高考数学二十二个必考问题讲解

合集下载

高考数学二十二个必考问题讲解17

高考数学二十二个必考问题讲解17

必考问题17 与圆锥曲线有关的定点、定值、最值、范围问题1.(2011·新课标全国)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( ).A .18B .24C .36D .48答案: C [不妨设抛物线的标准方程为y 2=2px (p >0),由于l 垂直于对称轴且过焦点,故直线l 的方程为x =p2.代入y 2=2px 得y =±p ,即|AB |=2p ,又|AB |=12,故p =6,所以抛物线的准线方程为x =-3,故S △ABP =12×6×12=36.]2.(2011·山东)设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( ).A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案:C [∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.]3.(2010·福建)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P为双曲线右支上的任意一点,则O P →·F P →的取值范围为( ).A .[3-23,+∞)B .[3+23,+∞) C.⎣⎡⎭⎫-74,+∞D.⎣⎡⎭⎫74,+∞ 答案:B [如图,由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x23-y 2=1.设P (x ,y )(x ≥3),O P →·F P →=(x ,y )·(x +2,y )=x 2+2x +y 2 =x 2+2x +x 23-1=43x 2+2x -1(x ≥3).令g (x )=43x 2+2x -1(x ≥3),则g (x )在[3,+∞)上单调递增.g (x )m i n =g (3)=3+2 3.∴O P →·F P →的取值范围为[3+23,+∞).]4.(2012·浙江)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________.解析 因曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离为|0-(-4)|2- 2=2 2-2=2,则曲线C 1与直线l 不能相交,即x 2+a >x ,∴x 2+a -x >0.设C 1:y =x 2+a 上一点为(x 0,y 0), 则点(x 0,y 0)到直线l 的距离d =|x 0-y 0|2=-x 0+x 20+a2=⎝⎛⎭⎫x 0-122+a -142≥4a -14 2=2,所以a =94.答案 94本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查定点、定值、最值、范围问题或探索性问题,试题难度较大.复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用韦达定理进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用,如解析几何中的最值问题往往需建立求解目标的函数,通过函数的最值研究几何中的最值.必备知识有关弦长问题有关弦长问题,应注意运用弦长公式及韦达定理,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用韦达定理,即作如下变形:|x2-x1|=(x1+x2)2-4x1x2;|y2-y1|=(y1+y2)2-4y1y2.(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O为坐标原点,则有①|OP|∈[b,a];②|PF1|∈[a-c,a+c];③|PF1|·|PF2|∈[b2,a2];④∠F1PF2≤∠F1BF2.(2)双曲线中的最值F1、F2为双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,P为双曲线上的任一点,O为坐标原点,则有①|OP|≥a;②|PF1|≥c-a.(3)抛物线中的最值点P为抛物线y2=2px(p>0)上的任一点,F为焦点,则有①|PF|≥p 2;②A(m,n)为一定点,则|P A|+|PF|有最小值.必备方法1.定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.2.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.圆锥曲线中的定点、定值问题该类问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.难度较大.【例1】►(2012·湖南)在直角坐标系xOy中,曲线C1上的点均在圆C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.(1)求曲线C1的方程;(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.[审题视点][听课记录][审题视点] (1)直接根据曲线与方程的概念求解,或者转化为根据抛物线的定义求解均可;(2)首先建立圆的两条切线的斜率与点的坐标之间的关系,其次把圆的切线方程与抛物线方程联立消元,根据根与系数的关系得出纵坐标之和和纵坐标之积,最后从整体上消去参数(圆的切线斜率)即可得证.(1)解法一设M的坐标为(x,y),由已知得|x+2|=(x-5)2+y2-3.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0, 所以(x -5)2+y 2=x +5.