地图投影

合集下载

地图投影第二章地图投影方法变形分类

地图投影第二章地图投影方法变形分类



a b=r2


CHENLI
a> r,b=r 5
a≠b≠r 6
23
CHENLI
24
三、投影变形的性质和大小
长度比和长度变形:
投影面上一微小线段(变形椭圆半径)和球 面上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
m表示长度比, Vm表示长度变形
m ds' ds
Vm m 1
Q(0,0),球面上的各点便以新极点Q为原点,以方
位角和天顶距 Z 表示其位置,从而构成球面极坐标系。
CHENLI
32
球面极坐标系
第二节 地理坐标
在地图测制中是把地球表面作为旋转椭球面处理。 地球椭球面上各点的位置,是以地理坐标即经度 和纬度来确定。经纬度是一种绝对的坐标系统。
P,P1—北、南极
CHENLI
2
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
3
二、投影方式: 1.平行投影
CHENLI
4
2.透视投影
CHENLI
5
3. 广义投影
CHENLI
6
三、地图投影实质: 建立平面上的点(用平面直角坐标或极坐标
CHENLI
16
2. 投影变形的概念 地图投影不能保持平面与球面之间在
长度(距离)、角度(形状)、面积等方 面完全不变。
地球仪上经纬线网格和地图上比较:
CHENLI
17
球面经纬网经过投影之后,其几何特征 受到扭曲——地图投影变形:长度(距离)、 角度(形状)、面积。

第四讲 地图投影概述

第四讲 地图投影概述

利用光源把地球面上的经纬网投影到平面上的方法叫几何投影或几何 透视法。这是人们最早用来解决地球球面和地图平面矛盾的方法。 透视法。这是人们最早用来解决地球球面和地图平面矛盾的方法。
二、地图投影的基本方法
2.数学解析法:随着科学的发展,几何透视法 数学解析法:随着科学的发展, 数学解析法 远不能满足编制各类地图的需要, 远不能满足编制各类地图的需要,出现了解 析法。解析法是不借助于几何投影光源( 析法。解析法是不借助于几何投影光源(而 仅仅借助于几何投影的方式),按照某些条 仅仅借助于几何投影的方式),按照某些条 ), 件用数学分析法确定球面与平面点与点之间 一一对应的函数关系。 一一对应的函数关系。 X=f1(φ、λ) 、 Y=f2(φ、λ) 、 函数f1、 的具体形式 的具体形式, 函数 、f2的具体形式,是由给定的投影条件 确定的。有了这种对应关系, 确定的。有了这种对应关系,就可把球面上 的经纬网交点表示到平面上了。 的经纬网交点表示到平面上了。
这种在球面和平面之间建立点与点之间函数关系的数学方
称为地图投影。 法,称为地图投影。
二、地图投影的基本方法
1.几何投影(透视投影):假想地球是一个透明体,光源位于球心, 1.几何投影(透视投影):假想地球是一个透明体,光源位于球心, 几何投影 ):假想地球是一个透明体 然后把球面上的经纬网投影到平面上,就得到一张球面经纬网投影。 然后把球面上的经纬网投影到平面上,就得到一张球面经纬网投影。 地图投影面除平面之外,还有可展成平面的圆柱面和圆锥面; 地图投影面除平面之外,还有可展成平面的圆柱面和圆锥面;光源除 位于球心之外,还可以在球面、球外,或无穷远处等。 位于球心之外,还可以在球面、球外,或无穷远处等。
d o
b
d’ o’

