数量关系重点公式及例题讲解

合集下载

数量关系公式总结

数量关系公式总结

1..两次相遇公式:单岸型 S=(3S1+S2)/2 两岸型 S=3S1-S2例题:两艘渡轮在同一时刻垂直驶离H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720 米处相遇。

到达预定地点后,每艘船都要停留10 分钟,以便让乘客上船下船,然后返航。

这两艘船在距离乙岸400 米处又重新相遇。

问:该河的宽度是多少?典型两次相遇问题,这题属于两岸型(距离较近的甲岸720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3*720-400=1760如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸2.漂流瓶公式:T=(2t逆*t顺)/ (t逆-t顺)例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?解:公式代入直接求得243.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ (t1+t2 )车速/人速=(t1+t2)/ (t2-t1)例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?解:车速/人速=(10+6)/(10-6)=44.往返运动问题公式:V均=(2v1*v2)/(v1+v2)例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()解:代入公式得2*30*20/(30+20)=245.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)能看到的扶梯级数=(2+1.5)*40=1406.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖每千克费用分别为 4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦糖,那么这种什锦糖每千克成本多少元?7.十字交叉法:A/B=(r-b)/(a-r)例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:析:男生平均分X,女生1.2X1.2X 75-X 175 =X 1.2X-75 1.8得X=70 女生为84分析:假设女生的平均成绩为X,男生的平均Y。

行测数量关系知识点汇总

行测数量关系知识点汇总

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

行测数量关系的常用公式讲解

行测数量关系的常用公式讲解

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

行测数量关系50大公式全解析

行测数量关系50大公式全解析

一、页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。

依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二、握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。

按照排列组合假设总数为X人则Cx取3=152 但是在计算X时却是相当的麻烦。

我们仔细来分析该题目。

以某个人为研究对象。

则这个人需要握x-3次手。

每个人都是这样。

则总共握了x×(x-3)次手。

但是没2个人之间的握手都重复计算了1次。

则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为:x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。

1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。

(完整版)行测数量关系的常用公式讲解

(完整版)行测数量关系的常用公式讲解

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

数量关系技巧

数量关系技巧

(一)奇偶性例题:有8个盒子分别装有17个,24个,29个,33个,35个,36个,38个和44个乒乓球,小赵取走一盒,其余各盒被小钱,小孙,小李取走,已知小钱和小孙取走的乒乓球个数相同,并且是小李取走的两倍,则小钱取走的各个盒子中的乒乓球最可能是A.17个,44个B.24个,38个C.24个,29个,36个D.24个,29个,35个墨子解析:小钱是小李的两倍,小钱肯定是偶数,排除AC,B选项的一半是12+19=31,上面没有31这个数字,排除B,得到答案为D。

(二)大小性例题:现有一种预防禽流感药物配置成的甲、乙两种不同浓度的消毒溶液。

若从甲中取2100克,乙中取7 00克混合而成的消毒浓度为3%;若从甲中取900克,乙中取2700克,则混合而成的溶液的浓度为5%。

则甲、乙两种消毒溶液的浓度分别为:A、3% 6%B、3% 4%C、2% 6%D、4% 6%墨子解析:A,B,D不管怎么配都不可能达到3%,得到答案为C。

(三)因数特性(重点是因数3和9)例题: A、B两数恰含有质因数3和5,它们的最大公约数是75,已知A数有12个约数,B数有10个约数,那么AB两数和等于()A 2500B 3115C 2225D 2550墨子解析:AB的和肯定能被3整除,ABC显然都不能被3整除,得到答案为D。

例题:某单位招录了10名新员工,按其应聘成绩排名1到10,并用10个连续的四位自然数依次作为他们的工号,凑巧的是每个人的工号都能被他们的成绩排名整除,问排名第三的员工工号所有数字之和是多少()A.12 B.9 C.15 D.18墨子解析:第10名能被10整除,尾数肯定是0。

1到9 应该是XXX1,XXX2,XXX3………..XXX9,XX X9能被9整除,所以XXX能被9整除,答案减去3肯定能被9整除,只有12-3=9,得到答案为A。

