浮游生物调查方法
鱼类浮游生物调查

鱼类浮游生物调查
30m 以浅
海域
浅水Ⅰ型浮游生物网 垂直取样 30米以深
海区
大型浮游生物网 垂直取样 用双鼓网 倾斜取样
调查方式和网具 D 大型浮游生物网自海底至海面垂直采样 I
浅水Ι型浮游生物网自海底至海面垂直采样 B
双鼓 (Bongo)网自海底至海面垂直采样 S
采水
样品采集
定性采样 一般在海水表层()或其它水层进行水平拖网,船速为。
所用网具、水层及拖网时间应分别根据调查的目的和调查区鱼卵和仔、稚鱼密度来决定。
定量样品 由海底至海面垂直或倾斜拖网。
落网速度为0.5m/s ;起网速度为。
并记录于表。
样品处理
样品用中性甲醛溶液固定,加入量为样品体积的5%。
海洋生物资源调查-第3章 鱼类浮游生物调查及评价(专业知识模板)

种类鉴定
主要鱼类浮游生物应鉴定到属或科。 2.2 调查要素
包括鱼卵和仔、稚鱼的种类组成和数量分布。 3 采样
3.1 采样设备
网具 30m以浅海域,应采用浅水Ι型浮游生物网垂直取样, 30m以深海区,应采用大型浮游生物网垂直取样或用双鼓网 倾斜取样。此外可根据海区位置或深度、调查的性质、目
Na——全网鱼卵或仔、稚鱼个体数,单位为粒(ind)或尾(ind); S——网口面积,单位为平方米(m2); L——流量计转数; C----流量计校正值。
海洋生物要素调查及评价
水平拖曳样品
以粒/网(ind/net)或尾/网(ind/net)计算。 6 填写报表
按本部分的有关规定填写报表; 7 7.1 分布图绘制
是衡量亲鱼资源量大小和预报补充资源量所必需的资料。
海洋生物要素调查及评价
2
2.1
技术要求和调查要素
技术要求
垂直或倾斜拖网深度
水深大于200m的海区拖网深度为200m至表垂直拖网或斜 拖,水深小于200m的则由底至表垂直拖网或斜拖。 水平拖网深度 水平拖网深度为0m3m层。
垂直或倾斜分段拖网水层
根据测站深度、调查性质和目的的不同来确定.
平面分布图一般用等值线或不同量级的圆圈符号表示。
等值线的取值标准如下:
a)鱼卵和仔、稚鱼总量(单位为 ind/m3或ind/100m3):1, 5,10,25,50,100,250,500,1 000,5 000;
海洋生物要素调查及评价
b) 鱼 卵 和 仔 、 稚 鱼 主 要 科 、 属 或 种 ( 单 位 为 ind/m3 或
c) 数量小于上述等级时,可用“ +”标在测站上,以示出现。
浮游生物资源调查及水质评价

浮游生物资源调查及水质评价作者:张武敬来源:《山西农业科学》 2014年第11期张武敬(运城市水务局水产站,山西运城 044000)摘要:浮游生物的群落组成、现存量、优势种及多样性都可作为水质评价和营养水平的重要标志。
分别在太原市、清徐县和山西农业大学思想湖(太谷)中采取水样,通过在显微镜下检查浮游生物的群落组成、优势种,对水体的健康程度做出判断。
结果表明,清徐鱼苗育种场的水体中检测出浮游植物29种,隶属5个门,蓝藻门较多,有17种,浮游动物27种,以桡足为主,有10种;太原和思想湖池中浮游动物量很大,太原有25种,思想湖中有31种,均以轮虫和桡足类为主。
蓝藻对水质稳定的影响较大,且死后会释放大量藻毒素。
轮虫和桡足类对养殖主体都是很好的饵料生物,能为鱼虾提供较为充足的营养。
关键词:池塘养殖;水质评价;浮游生物中图分类号:Q179.1 文献标识码:A 文章编号:1002-2481(2014)11-1197-03池塘中的浮游动、植物,周丛生物、底栖动物和水生细菌等,是组成池塘渔业生态系统的重要饵料生物基础,也是物质和能量向养殖终极产品输送的生物通道。
浮游植物作为水体中的初级生产者,可向水体中提供氧气,参与水体中的物质循环和能量转化[1],在水生态系统中发挥着重要的作用,同时也是鱼、虾的天然饵料[2-4],其数量变化会直接影响渔业资源量[5-6]。
