中职数学4.1.2实数指数幂及其运算法则

合集下载

中职教材数学(基础模块 高教版)上册电子教案:4

中职教材数学(基础模块 高教版)上册电子教案:4

【课题】4.1 实数指数幂(2)【教学目标】知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点 .能力目标:⑴正确进行实数指数幂的运算;⑵ 培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力 . 【教学重点】有理数指数幂的运算.【教学难点】有理数指数幂的运算.【教学设计】⑴ 在复习整数指数幂的运算中,学习实数指数幂的运算;⑵ 通过学生的动手计算,巩固知识,培养计算技能;⑶通过“描点法”作图认识幂函数的图像,通过利用软件的大量作图,总结图像规律;⑷通过知识应用巩固有理数指数幂的概念 .【教学备品】教学课件.【课时安排】2 课时. (90 分钟)【教学过程】教过*揭示课题4.1 实数指数幂.*回顾知识复习导入知识点整数指数幂,当n N* 时,a n = ;规定当a 0 时,a0 = ; a n =教学意图复习已有知识教师行为介绍学生行为了解学程时间;m 分数指数幂:a n =m ;a0时,a n=其中m、n N*且n>1.当n 为奇数时, a R;当n 为偶数时, a 0.问题1.将下列各根式写成分数指数幂:(1) ; (2) .20 4 32.将下列各分数指数幂写成根式:3(2) (2.3) 3.扩展整数指数幂的运算法则为:(1) a m . a n = ;(2) (a m )n = ;(3) (ab)n = .其中(m、n Ζ).归纳运算法则同样适用于有理数指数幂的情况.*动脑思考探索新知概念当p 、q 为有理数时,有a p . a q = a p+q ;(a p )q = a pq ;(ab)p = a p .b p.教师行为提问巡视解答引导学生行为回忆求解交流思考领会教学意图知识建构基础了解学生指数运算掌握情况回顾整数指数幂为后续做好3 2(1) 65 4;a2教过时间学程.运算法则成立的条件是,出现的每个有理数指数幂都有意义.说明可以证明,当p 、q 为实数时,上述指数幂运算法则也成立.*巩固知识典型例题例 4 计算下列各式的值:说明总结归纳说明了解思考理解记忆领会准备自然过渡到实数指数幂通过115 说明观察例题13 根 3 6(1) 0.1253; (2). 3 9 根 3 2分析 (1)题中的底为小数,需要首先将其化为分数,有利于运算法则的利用; (2)题中,首先要把根式化成分数指数幂,然后再进行化简与计算.解 (1)1 -3根 1 8 21 1 1 1 1(2) 3 根 3 6 = 32 根 (3 根 2)3 =32 根 33 根 233 9 根 3 2 1 1 2 1(32 )3 根 23 33 根 231 12 1 1 1 1说明 (2)题中,将 9 写成 32 ,将 6 写成 2根3 ,使得式子中只出现两种底,方便于化简及运算.这种尽可能将底的化同的做法,体现了数学中非常重要的“化同”思想. 例 5 化简下列各式: (1); (2) (||(a 21 +b 21))|| (||(a 21 -b 21))||;(3) 5 a -3b 2 合 5 a 2 合 5 b 3 .分析 化简要依据运算的顺序进行,一般为“先括号内,再括教师 行为分析强调引领讲解质疑学生 行为思考主动 求解领会了解观察教学 意图进一步使 学生 理解指数 幂的 运算 法则引导 学生 体会 化同 的的数学 思想= 32+ 3- 3 根 23-3 = 36 根 20 = 36.1 1 1 1教 过学 程0.1253 = ( )3 = (2-3 )3 = 2 3 = 2-1 = ;时 间号外;先乘方,再乘除,最后加减”,也可以利用乘法公式. 解 (2a 4b 3 )4= 24 a 4根4b 3根4 = 16a 16b 12 = 16 a 16-6b 12-2 = 16 a 10b 10.(3a 3b )2 32 a 3根2b 1根2 9a 6b 2 9 9(||(a 21 + b 21))|| (||(a 21 -b 21))|| = (||(a 21))||2- (||(b 21))||2= a 21根2 - b 21根2= a - b .1 2 35 a -3b 2 合 5 a 2 合 5 b 3 = (a -3b 2 )5 合 a 5 合 b 51 123 3 2 2 3= (a -3 )5 (b 2 )5 合 a 5 合 b 5 = a -5 b 5 合 a 5 合 b 5= a (- 53 - 52)b 52 - 53 = a -1b -51.