化简得曲线C 1的方程为y 2=20x .法二 由题设知,曲线C 1上任意一点M 到圆心C 2(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)证明 当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0),又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是|5k +y 0+4k |k 2+1=3.整理得72k 2+18y 0k +y 20-9=0.①设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根,故k 1+k 2=-18y 072=-y 04.②由⎩⎪⎨⎪⎧k 1x -y +y 0+4k 1=0,y 2=20x得k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以y 1y 2=20(y 0+4k 1)k 1.④同理可得y 3y 4=20(y 0+4k 2)k 2.⑤于是由②,④,⑤三式得 y 1y 2y 3y 4=400(y 0+4k 1)(y 0+4k 2)k 1k 2=400[y 20+4(k 1+k 2)y 0+16k 1k 2]k 1k 2=400(y 20-y 20+16k 1k 2)k 1k 2=6 400.所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400.解圆锥曲线中的定点、定值问题可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定值、定点问题的选择题或填空题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.【突破训练1】 设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A ,B 两点.(1)设L 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值.(1)解 ∵F (1,0),∴直线L 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x -1,y 2=4x 得x 2-6x +1=0,∴x 1+x 2=6,x 1x 2=1. ∴|AB |=(x 2-x 1)2+(y 2-y 1)2 =2·(x 1+x 2)2-4x 1x 2 =2·36-4=8.(2)证明 设直线L 的方程为x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,y 2=4x得y 2-4ky -4=0. ∴y 1+y 2=4k ,y 1y 2=-4,OA →=(x 1,y 1),OB →=(x 2,y 2).∵O A →·OB →=x 1x 2+y 1y 2=(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2 =-4k 2+4k 2+1-4=-3. ∴OA →·OB →是一个定值. 圆锥曲线中的最值、范围问题该类试题设计巧妙、命制新颖别致,常求特定量、特定式子的最值或范围.常与函数解析式的求法、函数最值、不等式等知识交汇,成为近年高考热点.【例2】► (2012·浙江)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程. [审题视点] [听课记录][审题视点] (1)利用椭圆的离心率为12,其左焦点到点P (2,1)的距离为10求解.(2)由题意可知直线l 的斜率存在,设为y =kx +m ,结合椭圆方程,线段AB 被直线OP 平分可求k 值.然后以AB 为底,点P 到直线AB 的距离为高表示出S △ABP 的表达式,借助导数求最值.解 (1)设椭圆左焦点为F (-c,0),则由题意得⎩⎪⎨⎪⎧(2+c )2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2. 所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得 (3+4k 2)x 2+8kmx +4m 2-12=0,(1) 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点M ⎝⎛⎭⎫-4km 3+4k 2,3m3+4k 2.因为M 在直线OP :y =12x 上,所以3m3+4k 2=-2km 3+4k 2. 得m =0(舍去)或k =-32.此时方程(1)为3x 2-3mx +m 2-3=0,则 Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2. 设点P 到直线AB 距离为d ,则 d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·(m -4)2(12-m 2). 其中m ∈(-2 3,0)∪(0,2 3).令u (m )=(12-m 2)(m -4)2,m ∈[-2 3,2 3], u ′(m )=-4(m -4)(m 2-2m -6) =-4(m -4)(m -1-7)(m -1+7). 所以当且仅当m =1-7,u (m )取到最大值. 故当且仅当m =1-7,S 取到最大值. 综上,所求直线l 方程为3x +2y +2 7-2=0.求最值或范围常见的解法:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,可考虑利用图形性质来解决;(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求最值;(3)求函数最值常用的代数法有配方法、判别式法、导数法、基本不等式法及函数的单调性、有界性法等.