的技术之一,它能够将目标微生物从复杂的微生物群体中分离出来,并进行纯培养。
培养细菌真菌的方法

培养细菌真菌的方法培养细菌和真菌是微生物学中非常重要的实验技术,它们可以用于各种生物学实验、药物研发和生物工程等研究领域。
针对这个问题,我将详细介绍培养细菌和真菌的方法,并提供一些实验室技巧和注意事项。
一、培养细菌的方法:1.选择培养基:常用的细菌培养基有富尔顿培养基、LB培养基和三碱培养基等。
选择适合所研究的菌种的培养基是非常重要的,可以促进菌种的生长和繁殖。
2.准备培养基:根据选定的培养基配方,准备好所需的培养基。
通常需要加热至沸腾以溶解培养基,并在冷却后加入适当的抗生素以防止其他细菌的污染。
3.菌液接种:将所选的细菌菌株从培养基中接种到含有相应培养基的培养皿中。
可以用铅笔或石墨棒在培养皿底部作标记。
4.培养温度:不同细菌对培养所需的温度有不同要求。
常见的细菌一般在25-37摄氏度下培养,但有些特殊菌株可能需要较低的温度或特殊培养条件。
5.培养时间:培养时间因菌种而异。
能够使细菌菌落生长至可见的大小可能需要24小时以上。
6.培养皿的选择和处理:常用的培养皿有琼脂糖平板、琼脂糖管和琼脂糖深培养皿等。
在使用培养皿前,务必高温高压灭菌杀菌以避免外源菌株的污染。
7.无菌操作:培养细菌时,需要进行无菌操作,以避免其他微生物的污染。
这包括使用无菌器材、消毒培养环境和正确处理实验物品等。
8.菌落计数和分离:在进行某些实验时,需要对细菌菌落进行计数。
为此,可以使用显微镜和细菌计数室等设备。
如果需要分离不同的细菌菌株,可以使用传代分离法或斑点分离法等。
二、培养真菌的方法:1.选择培养基:真菌培养基的选择与细菌培养基类似,常用的有马铃薯葡萄糖琼脂(PDA)培养基、玛丽培养基和云芝培养基等。
根据不同的真菌选择合适的培养基是非常重要的。
2.准备培养基:根据培养基配方准备所需的培养基。
常见的方法是将配方中的成分溶解在适当的溶剂中,并在经过滤消毒后冷却。
3.真菌接种:可以将真菌菌丝块切割成小碎块,接种到含有培养基的琼脂糖培养皿中。
细菌玻片的凝集实验报告

细菌玻片的凝集实验报告细菌玻片的凝集实验报告细菌玻片的凝集实验是一种常见的实验方法,用于研究细菌之间的相互作用和免疫反应。
本次实验旨在观察不同细菌菌株与抗血清的凝集反应,以评估它们之间的免疫关系。
以下是实验的具体步骤和结果分析。
实验步骤:1. 准备实验材料:细菌菌株、抗血清、玻片、显微镜等。
2. 在玻片上滴加一滴细菌悬液。
3. 在相邻位置滴加一滴抗血清。
4. 用显微镜观察玻片上的细菌和抗血清的凝集反应。
实验结果分析:通过观察实验结果,我们可以得出以下结论:1. 凝集反应的程度:不同细菌菌株与抗血清之间的凝集反应程度各不相同。
有些菌株与抗血清之间几乎没有凝集反应,表明它们之间的免疫关系较弱。
而有些菌株与抗血清之间的凝集反应非常明显,说明它们之间存在较强的免疫关系。
2. 免疫反应的特异性:实验结果还显示,凝集反应的特异性较高。
即使是与相似菌株的抗血清接触,也不会出现明显的凝集反应。
这表明细菌与抗血清之间的免疫反应是高度特异的,对于不同的细菌菌株具有一定的选择性。
3. 凝集反应的影响因素:凝集反应的强弱受到多种因素的影响。
其中包括细菌菌株的特性、抗血清的浓度、温度等。
在实验中,我们可以通过调整这些因素来观察凝集反应的变化,以进一步了解免疫反应的机制。