说明 作为运算的结果,一般不能同时含有根号和分数指数分析强调讲解思考主动 求解领会了解注意 观察 学生 是否 理解 知识点可以 适当 交给 学生自我 探究幂. (3)题的结果也可以写成1 ,但是不能写成a一 1 ,本章a 5b 5 b中一般不要求将结果中的分数指数幂化为根式.*运用知识强化练习教材练习4.1.21.计算下列各式:2 1 1 5(1) 3 人3 9 人4 27; (2) (23 42 )3 (2一2 48 )4.2 .化简下列各式:( 2 1 )3 ( 1 5 )4 (1) a3 . a一3 . a2 . a0;(3) 3 b2 . 3 a 政a3b.a*知识回顾复习导入问题观察函数y = x、相关性质.探究由于 y = x =x1,y = x2 、y = ,回忆三个函数的图像和xy = = x一1 ,故这三个函数都可以写成xy = x a ( a 仁R )的形式.教师行为强调提问巡视指导质疑学生行为动手求解交流思考教学意图及时了解学生知识掌握情况引导学生用所345 (2)|a 3 b2|.|2a一2 b8|;( ) ( )1 2学程时间11教过*动脑思考探索新知概念一般地,形如 y = x a ( a 仁R )的函数叫做幂函数.其中指数 a 为常数,底x 为自变量.*巩固知识典型例题1例 6 指出幂函数 y=x 3 和 y=x 2 的定义域,并在同一个坐标系中作出它们的图像.分析首先分别确定各函数的定义域,然后再利用“描点法”分别作出它们的图像.引导分析总结归纳说明分析体会理解记忆观察思考学的知识进行判断特别强调关键词汇通过例题555教学 意图 进一 步使学生 感知 幂函引领数的图像…特点y= x 2引导领会掌握描点 作图 的方 法观察突出 数形 结合的数 学思 想质疑总结:这两个函数的定义域不同,在定义域内它们都是增函 数.两个函数的图像都经过坐标原点和点 (1,1). 例 7 指出幂函数 y = x 2 的定义域,并作出函数图像.以表中的每组 x, y 的值为坐标, 描出相应的点 (x, y), 再用1光滑的曲线依次联结这些点, 分别得到函数y=x 3 和函数 y = x 2 的图像,如下图所示.1解 函数 y =x 3 的定义域为 R ,函数 y=x 2 的定义域为 [0,+).分别设值列表如下: 教师 行为 学生 行为 xy=x 3 主动求解学 程教 过时 间−2 −8−1 −1… ………1 41体会讲解学生 强调归纳引领了解4 20 09 30 02 81 11 1…x1于 = ,故函数为偶函数.其图像关于 y 轴对称, 可以注意是否理解 知识解 y = x 2 的定义域为 (,0) (0,+ ). 由分析过程知道函1 1 (x)2 x 2先作出区间 (0, + ) 内的图像, 然后再利用对称性作出函数在区 间 (,0) 内的图像.分析 考虑到 x 2 = , 因此定义域为 ( ,0) (0,+ ), 由 分析思考2x数为偶函数.在区间 (0, + ) 内,设值列表如下:1…2 1…以表中的每组 x, y 的值为坐标, 描出相应的点(x, y), 再用光滑的曲线依次联结各点,得到函数在区间(0, + ) 内 的图 像.再作出图像关于 y 轴对称图形,从而得到函数 y = x 2的图像,如下图所示.引导观察学生 总结 函数图像 的特 点*理论升华 整体建构总结: 这个函数在 (0, + ) 内是减函数;函数的图像不经过坐标 原点,但是经过点 (1,1).可以 适当 交给学生 自我 探究教学 意图点教师行为 学生行为主动求解学 程教 过时间x …y …领会体会讲解 理解强调归纳引领704 421 1及时 总结例题 中的 规律75了解 学生 知识一般地,幂函数 y = x a具有如下特征:(1) 随着指数 a 取不同值,函数 y = x a 的定义域、单调性 和奇偶性会发生变化;(2) 当 a >0 时, 函数图像经过原点(0,0)与点(1,1); 当 a <0 时,函数图像不经过原点(0,0),但经过(1,1)点.*运用知识 强化练习 教材练习 4.1.31.用描点法作出幂函数 y = x 4 的图像并指出图像具有怎样的对领会理解 记忆动手引领总结提问2.用描点法作出幂函数 y = x3 的图像并指出图像具有怎样的对称性?*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?*继续探索活动探究(1)读书部分:教材章节4.1;(2)书面作业:学习与训练 4.1;(3)实践调查:了解常见幂函数的性质特点.教师行为指导引导提问说明学生行为交流回忆反思交流记录教学意图掌握情况培养学生总结反思学习过程能力8859学程时间教过。