【突破训练2】 (2012·陕西五校联考)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为( ).A .-2B .-8116C .1D .0答案: A [由已知得A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2.]圆锥曲线中探索性问题此类问题命题背景宽,涉及知识点多,综合性强,探究平分面积的线、平分线段的线,或探究等式成立的参数值.常与距离、倾斜角、斜率及方程恒成立问题综合,形成知识的交汇.【例3】► (2011·重庆卷改编)如图,椭圆的中心为原点O ,离心率e =22,且a 2c=2 2.(1)求该椭圆的标准方程;(2)设动点P 满足:OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.[审题视点] [听课记录][审题视点] (1)利用e =22,a 2c=22求a ,c .(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),由OP →=OM →+2ON →可得x =x 1+2x 2,y =y 1+2y 2,又点M 、N 在椭圆x 2+2y 2=4上,可得x 21+2y 21=4,x 22+2y 22=4,再结合直线OM 与ON 的斜率之积为-12.可求得点P 满足方程x 2+2y 2=20.由椭圆的定义可求解.解 (1)由e =c a =22,a 2c =22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1. (2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2),即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)设k OM ,k ON 分别为直线OM ,ON 的斜率,由题设条件知 k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20.所以P 点是椭圆x 2(25)2+y 2(10)2=1上的点,设该椭圆的左、右焦点为F 1,F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =(25)2-(10)2=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论.【突破训练3】 (2012·济南模拟)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存在常数k ,使得向量OP →+OQ →与AB →共线?如果存在,求k 的值;如果不存在,请说明理由.解 (1)由已知,得直线l 的方程为y =kx +2, 代入椭圆方程,得x 22+(kx +2)2=1,整理,得⎝⎛⎭⎫12+k 2x 2+22kx +1=0,① 直线l 与椭圆有两个不同的交点P 和Q 等价于 Δ=8k 2-4×⎝⎛⎭⎫12+k 2=4k 2-2>0, 解得k <-22或k >22, 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.(2)设P (x 1,y 1),Q (x 2,y 2), 由方程①,得x 1+x 2=-42k1+2k 2,②又y 1+y 2=k (x 1+x 2)+2 2.③而A (2,0),B (0,1),AB →=(-2,1), 所以OP →+OQ →与AB →共线等价于将②③代入上式,解得k =22, 由(1)知k <-22或k >22,故没有符合题意的常数k .圆锥曲线“最”有应得椭圆、双曲线、抛物线的最值问题的解题方法较灵活,学生时常感到无从下手.常遇到面积最大最小问题,距离的最长最短问题,不定量的最大最小问题等等,下面给同学们提供两种解法,只要掌握了它们,就可以“最”有应得.一、几何法求最值【示例1】► 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值.[满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.(2分)设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y .(6分)(2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·(-2)-(-2)-2|22+(-1)2=45=4 55.(9分)由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |= 1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4·(-4)=4 10.于是,△ABP 面积的最大值为 12×4 10×4 55=8 2.(12分) 老师叮咛:当所求的最值是圆锥曲线上的点到某条直线的距离的最值问题时,可以通过作与这条直线平行的圆锥曲线的切线,则两条平行线间的距离,就是所求的最值,切点就是曲线上取得最值的点,这种求最值的方法称为切线法.切线法的基本思想是数形结合,其中求曲线的切线方程需要利用导数知识,判断切线与曲线的最值需要借助几何图形的直观性,通过图形来确定何时取得最大值,何时取得最小值.二、函数法求最值【示例2】► (2012·广东)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.