4. 细菌与抗血清的相互作用:凝集实验的结果反映了细菌与抗血清之间的相互作用。
细菌表面的抗原与抗血清中的抗体结合,导致凝集反应的发生。
这种相互作用是免疫系统对抗细菌感染的重要防御机制,通过凝集细菌,使其更容易被免疫系统清除。
细菌玻片的凝集实验是一种简单而有效的研究细菌免疫关系的方法。
通过观察凝集反应的程度和特异性,我们可以评估不同细菌菌株之间的免疫关系,并进一步了解免疫系统的工作原理。
这对于研究疾病的免疫机制以及开发新的免疫治疗方法具有重要意义。
需要注意的是,凝集实验只是研究细菌免疫关系的一种方法,还需要结合其他实验和技术来全面了解细菌的免疫特性。
此外,实验中的细菌菌株和抗血清的选择也需要根据具体研究的目的和问题进行合理的设计。
微生物化验方法

微生物化验方法
微生物化验的方法有很多,以下为您推荐:
1.琼脂平板培养法:因培养基不同,琼脂平板法分为选择性培养基检测法和显色培养基检测法。
选择性培养基是在培养基中加入选择性抑制剂来抑制非目标微生物生长;显色培养基是在培养基中加入细菌特异性酶的显色底物,以菌落颜色区分目的菌落与非目的菌落。
2.显微镜镜检法:将待测样品中的微生物富集后,于油镜下直接计数。
显微镜镜检法通常与琼脂平板培养法结合使用,通过琼脂平板培养法对菌落进行定性分析,再用显微镜进行定量计数。
3.微生物测试片检测技术:一般情况下,微生物测试片由印有网格的聚丙烯薄膜和覆盖有培养基和显色物质的聚乙烯薄膜组成。
待测样品经过处理后可直接接种在微生物测试片上,然后放置在适宜的温度下培养——使固定在测试片上的显色物质与待检微生物生长产生的特异性酶发生显色反应,形成有颜色的菌落,通过对这些菌落进行计数便可实现检测。
微生物常用实验3篇

微生物常用实验第一篇:细菌涂片染色实验细菌涂片染色实验是微生物学中最基本的实验之一。
通过染色方法,使细菌变得可见,便于观察形态、结构、数量等特征,有利于研究其生长、代谢、致病性等方面。
下面,我们来介绍细菌涂片染色实验的具体步骤:一、制备细菌涂片1.取出培养基上生长良好的细菌菌落,用不锈钢嵌片环沿中心点轻压一下。
2.将嵌片环中的菌落涂匀于无菌载玻片上,制备成直径约1厘米的薄片。
3.待载玻片上的细菌涂片晾干,并用火焰消毒。
二、涂片染色1.用火焰将铺有细菌涂片的玻片烤干。
2.将烤干的玻片浸入甲醇中,固定一分钟,再用水漱洗。
3.将玻片浸入碘酒中,固定一分钟,再用水漱洗。
4.将玻片浸入乙醇中,使背景颜色褪去,再用水漱洗。
5.将玻片浸入洋红染色液中,染色时间不超过1分钟。
6.用水冲洗干净,晾干后可以在显微镜下观察。
通过细菌涂片染色实验,我们可以直观地观察到细菌的形态、大小、聚集情况、颜色等,有助于鉴定细菌种类,并进一步深入研究其生物学特性。
第二篇:厌氧培养实验厌氧菌是一类生长需要在完全无氧条件下进行的微生物。
在许多疾病的发病机制中,厌氧菌都发挥着重要作用,因此,研究厌氧菌对于认识疾病的发病机制具有极其重要的意义。
下面,我们来介绍厌氧培养实验的具体步骤:一、制备厌氧培养基制备厌氧培养基是进行厌氧菌培养的关键。
具体操作步骤如下:1.准备培养基,并在其中加入培养菌株所需的配方和其他适宜的添加剂。
2.将培养基分装到无菌针筒或暗口瓶中。
3.在体积的一半至三分之二处加入去氧剂(一般为Thioglycolate或Dithiothreitol)。
二、厌氧细菌接种与培养1.准备厌氧细菌培养物的接种种子。