高教版中职数学基础模块上册:4.1《实数指数幂》优秀教案

高教版中职数学基础模块上册:4.1《实数指数幂》优秀教案

18 苏州园林知识与能力1.积累“轩榭、败笔、丘壑、嶙峋、镂空”等词语,掌握其音义,并用词造句。

2.整体感知内容,概括苏州园林的特征,分析本文的结构特点。

3.掌握本文运用的说明方法,品味说明语言的多样性。

过程与方法运用多种媒体,创设丰富情境,引导学生感知园林的画意美,感受园林文化的艺术美。

情感态度与价值观1.领略中国园林的建筑美,逐步培养学生的艺术鉴赏力。

2.了解我国园林建筑的成就,激发热爱祖国的思想。

3.感受写作大师的语言美,增强热爱母语的感情。

教学重点作者是如何抓住苏州园林的特征,并突出这个特征的。

教学难点理解绘画与园林建筑的联系。

2课时第一课时一、新课导入《中国石拱桥》让我们领略到了我国桥梁事业的伟大成就,今天,我们从桥上走下来,进入另一种建筑物——园林。

在我国的园林中,苏州园林具有独一无二的特征和地位,它是中国各地园林的标本。

现在,让我们去苏州园林游览一番,看看那儿的园林建筑。

二、自主预习1.作者介绍叶圣陶(1894—1984),原名叶绍钧,现代著名作家、教育家,有“优秀的语言艺术家”之称,代表作是长篇小说《倪焕之》。

他曾在小学、中学、大学教过书,对语文教学的改革和教材的建设有重大贡献。

20年代和30年代是他创作道路上的重要阶段。

这个时期他的作品很多,最有名的有长篇小说《倪焕之》,童话集《稻草人》《古代英雄的石像》。

他原籍江苏苏州吴县,所以对苏州园林很熟悉,又有深刻的研究。

2.背景资料叶圣陶先生自小生长在苏州,他对苏州的一草一木充满了深厚的感情,特别是与驰名中外的苏州园林结下了不解之缘。

1979年初,香港一家出版社邀请叶圣陶为其出版的《苏州园林》图册作序,叶圣陶欣然允诺。

序文即此篇(略有删节)。

后来图册因故未能出版,序文被《百科知识》所用,原题为《拙政诸园寄深眷——谈苏州园林》。

3.知识链接中国四大古典名园:颐和园、避暑山庄、拙政园、留园苏州四大古典名园:沧浪亭、狮子林、拙政园、留园 4.检查预习 (1)订正字音 轩榭..(xu ānxi è) 池沼.(zh ǎo) 丘壑.(h è) 嶙峋..(l ínx ún) 蔷薇..(qi ángw ēi) 镂.空(l òu) 斟酌..(zh ēnzhu ó) 重峦叠嶂.(zh àng) 屈曲..(q ūq ū) 鉴.赏(ji àn) 栏.杆(l án) 相间.(ji àn) 依傍.(b àng) 单调.(di ào) 蔓⎩⎪⎨⎪⎧m àn 蔓延w àn 藤蔓m án蔓菁模⎩⎪⎨⎪⎧m ó模范m ú模样(2)词语释义因地制宜:根据不同地区的具体情况规定适宜的方法。