[满分解答] (1)由e =ca=a 2-b 2a 2= 23,得a =3b , 椭圆C :x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2,设P (x ,y )为C 上任意一点,则|PQ |= x 2+(y -2)2= -2(y +1)2+3b 2+6,-b ≤y ≤b .若b <1,则-b >-1,当y =-b 时,|PQ |max = -2(-b +1)2+3b 2+6=3,又b >0,得b =1(舍去),若b ≥1,则-b ≤-1,当y =-1时,|PQ |max = -2(-1+1)2+3b 2+6=3,得b =1.∴椭圆C 的方程为x 23+y 2=1.(6分)(2)法一 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤ 3.由题意可得S △AOB =12|OA |·|OB |sin ∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时取等号,这时△AOB 为等腰直角三角形, 此时圆心(0,0)到直线mx +ny =1的距离为22, 则1m 2+n2=22,得m 2+n 2=2,又m 23+n 2=1,解得m 2=32,n 2=12,即存点M 的坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22,⎝⎛⎭⎫-62,-22满足题意,且△AOB 的最大面积为12.(12分)法二 假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤3,又设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧mx +ny =1x 2+y 2=1,消去y 得(m 2+n 2)x 2-2mx +1-n 2=0,①把n 2=1-m 23代入①整理得(3+2m 2)x 2-6mx +m 2=0,则Δ=8m 2(3-m 2)≥0,∴⎩⎪⎨⎪⎧x 1+x 2=6m 3+2m 2,x 1x 2=m 23+2m2,②而S △AOB =12|OA |·|OB |sin ∠AOB =12sin ∠AOB ,当∠AOB =90°,S △AOB 取得最大值12,此时OA →·OB →=x 1x 2+y 1y 2=0,又y 1y 2=1-mx 1n ·1-mx 2n =3-3m (x 1+x 2)+3m 2x 1x 23-m 2,∴x 1x 2+3-3m (x 1+x 2)+3m 2x 1x 23-m2=0,即3-3m (x 1+x 2)+(3+2m 2)·x 1x 2=0, 把②代入上式整理得2m 4-9m 2+9=0, 解得m 2=32或m 2=3(舍去),∴m =±62,n =±1-m 23=±22,∴M 点的坐标为⎝⎛⎭⎫62,22,⎝⎛⎭⎫62,-22,⎝⎛⎭⎫-62,22,⎝⎛⎭⎫-62,-22,使得S △AOB 取得最大值12.(12分)老师叮咛:当所求的最值可以表示成某个变量的函数关系式时,我们常常先建立对应的函数关系式,然后利用函数方法求出对应的最值,称这种方法为函数法,这是解析几何问题中求最值的常用方法.函数法是研究数学问题的一种最重要的方法,用这种方法求解圆锥曲线的最值问题时,除了重视建立函数关系式这个关键点外,还要密切注意所建立的函数式中的变量是否有限制范围,这些限制范围恰好制约了最值的取得,因此在解题时要予以高度关注.【试一试】 抛物线y =-x 2上的点到直线4x +3y -8=0的距离的最小值是( ). A.43 B.75 C.85D .3 答案: A [可知过抛物线点的切线与直线4x +3y -8=0平行时,所求的距离最小,y ′=-2x .令-2x =-43,解得x =23,从而切点坐标为⎝⎛⎭⎫23,-49,切线方程为y +49=-43⎝⎛⎭⎫x -23,即4x +3y -43=0,由两平行线间距离公式,得点到直线的距离的最小值为d =⎪⎪⎪⎪-8-⎝⎛⎭⎫-4342+324=3.故选A.]。

高考数学二十二个必考问题讲解5

高考数学二十二个必考问题讲解5

必考问题5 函数、导数、不等式的综合问题(2012·山东)已知函数f (x )=ln x +ke x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.解 (1)由f (x )=ln x +ke x,得f ′(x )=1-k x -xln xxe x,x ∈(0,+∞),由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1xe x (1-x -xln x ),x ∈(0,+∞),令h(x )=1-x -xln x ,x ∈(0,+∞),当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ),所以g(x )=1e x (1-x -xln x ),x ∈(0,+∞),由(2)得,h(x )=1-x -xln x ,求导得h ′(x )=-ln x -2=-(ln x -ln e -2).所以当x ∈(0,e -2)时,h ′(x )>0,函数h(x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,函数h(x )单调递减.所以当x ∈(0,+∞)时,h(x )≤h(e -2)=1+e -2.又当x ∈(0,+∞)时,0<1ex <1,所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2.综上所述结论成立.导数与函数、方程、不等式的交汇综合,以及利用导数研究实际中的优化问题,是命题的热点,而且不断丰富创新.题型以解答题的形式为主,综合考查学生分析问题、解决问题的能力.