一般情况下,把生长适应在厌氧条件下的细菌进行分生处理来获得设计数量的细胞,并将其重新悬浮在与培养基相同的缓冲液中。
2.在无氧条件下接种厌氧菌,避免暴露于空气中。
可以通过使用瓶盖和橡胶塞的局部替代或全封闭气密容器的方法来实现无氧条件。
临床细菌常规检验方法

临床细菌常规检验方法1.样本收集:通常采用微生物标本采集套装,如采血培养瓶、骨髓培养瓶、尿培养瓶、分泌物培养瓶等。
不同类型的标本要按照不同的采集方法进行采集,以确保样本的纯度和无污染。
2.样本处理:在获得样本后,要进行适当的处理,如血液样本要进行离心分离,分离出红细胞和血浆/血清。
尿液样本要进行离心去除悬浊物等。
3.细菌培养:将已处理的样本分别接种到含有适当培养基的培养皿中,并在适当温度和湿度下培养一段时间。
通常常规培养采用的培养基包括血浆琼脂、麦康凯琼脂等。
培养时间通常为24-48小时,特殊细菌可能需要更长的培养时间。
4.细菌鉴定:对培养出的菌落进行初步的形态学鉴定,如观察菌落形状、大小、颜色等。
然后进行革兰染色,观察细菌的形态特征,如是否革兰阳性或革兰阴性。
根据初步鉴定的结果,可以选择进一步的生化试验或分子生物学检测,如氧化/发酵试验、羟基酸钠试验、目标序列扩增等。
最终确定细菌的种类和特征。
5.药敏试验:对已鉴定出的细菌进行药敏试验,以确定细菌对各类抗生素的敏感性。
药敏试验通常采用纸片扩散法或肉汤稀释法,通过观察菌落的生长抑制区域大小来判断细菌对抗生素的敏感程度。
6.结果分析和报告:根据细菌培养和鉴定的结果以及药敏试验的结果,进行结果分析和判断。
最后将结果整理成报告,提供给临床医生参考,帮助临床医生做出正确的诊断和治疗决策。
总的来说,临床细菌常规检验方法包括了样本收集、样本处理、细菌培养、细菌鉴定、药敏试验等步骤。
这些步骤的顺序和方法都有一定的规范和标准,以确保检验结果的准确性和可靠性。
临床细菌常规检验在临床诊断和治疗中起着重要的作用,可以帮助医生选择合适的抗生素治疗方案,提高治疗效果。
测定细菌数量的方法

测定细菌数量的方法细菌是一种微生物,它们广泛存在于自然界中的各种环境中,包括土壤、水体、空气以及人和动物的体内。
测定细菌数量在许多领域中都具有重要的应用,例如医学诊断、食品安全、环境监测等。
本文将介绍几种常见的测定细菌数量的方法。
1.直接计数法直接计数法是最基本的测定细菌数量的方法之一、该方法利用显微镜观察细菌悬液中的细菌数量,并通过数学方法计算出相应的浓度。
直接计数法需要专业的显微镜和显微镜计数室,比较繁琐且耗时,但是结果较为准确。
2.厌氧培养法厌氧条件下的细菌繁殖速度较慢,通常需要较长时间才能形成可见的菌落。
利用厌氧培养法可以通过观察培养基上细菌形成的菌落数量来测定细菌数量。
该方法适用于对厌氧条件下的细菌进行测定。
3.过滤法过滤法是利用特定的滤膜或滤片来筛选细菌,并将细菌附着在滤膜上。
通过将滤膜放置在含有营养成分的培养基上,细菌可以在培养基上生长。
最后,可以通过观察滤膜上的菌落数量来测定细菌数量。
过滤法适用于水样、空气样以及其他液体样品。
4.光密度法光密度法是利用细菌悬液的浑浊程度来测定细菌数量的一种方法。
当细菌繁殖增多时,细菌悬液的浑浊度也会增加。
可以使用光密度计来测量细菌悬液的浑浊度,然后通过校正曲线来计算细菌数量。
5.蛋白质测定法细菌在生长过程中会合成蛋白质。