地图投影基础知识课件

地图投影基础知识课件
Q1/2.5万:把1/5万图 分为四幅,编号为1、 2、3、4 。方法如下: J-50-144-A-1
Q1/1万地形图:将1/10 万图分8行、8列共64 张,编号 (1) 、 (2 ) 、--、 (64) 。
图号如:
J-50-144- (1)
3. 新编号系统
Qr. 分幅未变,编号体系变。 QS. r\r00万图原来列改称行,行称列。
(3) 变形规律
•切点或割线无变形 • 等变形线以投影中心为圆心呈同心圆分布。
(4) 常见投影及其用途
•正轴等积方位投影--南北两极图 •横轴等积方位投影--东西半球图
•斜轴等积方位投影--水陆半球图
•斜轴等距方位投影--航空图 等距:指从投影中心向各个方向长度变 形为零。
2 圆锥投影
(1) 经纬网的特征
半球地图的投影:东西半球有横轴等面积(等角)方位投 u 南北半球有正轴等面积(等角、等距离)方位投影。 u 各大洲地图的投影:各洲都选用了斜轴等面积方位投影, 外,亚洲和北美洲( 彭纳投影)、欧洲和大洋州(正轴等圆 锥投影)、南美洲(桑逊投影)。 u我国各种地图投影:全国地图(各种投影, lambert投影 多)、分省区地图(各种投影,高斯-克吕格投影最多)、 比例尺地形图(高斯-克吕格投影)。
Q1/25万:J-50-[1]
Q1/10万:将1/100万图 分为12行、12列共144 张1/10万地形图,编 号用1、2、- - -、144 。
直接加到1/100万图
后面。如:J-50-144
(5) .1/5万、1/2.5万、1/1万地形图分 幅编号
Q1/5万:把1/10万地形 图分为四幅。编号为 A、B、C、D 。方法如 下:J-50-144-A
(1) 经纬网的形状

第二章下 常用地图投影

第二章下 常用地图投影

(2)变形规律

切点没变形,离切点越远,变形越 大。 等变形线是以切点为圆心的同心圆。 切点向任意一点的方位角没变形。
斜轴等积方位投影
(3)用途

主要用于绘制水、陆半球,除非洲、南极洲以外的各 大洲(例如亚洲、欧洲、大洋洲、北美洲、南美洲)。 适合中高纬地区呈圆形区域的国家或地区。(例如包 含南海诸岛的中国全国)
(2)经纬线形状
纬线投影成一组平行直 线,经线投影成与纬线垂 直的平行直线。 纬线间距,从赤道向两极 放大,经线间距相等。
(3)变形特点

角度没有变形。 赤道没有变形,离赤道越远,面积变形越大。 等变形线是平行于纬线的直线。
(4)用途
常用于绘制世界时区图、世界交通图。 适合绘制赤道附近沿东西延伸的国家或地区 由于等角航线投影为直线,所以广泛用来绘制 海图。
2、正轴割圆锥投影(南海诸岛作插图的中国全图)

正轴等角割圆锥投影(Lambert conformal projection兰勃特) 正轴等积割圆锥投影(Albers projection亚尔勃斯)
(1)投影的几何概念
以圆锥投影作为投影面,使圆锥面与球面相割 (两条割线为标准线),按等角或等积条件将球面 上的经纬线投影到圆锥面上,然后将圆锥面展为平 面而成。

纬线投影为同心圆弧,经线投影为放射状直线。纬 线间隔从标准纬线向南向北是逐渐缩小的。
(3)变形规律
①两条标准线没有变形,离标 准线越远变形越大。 ②等变形线是平行于纬线的圆 弧。 ③在两条标准线之间,长度比 小于 1 ,为负变形;而在两 条标准线之外,长度比大于 1,为正变形。
中国地图(南海诸岛作插图)的标准线: ϕ 1=25°,ϕ 2=45/47°

各种地图投影

各种地图投影

正射投影(投影的视点位于离球心无穷远处,
即D=∞);外心投影(投影的视点位于球面外有 限的距离处,即R<D<∞ );球面投影(投影的 视点位于球面上,即D=R);球心投影(投影的 视点位于球心,即D=0)。
精选完整ppt课件
55
三、方位投影变形分析及应用
1、变形特点
极点为投影中心点,投影中心点到任意点的方位 角无变形;等变形线成为圆形。
42
6、坐标规定
在高斯-克吕格投影上,规定以中央经线 为X轴,赤道为Y轴,两轴的交点为坐标原点 。X值在赤道以北为正,以南为负,Y坐标值 在中央经经以东为正,以西为负,我国的X 值均为正,但Y值在中央经线以西为负,运 用起来很不方便,故将各带的坐标纵轴西移 500km,并冠以带号,称通用坐标。
精选完整ppt课件
经纬线网是指由经线和纬线所构成的坐标网, 指示物体在地面的地理位置,又称地理坐标网。
现行图式规定,1:5000,1:1万,1:2.5万,1:5 万,1:10万地形图图幅内不绘制经纬线网;
1:25万和1:50万地形图应在图幅内绘制经纬线 网。经纬线间隔分别为15分×10分,30分×20分。
精选完整ppt课件
精选完整ppt课件
67
精选完整ppt课件
68
四、多圆锥投影:
假想多个圆锥表面与球面相切。纬线为同轴圆弧,其圆心
位于中央经线上,其余经线则投影成对称于中央经线的曲线。
精选完整ppt课件
69
精选完整ppt课件
70
精选完整ppt课件
71
五、桑逊投影
经线为正弦曲线的等积伪圆柱投影 纬线为间隔相等的平行直线,每条纬线上经线的间隔 相等。经线为对称于中央经线的正弦曲线。由法国桑逊在 1650年设计的。特点:P=1;n=1;M>1;M。=1