应通过一些典型例题的分析提高分析问题和解决问题的能力.解题时要善于把复杂的、生疏的、非规范化的问题转化为简单的、熟悉的、规范化的问题来解决.利用导数解决方程根的问题常考查:①确定零点,图象交点及方程解的个数问题;②应用零点、图象交点及方程解的存在情况,求参数的值或范围.该类试题一般以含参数的高次式、分式、指数式或对数式结构的函数、方程呈现.主要考查学生转化与化归、数形结合思想,以及运用所学知识解决问题的能力.【例1】► 已知x =3是函数f (x )=a ln(1+x )+x 2-10x 的一个极值点. (1)求a ;(2)求函数f (x )的单调区间;(3)若直线y =b 与函数y =f (x )的图象有3个交点,求b 的取值范围. [审题视点] [听课记录][审题视点] (1)由f ′(3)=0求a ;(2)由f ′(x )>0或f ′(x )<0,求函数f (x )的单调区间;(3)求f (x )的极值,结合图象可确定b 的取值范围.解 f (x )的定义域:(-1,+∞). (1)f ′(x )=a1+x +2x -10,又f ′(3)=a4+6-10=0,∴a =16.经检验此时x =3为f (x )极值点,故a =16. (2)f ′(x )=161+x +2x -10=2x 2-8x +6x +1=2(x -1)(x -3)x +1.当-1<x <1或x >3时,f ′(x )>0;当1<x <3时,f ′(x )<0.∴f (x )单调增区间为:(-1,1),(3,+∞),单调减区间为(1,3).(3)由(2)知,f (x )在(-1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x =1或x =3时,f ′(x )=0.所以f (x )的极大值为f (1)=16ln 2-9,极小值为f (3)=32ln 2-21.因为f (16)>162-10×16>16ln 2-9=f (1), f (e -2-1)<-32+11=-21<f (3),所以在f (x )的三个单调区间(-1,1),(1,3),(3,+∞)直线y =b 与y =f (x )的图象各有一个交点,当且仅当f (3)<b<f (1).因此b 的取值范围为(32ln 2-21,16ln 2-9).对于研究方程根的个数的相关问题,利用导数这一工具和数形结合的数学思想就可以很好地解决.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.【突破训练1】 (2012·聊城二模)设函数f (x )=(1+x )2-2ln (1+x ). (1)求函数f (x )的单调区间;(2)若关于x 的方程f (x )=x 2+x +a 在[0,2]上恰有两个相异实根,求实数a 的取值范围. 解 (1)函数的定义域为(-1,+∞), 因为f (x )=(1+x )2-2ln (1+x ),所以f ′(x )=2⎣⎡⎦⎤(x +1)-1x +1=2x (x +2)x +1, 由f ′(x )>0,得x >0;由f ′(x )<0,得-1<x <0, 所以,f (x )的递增区间是(0,+∞),递减区间是(-1,0). (2)方程f (x )=x 2+x +a ,即x -a +1-2ln (1+x )=0, 记g(x )=x -a +1-2ln (1+x )(x >-1), 则g ′(x )=1-21+x =x -1x +1,由g ′(x )>0,得x >1; 由g ′(x )<0,得-1<x <1.所以g(x )在[0,1]上单调递减,在[1,2]上单调递增. 为使f (x )=x 2+x +a 在[0,2]上恰有两个相异的实根, 只须g(x )=0在[0,1)和(1,2]上各有一个实根,于是有⎩⎪⎨⎪⎧ g (0)≥0,g (1)<0,g (2)≥0,即⎩⎪⎨⎪⎧-a +1≥0,2-a -2ln 2<0,3-a -2ln 3≥0,解得2-2ln 2<a ≤3-2ln 3,故实数a 的取值范围是(2-2ln 2,3-2ln 3].利用导数解决不等式恒成立问题通常考查高次式、分式或指数式、对数式、绝对值不等式在某个区间上恒成立,求参数的取值范围,试题涉及到的不等式常含有一个或两个参数.【例2】► (2011·湖北)设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2,其中x ∈R ,a ,b 为常数.已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l .(1)求a ,b 的值,并写出切线l 的方程;(2)若方程f (x )+g (x )=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f (x )+g (x )<m (x -1)恒成立,求实数m 的取值范围.[审题视点] [听课记录][审题视点] (1)基础;(2)根据已知条件f (x )+g(x )=mx 有三个互不相同的实根0、x 1、x 2可列一方程,由判断式Δ可得m 的范围,再将已知条件:对任意x ∈[x 1,x 2],f (x )+g(x )<m (x -1)恒成立,转化为f (x )+g(x )-mx <-m 恒成立,从而求f (x )+g(x )-mx 的最大值.解 (1)a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得,f (x )=x 3-4x 2+5x -2, 所以f (x )+g(x )=x 3-3x 2+2x .依题意,方程x (x 2-3x +2-m )=0有三个互不相同的实根0,x 1,x 2,故x 1,x 2是方程x 2-3x +2-m =0的两相异的实根,所以Δ=9-4(2-m )>0,即m >-14.又对任意的x ∈[x 1,x 2], f (x )+g(x )<m (x -1)恒成立.