通过检测培养液中的蛋白质含量,可以间接测定细菌数量。
该方法适用于较大规模的细菌培养,可以通过常规的蛋白质测定方法来进行测定。
6.PCR方法PCR(聚合酶链反应)是一种利用DNA复制技术来测定细菌数量的方法。
通过选择特异性的引物和荧光探针,可以选择性扩增目标细菌的DNA 并进行测定。
PCR方法具有高度的灵敏性和特异性,适用于检测特定种类的细菌。
综上所述,测定细菌数量的方法有很多种,选择合适的方法取决于实际应用的要求、样品特性以及实验条件等因素。
不同的方法各有优缺点,研究人员需要根据具体情况选择适当的方法来进行细菌数量的测定。
病原微生物中细菌常见检测方法有哪些

病原微生物中细菌常见检测方法有哪些病原微生物种类繁多,变异迅速,快速鉴定病原微生物的检验技术也在不断发展前进着。
目前,应用比较广泛的病原微生物检测方法主要有直接涂片镜检、分离培养、生化反应、血清学反应、核酸分子杂交、基因芯片、多聚酶链反应等,该文对这些检测技术进展做一综述。
对人和动物具有致病性的微生物称为病原微生物,又称病原体,有病毒、细菌、立克次体、支原体、衣原体、螺旋体、真菌、放线菌、朊粒等。
这些病原微生物可引起感染、过敏、肿瘤、痴呆等疾病,也是危害食品安全的主要因素之一。
近年来出现的SARS、高致病性禽流感、西尼罗病毒感染等疾病的传染性极强,往往造成世界性大流行,因此对病原体的检测必须做到快速、准确。
常规病原学检测方法操作繁琐,检测周期长,而且对操作人员技术水平要求比较高。
随着医学微生物学研究技术的不断发展,病原学诊断已不再局限于病原体水平,深入到分子水平、基因水平的检测手段不断出现并被应用于临床和实验室J。
核酸分子杂交技术、PCR技术、基因芯片技术等检测方法,自动化程度高,快速省时、无污染、结果精确,可以准确灵敏地鉴定病原微生物。
1传统的病原微生物的检测方法传统的病原微生物学实验室检查以染色、培养、生化鉴定等为主,将标本直接涂片染色镜检和接种在培养基上进行分离培养是对细菌或真菌感染性疾病进行病原学诊断的常用方法。
1.1直接涂片镜检病原微生物体形体积微小,大多无色半透明状,将其染色后可借助显微镜观察其大小、形态、排列等。
直接涂片染色镜检简便快速,对那些具有特殊形态的病原微生物感染仍然适用,例如淋球菌感染、结核分枝杆菌、螺旋体感染等的早期初步诊断。
直接涂片镜检不需要特殊的仪器和设备,在基层实验室里仍然是十分重要的病原微生物检测手段。
1.2分离培养与生化反应分离培养主要用于临床标本(如血液、痰、粪便等)或培养物中有多种细菌时对某一种细菌的分离。
细菌的生长繁殖需要一定时间,检测周期较长,不能同时处理批量样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大多数动物植物的研究、利用都能以个体为单位进行,而微生物由于个体微小,在绝大多数情况下都是利用群体来研究其属性,微生物的物种(菌株)一般也是以群体的形式进行繁衍、保存。
在微生物学中,在人为规定的条件下培养、繁殖得到的微生物群体称为培养物(culture),而只有一种微生物的培养物称为纯培养物(pure culture)。
由于在通常情况下纯培养物能较好地被研究、利用和重复结果,因此把特定的微生物从自然界混杂存在的状态中分离、纯化出来的纯培养技术是进行微生物学研究的基础。
相应的,微生物个体微小的特点也决定了显微技术是进行微生物研究的另一项重要技术,因为绝大多数微生物的个体形态及其内部结构只能通过显微镜才能进行观察和研究。