浮游生物是水域生态系统中重要的生物组成部分,其在物质转化、能量流动和信息传递等生态过程中起着至关重要的作用,浮游生物的种类变化情况是水体的一个重要表征指标[7-8]。
水体中过量的浮游植物会使水体透明度降低,水质恶化、缺氧,导致毒素形成[9]。
在渔业生态系统中,生物群落中的生物在种间保持着各种形式的相互联系,共同参与对环境的反应,组成一个具有相互独立的成分、结构和机能的“生物社会”[10]。
群落与环境之间互相依存、互相制约,共同发展,形成一个自然整体。
浮游生物与水质的关系非常密切,有很多种类对水体环境变化很敏感,水生生物已被广泛应用于水环境监测。
淡水水生态调查方法

淡水水生态调查方法一,浮游生物部分(一)浮游植物、原生动物与轮虫1,定性样品采集与保存25号浮游生物网在水面下约0.5 m内以适当的速度作“∞”字形来回拖动1-3min,获得的浓缩样(约30-50ml)即为定性样品。
甲醛(4%)或鲁哥氏液(适量)现场固定,或活体带回实验室及时镜检。
2,定量样品采集与保存(1)采集与保存:用有机玻璃定深采水器采集表层或混合水样。
水样量:一般1000ml(贫营养水体应酌情增加水量),加入鲁哥氏液(长期保存样品也可用甲醛溶液)现场固定,避光,避热,带回实验室。
鲁哥氏液:6g 碘化钾+4g 碘+100ml水,1L水样中加入10-15ml。
浓缩鲁哥:样品量大时野外采样用,60g 碘化钾+40g 碘+100ml水,1L水样中加入1-1.5ml。
(2)沉淀浓缩处理设备:浮游生物沉淀器、吸耳球、虹吸管。
沉淀时间:24~48 h(禁止任何形式的搅动)。
沉淀完成后用虹吸管将上层清液小心吸出,下层沉淀摇动后转入50ml样品瓶用上清液冲洗三次沉淀器并转入样品瓶。
浓缩注意事项:浓缩最终体积视藻类多寡而定,藻多则最终样品体积大于50ml,藻少则小于50毫升;可以用透明度做相对的参考指标,以镜检时每个视野(40倍物镜下)有十几个藻为宜。
保存注意事项:①瓶塞要拧紧;②长期保存时加入甲醛溶液(体积分数2-4%)(二)浮游甲壳动物1,定性样品采集与保存13号浮游生物网(孔径0.112mm),水面下约0.5 m内,“∞”字形来回拖动,1-3min,加入5%甲醛固定。
2,定量样品采集与保存采不同水层水样10-50L用25号(注意,与定性网不同)浮游生物网过滤(滤缩法)——个体大,密度较低。
过滤后的生物网放在水中洗2-3次,多余的水滤过之后,网底管中的液体也放入样品瓶中。
加入甲醛(5%)固定。
二,理化参数部分总磷TP、总氮TN、正磷酸盐PO4-P、硝酸盐氮NO3-N、亚硝态氮NO2-N、氨氮NH4-N、化学需氧量COD、生化需氧量BOD、总有机碳TOC、总无机碳TIC、溶解氧DO、pH、氧化还原电位ORP、电导率CoND、水温、透明度SD、水色等,可酌情选择部分或全部参数。
第三章 鱼类浮游生物调查及评价(海洋生物资源调查技术)

b) 鱼 卵 和 仔 、 稚 鱼 主 要 科 、 属 或 种 ( 单 位 为 ind/m3 或 ind/100m3):1,5,10,25,50,100,200,300,400 ,500,1 000;
c) 数量小于上述等级时,可用“+”标在测站上,以示出现 。
d) 上述取值标准,可视具体情况酌情增减。 7.2 圆圈的取值标准如下: a) 鱼卵和仔、稚鱼总量(ind/m3或ind/100m3)为: >01,>110,>1025,>2550,>50100,>100250, >250500,>5001 000,>1 0005 000,>5 000;
2020/11/4
2020/11/4
鱼卵、仔稚鱼的研究工作的目的和意义
➢ 了解有关胚胎发育和仔鱼的形态、分类及其生长和死亡生理、生态习 性等;