(四)尾数法例题:一只木箱内有白色乒乓球和黄色乒乓球若干个。

小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。

公务员行测备考:数量关系常见公式及妙招

公务员行测备考:数量关系常见公式及妙招

公务员行测备考:数量关系常见公式及妙招一、常用公式1、容斥问题题干特征:已知总量I,第一个集合A,第二个集合B。

求:两个集合的交集的最小值公式:A+B-I【例题1】在100个学生中,音乐爱好者有56人,体育爱好者75人,那么既爱好音乐,又爱好体育的人最少有多少人?A.31B.35C.41D.53【解析】直接代入公式:56+75-100=31,选择A。

题干特征:已知总量I,第一个集合A,第二个集合B,第三个集合C。

求:三个集合的交集的最小值公式:A+B+C-2I【例题2】小明、小刚和小红三人一起参加一次英语考试,已知考试共有100道题,且小明做对了68题,小刚做对了58题,小红做对了78题。

问三人都做对的题目至少有几题?A.4题B.8题C.12题D.16题【解析】直接代入公式:68+58+78-2100=4,选择A。

2、流水行船问题题干特征:A、B两地由一条河流相连,轮船匀速前进,从A到B顺流需时间a,从B到A逆流需时间b。

求:从A城放一个无动力的木筏,它漂到B城需要多久?公式:2ab/(b-a)求:轮船在静水中从A到B需要多久?公式:2ab/(b+a)【例题3】轮船从A城到B城需行3天,而从B城到A城需行6天.若轮船在静水中从A到B需要多长时间?A.3.5B.4C.4.5D.5【解析】直接代入公式:236(3+6)=4天,选择B。

二、小妙招1.选项之间加和构成题干信息【例题5】公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人。

问今年男员工有多少人?A.329B.350C.371D.504【解析】A、D两个选项之和329+504=833,恰好是今年员工总人数,即A、D两个选项中一个是今年男员工人数,一个是今年女员工人数,由于女员工人数增加的百分比较小,而最后总人数还增加了,可以推断出女员工人数较多,因此选择A。

出题人会故意设置错误选项,我们要利用选项之间的加和关系,直接选出选项。

公务员及事业单位考试行测数量关系的常用公式

公务员及事业单位考试行测数量关系的常用公式

行测常用数学公式_ 2 21.平方差公式:(a+ b)・( a—b)= a —b2.完全平方公式:(a±b) 2= a2± 2ab + b23.完全立方公式:(a±b)3= (a±b) (a2」ab+b2)4.立方和差公式:a3+b3=(a _ b)(a 2+」ab+b2)n m+ n m n m-n m n mn n n n• a = a a ±a= a (a ) =a (ab) =a • b二、等差数列n (印a n) 1(1)s n= __- = na i+ n(n-1)d ;(2)a n = 81+( n —1) d;(3)项数n= + 1;d(4)若a,A,b成等差数列,贝2A= a+b;(5)若m+n二k+i,贝U:a n+a n=a k+a ;(6)前n 个奇数:1, 3, 5, 7, 9,-( 2n—1)之和为n2(其中:n为项数,a1为首项,a n为末项,d为公差,S n为等差数列前n项的和)三、等比数列(1)a n= a1q n—1;(2)s n= a1 11—q°)(q = 1)1-q(3)若a,G,b成等比数列,贝G= ab;(4)若m+n二k+i,贝U:a m • a n=a k • a i;(5) amra n=(m-n)d(6) a m = q(m-n)a n(其中:n为项数,a i为首项,a n为末项,q为公比,S n为等比数列前n项的和) 四、不等式(1) 一元二次方程求根公式:ax2+bx+c=a(x-x J(x-x 2)其中:X i=p b 二4ac;X2=P b -4ac(b2-4ac_0)2a 2a根与系数的关系:X i+X2=-b, x i • x2=-a a推广:x1 x2 x3 ... x^ n n、% X2..X(2)—阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数量关系重点公式及例题讲解
数量关系重点公式:
重点公式1、弃9验算法
利用被9除所得余数的性质,对四则运算的结果进行检验的一种方法,叫“弃9验算法”。

用此方法验算,首先要找出一个数的“弃9数”,即把一个数的各个数位上的数字相加,如果和大于9或等于9都要减去9,直至剩下的一个小于9的数,我们把这个数称为原数的“弃9数”。

对于加减乘运算,可利用原数的弃九数替代进行运算,结果弃九数与原数运算后的弃九数相等
注:1.弃九法不适合除法
2.当一个数的几个数码相同,但0的个数不同,或数字顺序颠倒,或小数点的位置不同时,它的弃9数却是相等的。

