数的整除特征
《数的整除特征》课件

数据存储与传输
在计算机科学中,整除是一个非常重要 的概念。例如,在数据存储和传输中, 我们需要用到二进制数,而二进制数的 整除可以用来进行数据的加密和解密。
VS
算法设计与优化
在算法设计和优化中,整除也是一个非常 重要的概念。例如,在排序算法中,我们 可以利用整除来快速判断一个数是否为整 数,从而优化算法的性能。
数的整除特征
偶数的整除特征
总结词
偶数可以被2整除
详细描述
偶数是能被2整除的整数,其特征是末尾数字为0、2、4、6或8。偶数的整除特 性表明,偶数除以2的余数为0。
奇数的整除特征
总结词
奇数不能被2整除
详细描述
奇数是除以2余数为1的整数,其特征是末尾数字为1、3、5、7或9。奇数的整除特性表明,奇数除以 2的余数只能是1。
《数的整除特征》ppt 课件
目录
• 整除的定义与性质 • 数的整除特征 • 整除的应用 • 数的整除特征的扩展知识 • 练习与思考
CHAPTER 01
整除的定义与性质
整除的定义
整除:如果整数a除以整数b( b≠0)的余数为0,那么就称a能
被b整除。
整除是数学中的一个基本概念, 是研究整数的一个重要的分支。
Байду номын сангаас
判断题
一个数如果是3的倍数,那么它 一定是9的倍数。( )
选择题
一个四位数,千位数字是个位数 字的2倍,百位数字是个位数字 的3倍,十位数字是个位数字的4
倍,这个四位数是( )。
填空题
一个四位数,千位数字是百位数 字的2倍,百位数字是十位数字 的3倍,个位数字是十位数字的4 倍,这个四位数的千位数字是( ),百位数字是( ),十位数字 是( ),个位数字是( )。
整除的特征

整除的特征:一个数能否被另一个数整除,要根据一定的规律来判断,所以要掌握一些特征。
(1)能被2 整除的数的特征:个位数是0、2、4、6、8的整数能被2整除。
例如:10、72、34、56、98都能被2整除。
(2)能被5整除的数的特征:个位数是0或5的整数能被5整除。
例如:180、315都能被5整除。
(3)能被3或9整除的数的特征:各个数位上数字的和是3或9的倍数的整数,能被3或9整除。
例如:5037各数位上的数的和是15,15是3的倍数,所以5037能被3整除。
4878各数位上的数的和是27,27是9的倍数,所以4878能被9整除。
能被9整除的数必然能被3整除,但能被3整除的数不一定能被9整除。
一个自然数除以9的余数与它的各个数位上的数字和除以9的余数相同。
(4)能被4 和25整除的数的特征:末尾两位数是4或25的倍数的整数,能被4或25整除。
例如:712末尾两倍数是12,12是4 的倍数,所以712能被4整除。
975的末尾两倍数是75,75是25的倍数,所以975能被25整除。
如果一个数既能被4整除,又能被25整除,那么这个数一定是整百数。
如700、2800都能同时被4 和25整除。
(5)能被8和125整除的数的特征:末尾三位数是8或是125的倍数,能被8或25整除。
例如:2408的末尾三位数是408,408是8的倍数,所以2408能被8整除。
9250末尾三位数是250,因为250是125的倍数,所以9250能被125整除。
如果一个数既能被8整除,又能被125整除,那么这个数一定是整千数。
如1000、3000、78000等。
(6)能被11整除的数的特征:如果一个数奇数位上的数之和与偶数位上的数之和的差是11的倍数,那么这个整数就能被11整除。
例如:189354奇数位上的数之和是1+9+5=15,偶数位的数之和是8+3+4=15,它们的差是15-15=0,因为0能被11整除,所以189354能被11整除。
数的整除的特征

一、数的整除的特征1.前面我们已学过奇数与偶数,我们正是以能否被2整除来区分偶数与奇数的。
因此,有下面的结论:末位数字为0、2、4、6、8的整数都能被2整除。
偶数总可表为2k,奇数总可表为2k+1(其中k为整数)。
2.末位数字为零的整数必被10整除。
这种数总可表为10k (其中k为整数)。
3.末位数字为0或5的整数必被5整除,可表为5k(k为整数)。
4.末两位数字组成的两位数能被4(25)整除的整数必被4(25)整除。
如1996=1900+96,因为100是4和25的倍数,所以1900是4和25的倍数,只要考察96是否4或25的倍数即可。
由于4|96能被25整除的整数,末两位数只可能是00、25、50、75。
能被4整除的整数,末两位数只可能是00,04,08,12,16,20,2 4,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的数。
5.末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除。
由于1000=8×125,因此,1000的倍数当然也是8和125的倍数。
如判断765432是否能被8整除。
因为765432=765000+432显然8|765000,故只要考察8是否整除432即可。
由于432=8×54,即8|432,所以8|765432。
能被8整除的整数,末三位只能是000,008,016,024, (9)84,992。
由于125×1=125,125×2=250,125×3=375;125×4=500,125×5=625;125×6=750;125×7=875;125×8=10000故能被125整除的整数,末三位数只能是000,125,250,3 75,500,625,750,875。
6.各个数位上数字之和能被3(9)整除的整数必能被3(9)整除。
数的整除特征