特别地,取x =x 1时,f (x 1)+g(x 1)-mx 1<-m 成立, 得m <0.由韦达定理,可得x 1+x 2=3>0,对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x >0, 则f (x )+g(x )-mx =x (x -x 1)(x -x 2)≤0, 又f (x 1)+g(x 1)-mx 1=0,所以函数f (x )+g(x )-mx 在x ∈[x 1,x 2]的最大值为0. 于是当m <0时,对任意的x ∈[x 1,x 2], f (x )+g(x )<m (x -1)恒成立. 综上,m 的取值范围是⎝⎛⎭⎫-14,0.(1)利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口.(2)利用函数的导数研究不等式恒成立问题是一类重要题型,体现了导数的工具性作用,将函数、不等式紧密结合起来,考查了学生综合解决问题的能力.【突破训练2】 已知函数f (x )=kx ,g (x )=ln xx .(1)求函数g (x )=ln xx的单调递增区间;(2)若不等式f (x )≥g (x )在区间(0,+∞)上恒成立,求k 的取值范围. 解 (1)∵g(x )=ln xx (x >0),∴g ′(x )=1-ln xx 2,令g ′(x )>0,得0<x <e ,故函数g(x )=ln xx 的单调递增区间为(0,e ).(2)∵x ∈(0,+∞),由k x ≥ln x x ,得k ≥ln x x 2,令h(x )=ln xx2,则问题转化为k 大于等于h(x )的最大值,又h ′(x )=1-2 ln xx 3,令h ′(x )=0时,x =e ,当x 在区间(0,+∞)内变化时,h ′(x )、h (x )变化情况如下表:由表知当x =e 时,函数h(x )有最大值,且最大值为12e ,因此k ≥12e.导数的综合应用通常是证明与已知函数有关的关于x (或关于其他变量n 等)的不等式在某个范围内成立,求解需构造新函数,用到函数的单调性、极值(最值),以及不等式的性质等知识完成证明.【例3】► 设函数f (x )定义在(0,+∞)上,f (1)=0,导函数f ′(x )=1x ,g (x )=f (x )+f ′(x ).(1)求g (x )的单调区间和最小值; (2)讨论g (x )与g ⎝⎛⎭⎫1x 的大小关系;(3)是否存在x 0>0,使得|g (x )-g (x 0)|<1x 对任意x >0成立?若存在,求出x 0的取值范围;若不存在,请说明理由.[审题视点] [听课记录][审题视点] 第(2)问重新构造函数h(x )=g(x )-g ⎝⎛⎭⎫1x ,利用导数研究这个函数的单调性. 第(3)问采用反证法,可先把|g(x )-g(x 0)|<1x 等价变形为ln x <g(x 0)<ln x +2x ,x >0,再在x ∈(0,+∞)上任取一个值验证矛盾.解 (1)由题设易知f (x )=ln x ,g(x )=ln x +1x ,所以g ′(x )=x -1x2,令g ′(x )=0,得x =1,当x ∈(0,1)时,g ′(x )<0,故(0,1)是g(x )的单调减区间;当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g(x )的单调增区间. 因此,x =1是g(x )的唯一极值点,且为极小值点,从而是最小值点, 所以最小值为g(1)=1. (2)g ⎝⎛⎭⎫1x =-ln x +x ,设h(x )=g(x )-g ⎝⎛⎭⎫1x =2ln x -x +1x , 则h ′(x )=-(x -1)2x 2,当x =1时,h(1)=0,即g(x )=g ⎝⎛⎭⎫1x ,当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此,h(x )在(0,+∞)内单调递减,当0<x <1时,h(x )>h(1)=0,即g(x )>g ⎝⎛⎭⎫1x ; 当x >1时,h(x )<h(1)=0,即g(x )<g ⎝⎛⎭⎫1x . (3)满足条件的x 0不存在. 证明如下:假设存在x 0>0,使|g(x )-g(x 0)|<1x 对任意x >0成立,即对任意x >0,有ln x <g(x 0)<ln x +2x,(*)但对上述x 0,取x 1=e g(x 0)时,有ln x 1=g(x 0),这与(*)左边不等式矛盾, 因此,不存在x 0>0,使|g(x )-g(x 0)|<1x对任意x >0成立.另一种证法如下:假设存在x 0>0,使|g(x )-g(x 0)|<1x 对任意的x >0成立.由(1)知,g(x )的最小值为g(1)=1, 又g(x )=ln x +1x>ln x ,而x >1时,ln x 的值域为(0,+∞), x ≥1时g(x )的值域为[1,+∞), 从而可取一个x 1>1,使g(x 1)≥g(x 0)+1. 即g(x 1)-g(x 0)≥1,故|g(x 1)-g(x 0)|≥1>1x 1,与假设矛盾.∴不存在x 1>0,使|g(x )-g(x 0)|<1x对任意x >0成立.本题有机地将函数、导数和不等式结合到一块,试题难度较大.本题分三小问,第(1)问较容易;第(2)问可以用平时练习常用的方法解决:首先使用构造函数法构造函数,再用导数求出函数的最大值或最小值,且这个最大值小于零,最小值大于零;第(3)问采用反证法,难度较大,难点在于不容易找到与题设矛盾的特例.【突破训练3】 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. (1)解 由f (x )=e x -2x +2a ,x ∈R 知,f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =l n 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f(x)单调递增区间是(l n2,+∞),f(x)在x=l n 2处取得极小值,极小值为f(l n 2)=e l n 2-2l n 2+2a=2(1-l n 2+a).