显微技术包括显微标本的制作、观察、测定、分析及记录等方面的内容。
实际上,正是由于显微技术及微生物纯培养技术的建立才使我们得以认识丰富多彩的微生物世界,并真正使对微生物的研究发展成为一门科学。
1 微生物的分离和纯培养1.1 无菌技术微生物通常是肉眼看不到的微小生物,而且无处不在。
因此,在微生物的研究及应用中,不仅需要通过分离纯化技术从混杂的天然微生物群中分离出特定的微生物,而且还必须随时注意保持微生物纯培养物的“纯洁”,防止其他微生物的混入。
在分离、转接及培养纯培养物时防止其被其他微生物污染的技术被称为无菌技术(aseptic technique),它是保证微生物学研究正常进行的关键。
(1) 微生物培养的常用器具及其灭菌试管、玻璃烧瓶、平皿(culture dish,Petri dish)等是最为常用的培养微生物的器具,在使用前必须先行灭菌,使容器中不含任何生物。
培养微生物的营养物质[称为培养基(culture medium)]可以加到器皿中后一起灭菌,也可在单独灭菌后加到无菌的器具中。
最常用的灭菌方法是高压蒸汽灭菌,它可以杀灭所有的生物,包括最耐热的某些微生物的休眠体,同时可以基本保持培养基的营养成分不被破坏。
有些玻璃器皿也可采用高温干热灭菌。
为了防止杂菌,特别是空气中的杂菌污染,试管及玻璃烧瓶都需采用适宜的塞子塞口,通常采用棉花塞,也可采用各种金属、塑料及硅胶帽,它们只可让空气通过,而空气中的其他微生物不能通过。
而平皿是由正反两平面板互扣而成,这种器具是专为防止空气中微生物的污染而设计的。
(2) 接种操作用接种环或接种针分离微生物,或在无菌条件下把微生物由一个培养器皿转接到另一个培养容器进行培养,是微生物学研究中最常用的基本操作。
由于打开器皿就可能引起器皿内部被环境中的其他微生物污染,因此微生物实验的所有操作均应在无菌条件下进行,其要点是在火焰附近进行熟练的无菌操作(图2—1),或在无菌箱或操作室内无菌的环境下进行操作(图2—2)。
操作箱或操作室内的空气可在使用前一段时间内用紫外灯或化学药剂灭菌。
有的无菌室通无菌空气维持无菌状态。
用以挑取和转接微生物材料的接种环及接种针,一般采用易于迅速加热和冷却的镍铬合金等金属制备,使用时用火焰灼烧灭菌。
而转移液体培养物可采用无菌吸管或移液枪。
1.2 用固体培养基分离纯培养单个微生物在适宜的固体培养基表面或内部生长、繁殖到一定程度可以形成肉眼可见的、有一定形态结构的子细胞生长群体,称为菌落(colony)。
当固体培养基表面众多菌落连成一片时,便成为菌苔(1awn)。
不同微生物在特定培养基上生长形成的菌落或菌苔一般都具有稳定的特征,可以成为对该微生物进行分类、鉴定的重要依据(图2-3)。
大多数细菌、酵母菌,以及许多真菌和单细胞藻类能在固体培养基上形成孤立的菌落,采用适宜的干板分离法很容易得到纯培养。
所谓严板,即培养干板(culture plate)的简称,它是指熔化的固体培养基倒人无菌平皿,冷却凝固后,盛有固体培养基的平皿。
这方法包括将单个微生物分离和固定在固体培养基表面或里面。
固体培养基是用琼脂或其他凝胶物质固化的培养基,每个孤立的活微生物体生长、繁殖形成茵落,形成的菌落便于移植。
最常用的分离、培养微生物的固体培养基是琼脂固体培养基平板。
这种由Koch建立的采用于板分离微生物纯培养的技术简便易行,100多年来一直是各种菌种分离的最常用手段。