这样就导致弃9数虽相同,而数的实际大小却不相同的情况,这一点要特别注意
重点公式2、传球问题重点公式
N个人传M次球,记X=N-1^M/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数
重点公式3、整体消去法
在较复杂的计算中,可以将近似的数化为相同,从而作为一个整体消去
重点公式4、裂项公式
1/nn-k =1/k 1/n-k-1/n
重点公式5、平方数列求和公式
1^2+2^2+3^2…+n^2=1/6 nn+12n+1
重点公式6、立方数列求和公式
1^3+2^3+3^3…+n^3=[1/2 nn+1 ]^2
重点公式7、行程问题
1分别从两地同时出发的多次相遇问题中,第N次相遇时,每人走过的路程等于他们第一次相遇时各自所走路程的2n-1倍
2A.B距离为S,从A到B速度为V_1,从B回到A速度为V_2,则全程平均速度V= 〖2V〗_1 V_2/V_1+V_2 ,
3沿途数车问题:
同方向相邻两车的发车时间间隔×车速=同方向相邻两车的间隔
4环形运动问题:
异向而行,则相邻两次相遇间所走的路程和为周长
同向而行,则相邻两次相遇间所走的路程差为周长
5自动扶梯问题
能看到的级数=人速+扶梯速×顺行运动所需时间
能看到的级数=人速-扶梯速×逆行运动所需时间
6错车问题
对方车长为路程和,是相遇问题
路程和=速度和×时间
7队伍行走问题
V_1为传令兵速度,V_2为队伍速度,L为队伍长度,则
从队尾到队首的时间为:L/V_1-V_2
从队首到队尾的时间为:L/V_1+V_2
重点公式8、比赛场次问题
N为参赛选手数,
淘汰赛仅需决出冠亚军比赛场次=N-1,
淘汰赛需决出前四名比赛场次=N,
单循环赛比赛场次=_N^2,
双循环赛比赛场次=A_N^2
重点公式9、植树问题
两端植树:距离/间隔+1 = 棵数
一端植树环形植树:距离/间隔= 棵数
俩端均不植树:距离/间隔-1=棵数
双边植树:距离/间隔-1*2=棵数
重点公式10、方阵问题
最为层每边人数为N
方阵总人数=N^2
最外层总人数=N-1×4
相邻两层总人数差=8行数和列数>3
去掉一行一列则少2N-1人
空心方阵总人数=最外层每边人数-层数×层数×4
重点公式11、几何问题
N边形内角和=N-2×180°
球体体积=4/3 πr^3
圆柱体积=πr^2 h
圆柱体积=1/3 πr^2 h
重点公式12、牛吃草问题
牛头数-每天长草量×天数=最初总草量
重点公式13、日期问题
一年加1,闰年加2,小月30天加2,大月31天加3,28年一周期 4年1闰,100年不闰,400年再闰
重点公式14、页码问题
如:一本书的页码一共用了270个数字,求这本书的页数。

页数=270+12×9/3=126页
公式:10-99页:页数=数字+1×9/2
100-999页:页数=数字+12×9/3
1000-9999页:页数=数字+123×9/4
重点公式15、时钟问题
小知识:时针与分针一昼夜重合22次,垂直44次,成180°,也是22次
求时针与分针成一定角度时的实际时间T
T=T_0+1/11 T_0,其中T_0为时针不动时,分针走到符合题意位置所需的时间
重点公式16、非闭合路径货物集中问题
在非闭合的路径上包括线形、树形等,不包括环形有多个节点,每个节点之间通过“路”来连通,每个节点上有一定的货物。

当需要用优化的方法把货物集中到一个节点上的时候,通过以下方式判断货物流通的
方向:
1、判断每条“路”的两侧的货物总重量,在这条“路”上一定是从轻的一侧流向重
的一侧。

2、适用于“非闭合”的路径问题,与各条路径的长短没有关系;实际操作中,我们应
该从中间开始分析,这样可以更快得到答案。

1、在一条公路上每隔100公里有一个仓库,共有5个仓库,一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。

现在要把所有
的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,则最少需要
运费。

A. 4500元
B. 5000元
C. 5500元
D. 6000元
解析:本题中四条“路”都具备“左边总重量轻于右边总重量”的条件,所以这些“路”上的流通方式都是从左到右。

故集中到五号仓库是最优选择。

感谢您的阅读,祝您生活愉快。

相关文档
最新文档