➢ 从研究海洋水域的生态学出发,研究鱼卵、仔鱼作为被捕食者、捕食 者以及评价污染作用的指标;
➢ 作为养殖对象,从水产养殖的苗种需要出发,也要研究选育良种的鱼 卵和仔鱼;
2020/11/4
3)卵膜特征 海产鱼类的卵膜,通常较薄,表面光滑而透明。。 4).卵黄结构 由于卵黄含量的丰富程度不同,卵黄的构造
和形态也不相同。 5) 油球 卵内有无油球及其数量、大小、色泽和分布都是鉴 定卵子的重要依据,如牙鲆,只有1个大油球,而条鳎则有 几十个小油球。
2020/11/4
6) 卵黄间隙 卵黄间隙的大小在同种鱼或不同种鱼而有差异。 7).胚胎的特征 胚胎形成后,是鱼卵整个发育期中外部形态比
在鉴定计数过程中,遇到发育不好的坏卵均要计入总量。
2020/11/4
5 资料整理 5.1 丰度中鱼卵或仔、稚鱼个体数,单位为粒 每立方米或尾每立方米(ind/m3); N——全网鱼卵或仔、稚鱼个体数,单位为粒或尾(ind); V——滤水量,单位为立方米(m3)。
浮游动物的采样方法

浮游动物生物量的测量方法自赵文《水生生物学》现存量:单位面积或体积中所存在生物体的数量或质量。
现存量若以个体数表示则可称为丰度或(数量)密度,单位为个/L。
若以质量表示则可称为生物量,单位为mg/L。
采集方法:一采水器采水后沉淀分离(适用原生动物、轮虫等小型浮游动物);二用网过滤(适用于枝角类、挠足类等甲壳动物)。
仪器:采水器,(25#)浮游生物网,显微镜,计数框(计数原生动物用0.1ml计数框,计数轮虫和甲壳动物用1ml计数框)解剖镜,毛细管,目测微尺一采集1 设站根据浮游动物的分布设站。
2 采水层次由水体的深度决定。
切不可之采一个表层或一个底层水样。
(据夏季调查,东湖B站(水深4m左右),在2m的水层区,甲壳动物的数量约占31%,而入2m一下的水层占69%左右。
同时还发现,在夏季,一般幼体喜欢在表层,成体在深层。
)分层方法:是每隔0.5m或1m,甚至2m取一个水样加以混合,然后取得一部分作为浮游动物定量之用。
许多水库或深水湖泊,水深20m以上,这种水体在夏季及冬季存在温跃层(或称变温层)。
由于在温跃层一下缺乏光照,浮游植物数量极少,依赖植物生存的浮游动物数量也相应减少。
如果从养殖角度而言,只取温水层以上的水层就足够了。
3 采水量浮游动物不但种类组成复杂,而且个体大小相差也极悬殊。
因此要根据它们在水体中的不同密度二采不同的水量。
(目前计数原生动物、轮虫的水样量以1L为宜,枝角类、桡足类则以10~50L较好。
)4 采集时间采样时间要尽量保持一致。
一般在上午8:00~10:00进行为好。
在长江中下游采集,如果采集四次,则春、夏、秋、冬各一次。
如果只采一次,则应在秋季(9、10月)进行为好。
(这是因为9~10月正是鱼类摄食旺季,为鱼类生长的最佳时期,如果此时有较高的现存量,则可认为该水体中有较大的供铒能力。
)浮游动物样品的固定,原生动物和轮虫可用碘液或福尔马林,加量同浮游植物(一般可与浮游植物合用同一样品)。
第三讲2-水生生物调查研究

成蜡叶标本,可用浸制液浸泡。 标本贴上标签。
四、种类鉴定 用新鲜标本进行鉴定。所有标本应鉴定到种。 五、称重 1、鲜重 按种类称重。称重前放干燥处阴干,在采样当天完成。 2、干重 称取子样品(不少于样品量的10%),置105℃干燥箱中干燥48 h或直到恒
录表。
2、计算生物量
1)浮游植物生物量计算 2)浮游动物生物量计算 原生动物、轮虫可用体积法求得生物体积,比重取l,再根
据体积换算为重量和生物量。 甲壳动物可用体长一体重回归方程,由体长求得体重(湿重)。 无节幼体一个可按0.003 mg湿重计算。
大型水生植物调查
一、主要试剂与器具
值。 枝角类、桡足类:5 mL计数框分若干次全部计数。 无节幼体:数量不多,全部计数;数量很多,可稀释计数3~