数的整除特征知识概要数的整除特征具有较强的实际意义,常用的数的整除特征如下:1、能被2整除数的特征:个位数字是0、2、4、6、8的数能被2整除。
2、能被5整除的数的特征:个位数字是0和5的数能被5整除。
3、能被3(或9)整除的数的特征:各位数字和能被3(或9)整除。
这个数能被3(或9)整除。
4、能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
5、能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
6、能被7(或11或13)整除的数的特征:末三位数与末三位以前的数字所组成的数之差(大减小)能被7(或11或13)整除。
、7、能被11整除的数的特征:奇数位数字和与偶数位数字和的差(大减小)能被11整除。
例题解评例1、如果六位数12x40y 能被72整除,试求此六位数。
思路点拨:因为六位数12x40y 是72的倍数,且72=9×8 ,所以12x40y既是8的倍数又是9的倍数。
据能被8整除的数的特征,知40y是8的倍数。
(1)当y=0时,根据1+2+x+4是9的倍数,且0≤x≤9可得x=2(2)当y=8时,根据1+2+x+4+8是9的倍数,且0≤x≤9可得x=3所以所求的六位数是122400或123408。
例2 、一个四位数,减去它的各位数字之和,其差还是一个四位数603A ,试求出A。
思路点拨:设这个四位数为abcd , 则abcd=1000×a+100×b+10×c+d,它的各位数字之和为a+b+c+d。
于是有:abcd-(a+b+c+d)=1000×a+100×b+10×c×d-(a+b+c+d)=999×a+99×b+9×c=9×(111×a+11×b+c).这表明“一个自然数减去它的各位数字之和后,所得之差一定是9的倍数,”由已知这个差等于603A ,由此就可求出A来。
数的整除特征特点

WORD格式
数的整除特征特点
一、尾数判断法:
(1)能被2、5整除的数的特征:个位数字能被2或5整除。
(2)能被4、25整除的数的特征:末两位能被4或25整除。
(3)能被8、125整除的数的特征:末三位能被8或125整除。
二、数字求和法
(1)能被3、9整除的数的特征:各位数字之和能被3或9整除。
三、奇偶位求差法
(1)能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。
四、三位截断法
(1)能被7、11、13整除的数的特征:“末三位数字组成的数”与“末三位以前的数字组成的数”之差能被7或11或13整除。
整除特征:
7:个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,
则原数能被7整除。
(如果数字太大仍然不能直接观察出来,就重复此过程。
)13:个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
17:个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
19:个位数字去掉,再从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除。
专业资料整理。
数的整除特征

数的整除特征1、能被2整除的数:个位数字是0、2、4、6、8的整数。
(个位数包括0在内的偶数。
)2、能被5整除的数:个位是0或者5.3、能被3(或9)整除的数:各个数位数字之和能被3(或9)整除。
4、能被4(或25)整除的数:末两位数能被4(或25)整除。
5、能被8(或125)整除的数:末三位数能被8(或125)整除。
例1:判断65000能否被8整除?因为0除以8商0,所以65000能被8整除。
判断65250能否被8整除?因为250除以8商31余2.所以65250不能被8整除。
判断65250能否被125整除?因为250除以125商2.所以65250能被125整除。
6、能被11整除的数:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大的减小的)是11的倍数。
例1:判断4468798712322能否被11整除?这个数的奇数位上的数字之和是:2+3+1+8+7+6+4=31这个数的偶数位上的数字之和是:2+2+7+9+8+4=32两者的差:32-31=1,1不能被11整除。
所以这个数不能被11整除。
例2:判断502468934能否被11整除?这个数的奇数位上的数字之和是:4+9+6+2+5=26这个数的偶数位上的数字之和是:3+8+4+0=15两者的差:26-15=11,11能被11整除。
所以这个数能被11整除。
7、能被7(11或13)整除的数:一个整数的末三位数与末三位以前的数字所组成的数之差(大减小)能被7(11或13)整除的。
例1:判断446879能否被7整除?这个数的末三位数组成的数是:879。
这个数末三位以前的数字所组成的数:446。
两者的差:879-446=443,443除以7余2,不能被7整除。
所以这个数不能被7整除。
例2:判断319746能否被7整除?这个数的末三位数组成的数是:746。
这个数末三位以前的数字所组成的数:319。
两者的差:746-319=427,427除以7等61。
数的整除特征