(1) 稀释倒平板法(pour plate method)先将待分离的材料用无菌水作一系列的稀释(如1:10、1:100、1:1 000、1:10 000…),然后分别取不同稀释液少许,与已熔化并冷却至50℃左右的琼脂培养基混合,摇匀后,倾入灭过菌的培养皿中,待琼脂凝固后,制成可能含菌的琼脂平板,保温培养一定时间即可出现菌落。
如果稀释得当,在平板表面或琼脂培养基中就可出现分散的单个菌落,这个菌落可能就是由一个细菌细胞繁殖形成的。
随后挑取该单个菌落,或重复以上操作数次,便可得到纯培养。
(2) 涂布平板法(spread plate method)由于将含菌材料先加到还较烫的培养基中再倒平板易造成某些热敏感菌的死亡,而且采用稀释倒平板法也会使一些严格好氧菌因被固定在琼脂中间缺乏氧气而影响其生长,因此在微生物学研究中更常用的纯种分离方法是涂布平板法。
其做法是先将已熔化的培养基倒人无菌平皿,制成无菌平板,冷却凝固后,将一定量的某一稀释度的样品悬液滴加在平板表面,再用无菌玻璃涂棒将菌液均匀分散至整个平板表面,经培养后挑取单个菌落(图2—4)。
(3) 平板划线分离法(streak plate method)用接种环以无菌操作沾取少许待分离的材料,在无菌平板表面进行平行划线、扇形划线或其他形式的连续划线(图2-5),微生物细胞数量将随着划线次数的增加而减少,并逐步分散开来,如果划线适宜的话,微生物能一一分散,经培养后,可在平板表面得到单菌落。
(4) 稀释摇管法(dilution shake culture method)用固体培养基分离严格厌氧菌有它特殊的地方。
如果该微生物暴露于空气中不立即死亡,可以采用通常的方法制备平板,然后置放在封闭的容器中培养,容器中的氧气可采用化学、物理或生物的方法清除。
对于那些对氧气更为敏感的厌氧性微生物,纯培养的分离则可采用稀释摇管培养法进行,它是稀释倒平板法的一种变通形式*。
先将一系列盛无菌琼脂培养基的试管加热使琼脂熔化后冷却并保持在50℃左右,将待分离的材料用这些试管进行梯度稀释,试管迅速摇动均匀,冷凝后,在琼脂柱表面倾倒一层灭菌液体石蜡和固体石蜡的混合物,将培养基和空气隔开。
培养后,菌落形成在琼脂柱的中间(图2—6)。
进行单菌落的挑取和移植,需先用一只灭菌针将液体石蜡—石蜡盖取出,再用一只毛细管插人琼脂和管壁之间,吹入无菌无氧气体,将琼脂柱吸出,置放在培养皿中,用无菌刀将琼脂柱切成薄片进行观察和菌落的移植。
1.3 用液体培养基分离纯培养对于大多数细菌和真菌,用平板法分离通常是满意的,因为它们的大多数种类在固体培养基上长得很好。
然而迄今为止并不是所有的微生物都能在固体培养基上生长,例如一些细胞大的细菌、许多原生动物和藻类等,这些微生物仍需要用液体培养基分离来获得纯培养。
通常采用的液体培养基分离纯化法是稀释法。
接种物在液体培养基中进行顺序稀释,以得到高度稀释的效果,使一支试管中分配不到一个微生物。
如果经稀释后的大多数试管中没有微生物生长,那么有微生物生长的试管得到的培养物可能就是纯培养物。
如果经稀释后的试管中有微生物生长的比例提高了,得到纯培养物的概率就会急剧下降。
因此,采用稀释法*也可采用其他方法来进行严格厌氧菌的分离、纯化,如Hungate技术和套氧手套箱技术,但对操作技术和实验设备都有较高的要求。
进行液体分离,必须在同一个稀释度的许多平行试管中,大多数(一般应超过95%)表现为不生长。