地图投影转换的方法及注意事项

地图投影转换的方法及注意事项

地图投影转换的方法及注意事项一、引言地图投影是将地球上的曲面表示为平面投影的一种方式,在地理信息领域发挥着重要作用。

然而,由于地球的曲面无法完美地映射到二维平面上,所以在进行地图投影时,我们需要选择合适的方法并注意一些事项,以确保地图的准确性和可用性。

二、地图投影方法1. 圆柱投影法圆柱投影法是最常见的一种地图投影方法。

它将地球表面投影到一个切割的圆柱体上,再将圆柱体展开成平面。

常见的圆柱投影法包括墨卡托投影、兰勃托投影和正轴等距圆柱投影。

这种投影方法适用于大范围地图,但在高纬度地区会存在形变问题。

2. 锥形投影法锥形投影法也是一种常用的地图投影方法。

它将地球表面投影到一个切割的锥体上,再将锥体展开成平面。

兰勃托锥形投影和兰勃托等面积投影是常见的锥形投影方法。

锥形投影法适用于较小范围的地图,地图形状比较真实,但在地图边缘会存在形变。

3. 平面投影法平面投影法将地球表面投影到一个切割的平面上。

根据投影中心的不同,平面投影法可分为正轴等距圆盘投影、兰勃托投影和阿波洛尼奥斯投影等。

平面投影法适用于小范围地图,投影中心附近形状准确,但离中心越远,形变越大。

三、地图投影注意事项1. 选择合适的投影方法根据地图的范围和用途选择合适的投影方法非常重要。

对于大范围的地图,圆柱投影法是不错的选择,而对于小范围的地图,平面投影法可能更适合。

考虑地图的形变和准确度,综合评估不同投影方法的优劣,选择最合适的方法。

2. 避免形变问题无论选择哪种投影方法,都无法避免地图形变的问题。

为了尽可能地减小形变,可以选择等面积投影方法,保持地区间的面积比例一致。

此外,在制作地图时,还可以通过引入坐标转换或插值的方法来修正形变。

3. 注意地图投影中心地图投影中心的选择对于地图的可用性和准确性至关重要。

选择合适的中心点可以在特定区域内确保地图形状的准确性。

同时,投影中心还影响到地图的距离和方向,因此在选择地图投影中心时要谨慎考虑。

4. 考虑投影带如果地图跨越多个经度带,应根据各经度范围的不同,选择不同的投影带,以确保地图的准确性。

地图投影基本知识

地图投影基本知识
GIS中使用的地图投影有多种类型,如墨卡托投影、等角投影、等面积投影等。 选择合适的地图投影对于保证地图的精度和实用性至关重要。
导航系统
导航系统,如全球定位系统(GPS),使用地图投影将地球表 面上的位置信息转换为可在电子地图上显示的坐标。
导航系统中的地图投影通常需要满足特定的要求,如覆盖范 围、精度和稳定性。此外,为了方便用户使用,地图投影还 需要考虑可视化和界面设计等方面。
04
地图投影的未来发展
高科技在地图投影中的应用
3D打印技术
利用3D打印技术,可以制作出具有复杂形状和结构的地图模型, 提高地图的视觉效果和实用性。
虚拟现实与增强现实技术
通过虚拟现实(VR)和增强现实(AR)技术,用户可以在计算机 或移动设备上查看三维地图,并获得更加沉浸式的体验。
人工智能与机器学习
持视觉效果真实。
圆锥投影
将地球表面投影到圆锥 面上,适用于表示中纬
度地区。
圆柱投影
将地球表面投影到圆柱 面上,适用于表示全球
范围。
03
地图投影的应用
地理信息系统(GIS)
地理信息系统(GIS)是使用地图投影将地球表面上的地理坐标转换为平面坐标的系 统。通过GIS,用户可以在地图上查询、分析和可视化地理数据,为决策提供支持。
地图投影基本知识
目录
• 引言 • 地图投影的分类 • 地图投影的应用 • 地图投影的未来发展
01
引言
什么是地图投影
地图投影是将地球表面的地理坐标转 换为平面坐标的过程,即将三维的地 球表面信息映射到二维的平面地图上 。
地图投影是地理信息系统(GIS)和地 图制作中不可或缺的环节,它能够将复 杂的地球表面信息简化为易于理解和使 用的平面地图。