数的整除特征数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.但因为8375,所以829375。
⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
例如:判断123456789这九位数能否被11整除?解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为11|5,所以11|123456789不能。
再例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。
⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
例如:判断1059282是否是7的倍数?解:把1059282分为1059和282两个数.因为1059-282=777,又7|777,所以7|1059282.因此1059282是7的倍数。
常见数的整除特征

常见数的整除特征1.偶数的特征:偶数是可以被2整除的数。
任何一个偶数都可以表示为2n(n为整数),所以偶数除以2的余数必为0。
2.能被5整除的特征:一个数能被5整除的条件是它的个位数字为0或5、例如,10、25、45等。
3.能被10整除的特征:一个数能被10整除的条件是它的个位数字为0。
例如,30、80、120等。
4.能被2和5同时整除的特征:一个数能同时被2和5整除的条件是它的个位数字为0、2、4、6或8、例如,40、60、100等。
5.能被3整除的特征:一个数能被3整除的条件是它的各位数字之和能被3整除。
例如,36(3+6=9,9能被3整除),258(2+5+8=15,15能被3整除)等。
6.能被9整除的特征:一个数能被9整除的条件是它的各位数字之和能被9整除。
例如,99(9+9=18,18能被9整除),891(8+9+1=18,18能被9整除)等。
7.能被4整除的特征:一个数能被4整除的条件是它的末尾两位数能被4整除。
例如,116(16能被4整除),528(28能被4整除)等。
8.能被8整除的特征:一个数能被8整除的条件是它的末尾三位数能被8整除。
例如,216(216能被8整除),1152(152能被8整除)等。
9.能被6整除的特征:一个数能被6整除的条件是它能同时被2和3整除。
根据特征1和特征5,一个数能被6整除的条件是它是一个偶数且各位数字之和能被3整除。
10.质数的特征:质数是只能被1和自身整除的数。
特征1中提到的偶数和特征2中提到的能被5整除的数不是质数。
11.完全平方数的特征:完全平方数是能被一个自然数的平方整除的数。
例如,1、4、9、16等。
一个数是否是完全平方数可以通过求平方根并判断是否是整数来确定。
总结起来,常见数的整除特征包括偶数、能被2和5同时整除的数、能被3和9整除的数、特定位数(个位、末尾两位、末尾三位)能被4和8整除的数、能被6整除的数、质数和完全平方数。
通过了解这些特征,我们可以更快地判断一个数是否能被其他数整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的整除特征
一、整除特征------尾数分析法
1、尾数分析法判断整除性
(1)一个数的末一位能被2或者说整除,这个数就能被2或5整除。
(2)一个数的末两位数能被4或25整除,这个数就能被4或25整除。
(3)一个数的末三位数能被8或者125整除,这个数就能被8或是25整除。
2、被25或125整除的数的特点
(1)被25整除的数必须是以25、75、00结尾的数
(2)被125整除的数必须是以125、250、375、500、625、750、875、000结尾的数。
二、整除特征-----数位和分析法
1、数位和分析法判断整除性
(1)一个数各个数位上的数字和能被3整除,这个数能被3整除。
(2)一个数各个数位上的数字和能被9整除,这个数就能被9整除.
2、数位和分析法原理
数位和分析法同样是根据位值原理推导出来的,
举例:1234=1×1000+2×100+3×10+4×1
=1×(999+1)+2×(99+1)+3(9+1)+4×1
=1×999+2×99+3×9+(1+2+3+4)
其中999、99、9都能被3或9整除,所以只需要看1234的各位数字和1+2+3+4能否被3或9整除即可,用这种方法同样能求出1234除以3或9的余数。
3、弃9法
“弃九法”也叫做弃九验算法,利用这种方法可以验算加、减、乘计算的结果是否错误,把一个数的各位数字相加,直到和是一个一位数(和是9,要减去9得0),这个数就叫做原来数的弃九数。
三、整除特征---数位差分析法
1、 11的整除特征:
如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。
2、 7、11、13的整除特征
如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11、或者3整除,那么这个数能被7、11、或者3整除。
+
、
、
、、。