1.4 单细胞(单孢子)分离稀释法有一个重要缺点,它只能分离出混杂微生物群体中占数量优势的种类,而在自然界,很多微生物在混杂群体中都是少数。
这时,可以采取显微分离法从混杂群体中直接分离单个细胞或单个个体进行培养以获得纯培养,称为单细胞(单孢子)分离法。
单细胞分离法的难度与细胞或个体的大小成反比,较大的微生物如藻类、原生动物较容易,个体很小的细菌则较难。
对于较大的微生物,可采用毛细管提取单个个体,并在大量的灭菌培养基中转移清洗几次,除去较小微生物的污染。
这项操作可在低倍显微镜,如解剖显微镜下进行。
对于个体相对较小的微生物,需采用显微操作仪,在显微镜下进行。
目前,市场上有售的显微操作仪种类很多,一般是通过机械、空气或油压传动装置来减小手的动作幅度,在显微镜下用毛细管或显微针、钩、环等挑取单个微生物细胞或孢子以获得纯培养。
在没有显微操作仪时,也可采用一些变通的方法在显微镜下进行单细胞分离,例如将经适当稀释后的样品制备成小液滴在显微镜下观察,选取只含一个细胞的液滴来进行纯培养物的分离。
单细胞分离法对操作技术有比较高的要求,多限于高度专业化的科学研究中采用。
1.5 选择培养分离没有一种培养基或一种培养条件能够满足自然界中一切生物生长的要求,在一定程度上所有的培养基都是选择性的。
在一种培养基上接种多种微生物,只有能生长的才生长,其他被抑制。
如果某种微生物的生长需要是已知的,也可以设计一套特定环境使之特别适合这种微生物的生长,因而能够从自然界混杂的微生物群体中把这种微生物选择培养出来,即使在混杂的微生物群体中这种微生物可能只占少数。
这种通过选择培养进行微生物纯培养分离的技术称为选择培养分离,是十分重要的,特别对于从自然界中分离、寻找有用的微生物。
在自然界中,除了极特殊的情况外,在大多数场合下微生物群落是由多种微生物组成的。
因此,要从中分离出所需的特定微生物是十分困难的,尤其当某一种微生物所存在的数量与其他微生物相比非常少时,单采用一般的平板稀释方法几乎是不可能分离到该种微生物的。
例如,若某处的土壤中的微生物数量在108时,必须稀释到10-6才有可能在平板上分离到单菌落,而如果所需的微生物的数量仅为102~103,显然不可能在一般通用的平板上得到该微生物的单菌落。
要分离这种微生物,必须根据该微生物的特点,包括营养、生理、生长条件等,采用选择培养分离的方法。
或抑制使大多数微生物不能生长,或造成有利于该菌生长的环境,经过一定时间培养后使该菌在群落中的数量上升,再通过平板稀释等方法对它进行纯培养分离。
(1) 利用选择培养基进行直接分离主要根据待分离微生物的特点选择不同的培养条件,有多种方法可以采用。
例如在从土壤中筛选蛋白酶产生菌时,可以在培养基中添加牛奶或酪素制备培养基平板,微生物生长时若产生蛋白酶则会水解牛奶或酪素,在平板上形成透明的蛋白质水解圈。
通过菌株培养时产生的蛋白质水解圈对产酶菌株进行筛选,可以减少工作量,将那些大量的非产蛋白酶菌株淘汰;再如,要分离高温菌,可在高温条件进行培养;要分离某种抗生素抗性菌株,可在加有抗生素的平板上进行分离;有些微生物如螺旋体、粘细菌、蓝细菌等能在琼脂平板表面或里面滑行,可以利用它们的滑动特点进行分离纯化,因为滑行能使它们自己和其他不能移动的微生物分开,可将微生物群落点种到平板上,让微生物滑行,从滑行前沿挑取接种物接种,反复进行,得到纯培养物。