语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件1

语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件1


2、不要看书,要看老师的眼睛

只要老师不是在一味地读教材,那老师的“话”就不可能和你低头看着的教材上的“文字”一致。头脑聪明的学生,也许能做到既集中精神听老师的话,又集中精神看眼前书上的内容。可是实际上大部分的学生都做不到这一点。

认真听讲的第一个阶段就是上课时间无条件地“往前看”,上课的时候看书往往很容易开小差。摒除杂念,将视线从摊在眼前的书上移开。老师讲课的时候只看前面,集中注意力听老师嘴里说出来的话,那才是认真听讲的态度。
m n
=
m n

an
0
时m

a
m n
=
m ;.n
nm
a 其中 m、n N且n >1.当 n 为奇数时, a R ;当 n 为偶数时, a m 0 .
回顾知识

1.将下列各根式题写成分数指数幂:
(1) 4 53 ;
(2) 3 4 .
2. 将下列各分数指数幂写成根式:
1
(1) 2 2 ;
2019/10/19
教学资料精选
10
谢谢欣赏!
2019/10/19
教学资料精选
11
例题解析例 1 计算:
15
1
(51)
(21
2
4
4
)
4 5
;(2)
2 3 4 4 8
解 (1) (2 2 4(4 )14)= (首2先2 )将4 底 (数4 4由) 4小数2化2为 4分5数,21有2 利于运算法则的利用;
(2)
(2)首先要把根式的底数化为1 一致2 ,再3 将根式化成分数指数

低着头,心情就放松了,但那种放松对学习一点好处也没有,之所以会放松,就是因为觉得即便是自己开小差,老师也不知道。如果你往前看,不时地和老师眼神交会一下,注意力必然会集中起来。和老师眼神交汇的那种紧张感会让你注意力集中,并充

最新中职数学基础模块上册《实数指数幂及其运算法则》ppt课件3精品文档

最新中职数学基础模块上册《实数指数幂及其运算法则》ppt课件3精品文档
21
小结:①分数指数幂的意义及运算性质
②指数概念的扩充,引入分数指数幂概念后,
指数概念就实现了由整数指数幂向有理数指数 幂的扩充 .
而且有理指数幂的运算性质对于无理指数幂也适 用,这样指数概念就扩充到了整个实数范围。
③对于指数幂 a n ,当指数n扩大至有理数时,
要注意底数a的变化范围。如当n=0时底数a≠0; 当n为负整数指数时,底数a≠0;当n为分数时, 底数a>0。
8
有理数指数幂
10
复习:(口算)5 a10 5 (a2)5 a2 a 5
1)5 32 2)4 81 3) 210
12
3 a12 3 (a4)3 a4 a 3
2
2
3 a2 3 (a 3 )3 a 3
4)3 312
1
1
a (a 2 )2 a 2
n
am
m
m
n(an)nan(m ,nN*且 ,n1)
1、计算下列各式:
1 1 3
(1)a2a4a 8
(2)(x
1 2
1
y3
)6
(3)(
8a3
1
)3
27b6
(4)2x13(1x13
2
2x 3)
2
19
3 、下列正确的是()
1
A 、 x ( x ) 2 ( x 0 )
B、
1
x3
3
x
C
、(
x
)
3 4
4
( y )3(x, y
0)
y
x
1
D 、6 y 2 y 3 ( y 0 )
6
三、负整数指数幂
a-n =
1 an
(a ≠ 0,n N+ )

中职数学基础模块上册《实数指数幂及其运算法则》word教案

中职数学基础模块上册《实数指数幂及其运算法则》word教案

教案名称:中职数学基础模块上册《实数指数幂及其运算法则》word教案教案编写:教学目标:1. 理解实数指数幂的概念及其运算法则。

2. 能够运用实数指数幂及其运算法则进行相关计算。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:一、实数指数幂的概念1. 引入实数指数幂的概念,讲解正整数指数幂、零指数幂和负整数指数幂的定义。