5片取平均值。 注意: 计数前,样品摇匀,吸出迅速准确; 计数框内无气泡,也不应有水样溢出; 计数两片取平均值,但每片结果与均数之差不大于土15%,
否则应计数第三片。
样点的间距一般为100~200 m。没有大型水生植物 分布的区域可不设采样点。
2、定量采样 挺水植物:用l㎡采样方框采集。 沉水植物、浮叶植物和漂浮植物:用采样面积为
0.25㎡的水草定量夹采集。 注意: 每个采样点采集两个平行样品; 采集的样品除去杂质装入样品袋内,沉水植物放盛
集;每个点采样10~50L,用25号浮游生物网过滤浓缩; 定性样品用13号浮游生物网在表层缓慢拖曳采集。 原生动物、轮虫和无节幼体:定量可用浮游植物定量样品, 单独采集取样1L;定性样品用25号浮游生物网采集。
五、浮游动物定性定量分析
浮游动物和浮游植物调查方法

个视野有十几个时,数50个视野就够了,如果平
均每个视野有5-6个时,就需数100个视野;如果平 均每个视野不超过1-2个时,要数200个视野以上,
数横条,最少不少于5条具体可自行掌握。 总之不论数视野还是数横条,每片计数到 的溪流植物总数应达到200个(低浓度时)500个(高浓度时)以上。 同一样品的二片计数结果与其均数之差距 如果不大于其均数的10%,这两个相近的值 的均数即可视为计数结果。
在器壁的可能性,然后静置沉淀24-48小时候。再 用乳胶管或橡皮管利用虹吸原理小心地抽出上都
不含藻类的清液。一般约剩下20-40毫升沉淀物转
入30或50毫升的定量瓶中,用上述清液冲洗沉淀
器2-3次,洗液仍倒入定量瓶中使水量恰好达到30
或50毫升。然后贴上标签,标签上要记载采集时 间、地点、采水量、池号和样品号等。
例:计数第一个片为250个,计数第二片为 246个 则两片的均数为(250+246)/2=248 均数与第一片之差:248-250= -2 均数与第二片之差:248-246=2 则:-2/248= -0.0081即 -0.81% 2/248=+0.0081 即 0.81% 因为0.81%<10%,所以上述相近值的均数应 视为计数结果。
七、数量计算: 1、定性 2、定量结果 浮游植物定量:
使用的工具有:带有0.1毫升刻度的小吸管,容量 为0.1毫升的计数框(面积20ⅹ20毫米2)和具有移
动台的显微镜。
经0.1毫升吸管吸水0.1毫升于方框内,盖上盖玻片, 如果框内无气泡亦无水液溢出,即表示容量标准 适合,检查三次均适合,此半数框即可使用。每 次计数时用的盖玻片应用碱水或肥皂水洗净备用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七、数量计算: 1、定性 2、定量结果 浮游植物定量:
使用的工具有:带有0.1毫升刻度的小吸管,容量 使用的工具有:带有0.1毫升刻度的小吸管,容量 为0.1毫升的计数框(面积20ⅹ20毫米2)和具有移 0.1毫升的计数框(面积20ⅹ20毫米2 动台的显微镜。 经0.1毫升吸管吸水0.1毫升于方框内,盖上盖玻片, 0.1毫升吸管吸水0.1毫升于方框内,盖上盖玻片, 如果框内无气泡亦无水液溢出,即表示容量标准 适合,检查三次均适合,此半数框即可使用。每 次计数时用的盖玻片应用碱水或肥皂水洗净备用。 用前可浸入70%的酒精中,用时取出,用细绢拭 用前可浸入70%的酒精中,用时取出,用细绢拭 净,计数框用前以薄绸布拭净,用毕以水弄湿后 轻拭或用水冲净。
虹吸动作要十分仔细、小心。开始时虹吸管一端 放在沉淀器内约三分之二处,另一端套接在已经 用手挤压出空气的橡皮球上,然后轻轻松手并移 开橡皮球使清液流出,为了避免漂浮水面的一些 微小藻类进入虹吸管而被吸走,管吕应始终低于 水面。虹吸管内清液的活动不宜过快,可用手指 轻捏管壁以控制流量,当吸到原水样的3/5以上时, 轻捏管壁以控制流量,当吸到原水样的3/5以上时, 应使清淮一滴一滴地流下。吸出的清液要用一洁 净的器皿装盛,以便在浓缩过程在出故障时,可 重新倒入沉淀器中浓缩,不必新采水。