地图投影的名词解释

地图投影的名词解释

地图投影的名词解释地图投影是将三维的地球表面投影到二维平面上的一种方法。

由于地球是一个近似于椭球体的形状,而平面是一个无限大的二维表面,所以在将地球表面转化为平面的过程中,必然会出现形状、面积、方向等的变形,这就是地图投影的本质所在。

一、地图投影的基本原理地图投影是地理学与地图制图学中的重要内容,其基本原理可以理解为建立地球和平面之间的映射关系。

在投影过程中,地球表面上的点被映射到平面上的相应点,形成了地图上的数据。

而为了准确地表示地球表面的形状、地理特征等信息,需要选择适合的投影方案。

二、地图投影的分类根据不同的目的和需求,地图投影可以分为多种类型,常见的包括等距投影、等面积投影、等角投影和混合投影等。

1. 等距投影等距投影是指投影后的地图上的任意两点之间的距离与地球上的相应两点之间的距离保持一致。

这种投影方法在测量和导航等领域非常有用,常见的等距投影有墨卡托投影和极射同圆投影等。

2. 等面积投影等面积投影是指在地球表面的任意区域上,被投影到地图上的区域与地球上相应区域的面积保持一致。

这种投影方法在研究地区的面积分布、资源分布等方面非常有用,常见的等面积投影有兰勃托投影和豪森投影等。

3. 等角投影等角投影是指投影后的地图上的任意两条曲线之间的夹角与地球上的相应两条曲线之间的夹角保持一致。

这种投影方法在表示地球表面的形状、方向等方面非常有用,常见的等角投影有兰勃托投影和伪卫星投影等。

4. 混合投影混合投影是指将两种或多种投影方法结合起来使用,通过调整参数或变换过程来达到更好的投影效果。

这种投影方法在综合考虑地球表面的形状、面积、方向等特征上非常有用,常见的混合投影有兰勃托-兰勃托投影和兰勃托-极射同圆投影等。

三、地图投影的应用领域地图投影在地理信息系统、导航、城市规划等领域具有广泛的应用。

通过合适的投影方法,可以制作出形状准确、信息完整的地图,为人们的生产、生活与研究提供参考和支持。

1. 地理信息系统地图投影在地理信息系统中是至关重要的,它将实际地球表面上的数据转化为平面上的点、线、面等要素,使得地理数据在计算机中得以处理和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界地图常用地图投影知识大全在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。

一、世界地图常用投影1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference)普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。

1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。

等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。

通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。

从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。

我国绝大部分地区的面积变形在10%以内。

中央经线和±44º纬线的交点处没有角度变形,随远离该点变形愈大。

全国大部分地区的最大角度变形在10º以内。

等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

类似投影还有正切差分纬线多圆锥投影(Polyconic Projection with Meridional Intervals on Decrease Away From Central Meridian by Tangent),该投影是1976年中国地图出版社拟定的另外一种不等分纬线的多圆锥投影。