二、实数指数幂的运算法则1. 讲解实数指数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

2. 讲解实数指数幂的除法法则:同底数幂相除,底数不变,指数相减。

3. 讲解实数指数幂的乘方法则:底数不变,指数相乘。

4. 讲解实数指数幂的幂的法则:底数不变,指数相除。

三、实数指数幂的应用1. 举例讲解实数指数幂在实际问题中的应用,如计算幂的值、求解指数方程等。

四、练习与巩固1. 安排相关练习题,让学生巩固实数指数幂的概念和运算法则。

2. 引导学生运用所学知识解决实际问题。

2. 评价学生的学习效果,对学生在学习中遇到的问题进行解答和指导。

教学方法:1. 采用讲授法,讲解实数指数幂的概念和运算法则。

2. 运用案例教学法,引导学生运用所学知识解决实际问题。

3. 设计练习题,让学生通过自主练习巩固所学知识。

4. 采用小组讨论法,促进学生之间的交流与合作。

教学资源:1. PPT课件:展示实数指数幂的概念和运算法则。

2. 练习题:用于巩固所学知识。

3. 案例材料:用于讲解实数指数幂在实际问题中的应用。

教学评价:1. 课堂问答:检查学生对实数指数幂概念和运算法则的理解程度。

2. 练习题:评估学生对实数指数幂运算法则的掌握情况。

3. 实际问题解决:评价学生运用实数指数幂知识解决实际问题的能力。

六、教学活动设计1. 导入新课:通过复习幂的概念,引导学生自然过渡到实数指数幂的学习。

2. 讲解实数指数幂的概念:详细讲解正整数指数幂、零指数幂和负整数指数幂的定义。

3. 讲解实数指数幂的运算法则:逐一讲解乘法、除法、乘方和幂的法则。

语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件3

语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件3
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
一般地,当m,n Î
N
且n>1时,规定:
+
m
an
=
n
am ( a
?
0)
-m n
=
1
a >0
a a ( ) n
m
二、实数指数幂及其运算法则
1、求出下列各式的值
18
(1)、 33.33
1
7
(2)、2 2.2 2
(3)、a
1
3.a
8 3
二、实数指数幂及其运算法则
(1) ar.as = a (r+s a > 0, r, s ? Q)

4.1.2中职数学-实数指数幂的运算法则

4.1.2中职数学-实数指数幂的运算法则

4.1.2 实数指数幂及其运算法则一、教材分析本节课是新课标职业高中数学基础模块上册第四章实数指数幂第二课时,也是指数函数的入门课程。

指数函数对于学生来说是一个全新的函数模型,学习起来比较困难。

而实数指数幂的运算是指数函数的基础,是认识指数函数的先遣队。

我们通过初中学习整数指数幂的运算,进一步推广到实数指数幂的运算,为我们的指数函数铺路搭桥。

实数指数幂的运算是高中数学中的一类重要运算,需要理解运算对象,掌握运算法则,探究运算思路,选择运算方法,是培养学生具备运算能力的重要载体。

通过本节课的学习,可以让学生重新认识幂运算,为指数函数做铺垫。

从而更清晰,深刻地认识和理解指数函数模型,培养学生的逻辑思维能力。

二、学情分析学生进入高中学习时间短,运算能力,逻辑思维能力,探究能力,合作学习能力还不够成熟。

需要在我们的教学过程中继续强化,引导。

初中已经学习《整数指数幂及其运算法则》。

本节课是在初中学习基础上继续深入学习,将幂指数的限定由整数推广到实数,运算法则不变,所以学生有前面的基础,我们的探究过程会显得更加从容,学生能够通过合作交流完成猜想与探究。