数横条,最少不少于5 数横条,最少不少于5条具体可自行掌握。 总之不论数视野还是数横条,每片计数到 的溪流植物总数应达到200个(低浓度时)的溪流植物总数应达到200个(低浓度时)500个(高浓度时)以上。 500个(高浓度时)以上。 同一样品的二片计数结果与其均数之差距 如果不大于其均数的10%,这两个相近的值 如果不大于其均数的10%,这两个相近的值 的均数即可视为计数结果。
浮游动物定量:
八、结果统计: 定性结果: 定量结果:个/L, 定量结果:个/L,mg/L
例:计数第一个片为250个,计数第二片为 例:计数第一个片为250个,计数第二片为 246个 246个 则两片的均数为(250+246) 则两片的均数为(250+246)/2=248 均数与第一片之差:248均数与第一片之差:248-250= -2 均数与第二片之差:248均数与第二片之差:248-246=2 则:则:-2/248= -0.0081即 -0.81% 0.0081即 2/248=+0.0081 即 0.81% 因为0.81%<10%,所以上述相近值的均数应 因为0.81%<10%,所以上述相近值的均数应 视为计数结果。
六、样品处理: 1、定性样品处理 2、定量样品处理 浮游植物样品 浮游动物样品
浮游植物样品 所采水样摇匀后倒入沉淀器中静置,使浮 游植物完全沉淀。 沉淀是一种圆柱形分液漏斗(图2 沉淀是一种圆柱形分液漏斗(图2)。如无 沉淀器也可用甘杯、烧杯或在原水样瓶中 静置沉淀。
沉淀器应置于平稳处,避免摇动。水样倾入二小 时后应将沉淀器轻轻旋转一会,以减少藻类附着 在器壁的可能性,然后静置沉淀24-48小时候。再 在器壁的可能性,然后静置沉淀24-48小时候。再 用乳胶管或橡皮管利用虹吸原理小心地抽出上都 不含藻类的清液。一般约剩下20-40毫升沉淀物转 不含藻类的清液。一般约剩下20-40毫升沉淀物转 入30或50毫升的定量瓶中,用上述清液冲洗沉淀 30或50毫升的定量瓶中,用上述清液冲洗沉淀 器2-3次,洗液仍倒入定量瓶中使水量恰好达到30 次,洗液仍倒入定量瓶中使水量恰好达到30 或50毫升。然后贴上标签,标签上要记载采集时 50毫升。然后贴上标签,标签上要记载采集时 间、地点、采水量、池号和样品号等。
浮游生物调查方法
一、调查目的: 浮游生物种类和数量与环境关系。 二、调查的主要内容: 定性调查 定量调查
三、调查工具
1、采水器
2、浮游生物网
3、透明度盘
4、标本瓶
5、固定液 鲁哥氏液 甲醛 3%-5% 3%6、其他:
四、采样点选择 五、样品采集: 1、定性样品采集 2、定量样品采集:浮游植物,浮游动物。
首先将计算瓶用左右平移的方式摇动100-200次, 首先将计算瓶用左右平移的方式摇动100-200次, 摇均匀后立即用0.1毫升吸管从中吸取0.1毫升置入 摇均匀后立即用0.1毫升吸管从中吸取0.1毫升置入 0.1毫升计数框内,在400-600倍的显微镜下观察计 0.1毫升计数框内,在400-600倍的显微镜下观察计 数,每个水样标本计数两次(二片),取其平均 值,一每片计数100个视野,但具体观察的视野数 值,一每片计数100个视野,但具体观察的视野数 以样品中浮游植物多少而酌情增减,如果平均每 个视野有十几个时,数50个视野就够了,如果平 个视野有十几个时,数50个视野就够了,如果平 均每个视野有5 个时,就需数100个视野;如果平 均每个视野有5-6个时,就需数100个视野;如果平 均每个视野不超过1 个时,要数200个视野以上, 均每个视野不超过1-2个时,要数200个视野以上,