该投影的经纬线形状和上一个投影相同,其经线间隔从中央经线向东西两侧按与中央经线经差的正切函数递减。

该投影属于角度变形不大的任意投影,角度无变形点位于中央经线和纬度±44º的交点处,从无变形点向赤道和东西方向角度变形增大较慢,向高纬增长较快。

面积等变形线大致与纬线方向一致,纬度±30º以内面积变形为10%-20%,在±60º处增至200%。

总体来看,世界大陆轮廓形状表达较好,我国的形状比较正确,大陆部分最大角度变形均在6º以内;大部分地区的面积变形在10%-20%以内。

我国常采用该投影编制世界地图。

2.古德投影(Goode Projection)从伪圆柱投影的变形情况来看,中央经线是一条没有变形的线,离开它越远,变形越大。

因此,为了更大程度地减小投影变形,同时使各部分的变形分布相对均匀,1923年美国地理学家古德(J.Paul Goode)提出了一种对伪圆柱投影进行分瓣的投影方法,即古德投影。

古德投影的设计思想是对摩尔维特等积伪圆柱投影进行“分瓣投影”,即在整个制图区域的几个主要部分,分别设置一条中央经线,然后分别进行投影。

投影的结果,全图被分成几瓣,各瓣通过赤道连接在一起,地图上仍无面积变形,核心区域的长度、角度变形和相应的伪圆柱投影相比明显减小,但投影的图形却出现了明显的裂缝,这种尽量减少投影变形,而不惜图面的连续性是古德投影的重要特征(图2-29)。

回味古德投影的设计思想,不难看出:尽可能地减小投影变形,而不惜图面的连续,是该投影设计的重要思路。

3、摩尔维特投影(Mollweide Projection)摩尔维特投影是一种经线为椭圆曲线的正轴等积伪圆柱投影。

该投影的的中央经线为直线,离中央经线经差±900的经线为一个圆,圆的面积等于地球面积的一半,其余的经线为椭圆曲线。

赤道长度是中央经线的两倍。

纬线是间隔不等的平行直线,其间隔从赤道向两极逐渐减小。

同一纬线上的经线间隔相等(图2-28)。

摩尔维特投影没有面积变形。

赤道长度比n0=0.9。

中央经线与南北纬40 = 0 \* Arabic 04 4´11.8″的两个交点是没有变形的点,从这两点向外变形逐渐增大,而且越向高纬,长度、角度变形增加的程度越大。

摩尔维特投影常用来编制世界,大洋图,由于离中央经线经差±900的经线是一个圆,且圆面积恰好等于半球面积,因此,该投影也用来编制东、西半球地图。

4、桑逊投影(Sanson Projection)桑逊投影是一种经线为正炫曲线的正轴等积伪圆柱投影,又称桑逊-弗兰斯蒂德(Sanson- Flamsteed)投影。

该投影的纬线为间隔相等的平行直线,经线为对称于中央经线的正弦曲线(图2-27)。

中央经线长度比为1,即m0=1,且n=1,p=1。

桑逊投影为等面积投影,赤道和中央经线是两条没有变形的线,离开这两条线越远,长度、角度变形越大。

因此,该投影中心部分变形较小,除用于编制世界地图外,更适合编制赤道附近南北延伸地区的地图,如非洲、南美洲地图等。

5、空间斜轴墨卡托投影(Space Oblique Mercator Projection)这是美国针对陆地卫星对地面扫描图像的需要而设计的一种近似等角的投影。

这种投影与传统的地图投影不同,是在地面点地理坐标(λ,φ)或大地坐标(x,y,z)的基础上,又加入了时间维,即上述坐标是时间t的函数,在四维空间动态条件下建立的投影。

空间斜轴墨卡托投影(简称SOM投影),是将空间圆柱面斜切于卫星地面轨迹,因此,卫星地面轨迹成为该投影的无变形线,其长度比近似等于1。

这条无变形线是一条不同于球面大圆线的曲线,其地面轨迹迹只所以是弯曲的,是因为卫星在沿轨道运行时地球也在自转,卫星轨道对于赤道面的倾角,将卫星地面轨迹限制在约±810之间的区域内(图2-26)。

这种投影,是设想空间圆柱面为了保持与卫星地面轨迹相切,必须随卫星的空间运动而摆动,并且根据卫星轨道运动、地球自转等几种主要条件,将经纬网投影到圆柱表面上。

在该投影图上,卫星地面轨迹为以某种角度与赤道相交的斜线,卫星成像扫描线与卫星地面轨迹垂直,并且能正确反映上述几种运动的影响,可将地面景像直接投影到SOM投影面上。