通过对不等式的学习,已有一定的运算基础,同时对相互转化的思想,探究能力、逻辑思维能力得到了一定的锻炼。

因此,学生已具备了探索发现研究新知的认识基础,故应通过指导,教会学生独立思考、团结协作、大胆猜测和灵活运用类比、转化、归纳等学习方法。

三、教学设计0.,且a≠时,规定四、板书设计:五、课后反思学生是教学的主体,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课给学生提供各种参与机会。

为了调动学生学习的积极性,使学生化被动为主动。

本节课我采用学生独立完成加小组合作交流,分享小组成果等方式调动学生主动参与的积极性。

在教学重难点上,循序渐进、启发学生的思维,通过课堂练习、学生讨论的方式来加深理解,很好地突破难点和提高教学效率。

让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件4

语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件4

【1】下列各式中, 不正确的序号是( ① ④ ).
① 4 16 2 ② ( 5 3)5 3 ③ 5 (3)5 3 ④ 5 (3)10 3 ⑤ 4 (3)4 3
【2】求下列各式的值.
⑴ 5 32;
⑵ ( 3)4 ;
⑶ ( 2 3)2 ; ⑷ 5 2 6 .
分数指数幂在底数小于0时无意义.
⒉负分数指数幂的意义
注回意忆:负整负数分指数数指幂数的幂意在义:有意义的情况下,
总在指表数示上正.数a-,n=而a1不n (是a≠负0,n数∈,N负*)号. 只是出现
正数的负分数指数幂的意义和正数的负整
数指数幂的意义相仿,就是:
m
an

1
m
an

1 (a>0,m,n∈N*,且n>1). n am
64的6次方根是2,-2.
记作: 6 64 2.
1.正数的偶次方根有两个且互为相反数
偶次方根 2.负数的偶次方根没有意义
正数a的n次方根用符号 n a 表示(n为偶数)
(1) 奇次方根有以下性质: 正数的奇次方根是正数. 负数的奇次方根是负数. 零的奇次方根是零.
(2)偶次方根有以下性质:
r4
0.0001 104
a2 b2c

a 2b 2c 1
回顾初中知识,根式是如何定义的?有
那些规定?
①如果一个数的平方等于a,则这个数叫做 a
的平方根.
22=4 (-2)2=4
2,-2叫4的平方根.
②如果一个数的立方等于a,则这个数叫做a
的立方根.
23=8
2叫8的立方根.
(-2)3=-8
-2叫-8的立方根.
例2.如果 2x2 5x 2 0, 化简代
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这样将有理数指数幂的运算法则推广到实数指数幂。P、q为实数时,以上运算法则也成立。
4、知识巩固:
例4 计算下列各式:
多媒体放映解题过程
例5 化简下列各式:
师生一起探讨,再多媒体放映解题过程
计算:(学生上台做)
, , ,
归纳小结:
引导学生回顾本节课所学的知识:
(1)有

实数指数幂及其运算法则?




①?理解有理指数幂的含义,能运用有理指数幂的运算性质进行运算和化简,会进行根式与分数指数幂的相互转化;?
②了解实数指数幂的意义,体会有理指数幂向无理指数幂逼近的过程.




实数指数幂的运算性质,实数指数幂的运算性质综合应用与综合运算


2


多媒体

?
?
?
?

?
将以上整数指数幂的运算法则运用到有理数指数幂也适用:
即当a>0,p、q为有理数时有:
运用法则的条件是,出现的每个有理数指数幂有意义。
3、实数指数幂及其运算法则:
无理指数幂
有理指数幂还可以推广到无理指数幂。例如, 是一个什么样的数呢?
一般地,实数指数幂 是一个确定的实数.
可以证明对任意实数值p、q,上述有理数指数幂的运算法则同样适用于无理数指数幂.
?
?
?

?
?
?
?

?
?
?
?
?
?
?
?
?
?




复习:
整数指数幂的运算法则有:
新课:
1、有理数指数幂的定义:
分数指数幂的意义
规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义。
规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂
2、有理数指数幂的运算法则
布置作业:73-74页1、2题




(1)有理数、实数指数幂的概念
(2)有理数、实数指数幂的运算法则
a>0 ,P、q为实数时:
课后反思
相关文档
最新文档