6、墨卡托投影(Mercator Projection)墨卡托投影属于正轴等角圆柱投影。

该投影设想与地轴方向一致的圆柱与地球相切或相割,将球面上的经纬线网按等角的条件投影到圆柱面上,然后把圆柱面沿一条母线剪开并展成平面。

经线和纬线是两组相互垂直的平行直线,经线间隔相等,纬线间隔由赤道向两极逐渐扩大(图2-25)。

图上无角度变形,但面积变形较大。

在正轴等角切圆柱投影中,赤道为没有变形的线,随着纬度增高,长度、面积变形逐渐增大。

在正轴割圆柱投影中,两条割线为没有变形的线,离开标准纬线愈远,长度、面积变形值愈大,等变形线为与纬线平行的直线。

墨卡托投影的等角航线(斜航线)表现为直线。

这一特性对航海具有重要意义。

但球面上两点之间的最短距离是大圆航线,而不是等角航线,因此远洋航行,完全沿等角航线航行是不经济的。

墨卡托投影的等角性质和把等角航线表现为直线的特性,使其在航海地图中得到了广泛应用。

另外,该投影也可用来编制赤道附近国家及一些区域的地图。

二、半球地图常用投影1、横轴等积方位投影(Lambert,s Azimuthal Equivalent Projection)又名兰勃特(mbert)方位投影,赤道和中央经线为相互正交的直线,纬线为凸向对称于赤道的曲线,经线为凹向对称于中央经线的曲线。

该投影图上面积无变形,角度变形明显。

投影时的切点为无变形点,角度等变形线以切点为圆心,呈同心圆分布。

离开无变形点愈远,长度、角度变形愈大,到半球的边缘,角度变形可达38º37΄。

横轴等积方位投影常用于编制东、西半球地图。

东半球的投影中心为70ºE与赤道的交点(图2-31);西半球的投影中心为110ºW与赤道的交点。

2、横轴等角方位投影(Transverse Azimuthal Orthomorphic Projection)横轴等角方位投影又名球面投影(Stereographic Projection)、平射投影,是一种视点在球面,切点在赤道的完全透视的方位投影(图2-32),又称赤道投影。

经纬线网形状与横轴等积方位投影的经纬线网相同。

在变形方面,该投影没有角度变形,但面积变形明显。

赤道上的投影切点为无变形点,面积等变形线以切点为圆心,呈同心圆分布。

离开无变形点愈远,长度、面积变形愈大,到半球的边缘,面积变形可达400%。

3、正轴等距方位投影(Postel’s Projection)正轴等距方位投影又名波斯特尔(G.Postel)投影,纬线为同心圆,经线为交于圆心的放射状直线,其夹角等于相应的经差。

该投影的特点是经线方向上没有长度变形,因此纬线间距与实地相等。

切点在极点,为无变形点。

有角度变形和面积变形,等变形线均以极点为中心,呈同心圆分布,离无变形点愈远,变形愈大(图2-33)。

在世界地图集中,正轴等距方位投影多用于编制南、北半球地图和北极、南极区域地图。

三、分洲、分国地图常用投影分洲、分国地图采用的投影以方位投影、圆锥投影和伪圆锥投影为主。

1、斜轴等积方位投影(Oblique Equal-area Projection)投影而与椭球面相切于极地与赤道之间的任一点(投影中心)。

中央经线为直线,其余经线为凹向对称于中央经线的曲线;纬线为凹向极地的曲线。

中央经线上,纬线间距从投影中心向南、向北逐渐缩短(图2-34)。

该投影没有面积变形,中央经线上的投影中心无变形,长度和角度变形随着远离投影中心而逐渐增加,等变形线为同心圆,主要用于编制亚洲、欧洲和北美洲等大区域地图。

中国政区图可采用此投影,投影中心通常位于300N,1050E。

类似投影斜轴等角方位投影(Oblique Conformal Projection)的经纬线形状和该投影完全相同,但投影条件按ω=0设计,中央经线上的纬线间距从中心向南、向北逐渐增加。

2、正轴等角圆锥投影(Labert Projection)正轴圆锥投影的纬线为同心圆弧,经线为放射性直线。

无论变形性质如何,只要是切圆锥投影,相切的纬线就是标准纬线,其长度比等于1,其它纬线的长度比均大于1;只要是割圆锥投影,相割的两条纬线为标准纬线,其长度比为1。

相关文档
最新文档