(2)证明设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>l n 2-1时,g′(x)取最小值为g′(l n 2)=2(1-l n 2+a)>0.于是对任意x∈R,都有g′(x)>0.所以g(x)在R内单调递增.于是当a>l n 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),都有g(x)>0.即e x-x2+2ax-1>0,故e x>x2-2ax+1.分析法在函数与导数题中的应用近年来,高考对函数与导数大部分是以压轴题的形式考查的,试题难度较大,命题角度新颖,需要考生把生疏的问题通过分析转化为熟悉的问题,考查考生分析、解决问题的能力.下面以2012年新课标全国卷为例对分析法在导数中的具体应用作一介绍.【示例】►(2012·新课标全国)设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.[满分解答](1)f(x)的定义域为(-∞,+∞),f′(x)=e x-a.若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)上单调递增;若a>0,则当x∈(-∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0,所以,f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(5分)(2)由于a=1,所以(x-k)f′(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f′(x)+x +1>0等价于k <x +1e x -1+x (x >0).①(8分) 令g (x )=x +1e x -1+x ,则g ′(x )=-x e x -1(e x -1)2+1=e x (e x -x -2)(e x -1)2. 由(1)知,函数h (x )=e x -x -2在(0,+∞)上单调递增.而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在唯一的零点.故g ′(x )在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3).由于①式等价于k <g (α),故整数k 的最大值为2.…(12分)老师叮咛:本题主要考查导数在解决函数单调性、函数的最值、函数的零点、不等式问题等方面的应用.其中,第(1)问求函数的导数,对字母a 进行讨论,根据导函数值的正负得到函数的单调区间.第(2)问将原不等式转化为k <g (x )的形式,利用导数法求出函数g (x )的值域,进而得到整数k 的最大值.【试一试】 设函数f (x )=x (e x -1)-ax 2. (1)若a =12,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围. 解 (1)a =12时,f (x )=x (e x -1)-12x 2,f ′(x )=e x -1+x e x -x =(e x -1)(x +1).当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时, f ′(x )>0.故f (x )在(-∞,-1],[0,+∞)上单调递增,在[-1,0]上单调递减. (2)f (x )=x (e x -1-ax ),令g (x )=e x -1-ax ,则g ′(x )=e x -a .若a ≤1,则当x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数,而g (0)=0,从而当x ≥0时g(x)≥0,即f(x)≥0;若a>1,则当x∈(0,l n a)时,g′(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,l n a)时g(x)<0,即f(x)<0.综上得a的取值范围为(-∞,1].。

高考数学总复习第二部分高考22题各个击破2.4.2导数与不等式及参数范围课件文

高考数学总复习第二部分高考22题各个击破2.4.2导数与不等式及参数范围课件文

又 x>1 时,ln x<x-1<x(x-1), 综上所述 a≥1.
ln������ <1(x>1)恒成立, ������2 -������
-8-
解题策略一
解题策略二
������ + 1 e������
-9-
解题策略一
解题策略二
(1)解 f(x)的定义域为R.f'(x)= 由f'(x)>0,得x<0, 由f'(x)<0,得x>0, 所以f(x)的单调增区间为(-∞,0),单调减区间为(0,+∞),f(x)max=f(0)=1, 当x→+∞时,y→0,当x→-∞时,y→-∞,所以m的取值范围是(0,1). (2)证明 由(1)知,x1∈(-1,0),要证x2>-x1>0,只需证f(x2)<f(-x1), 因为f(x1)=f(x2)=m, 所以只需证f(x1)<f(-x1),
-6-
解题策略一
解题策略二
对点训练1已知函数f(x)=ax-ln x. (1)过原点O作函数f(x)图象的切线,求切点的横坐标; (2)对∀x∈[1,+∞),不等式f(x)≥a(2x-x2)恒成立,求实数a的取值范 围. 解 (1)设切点为M(x0,f(x0)),直线的切线方程为y-f(x0)=k(x-x0),
1
∴F'(x)=(x+1)(ex+1),
令 F'(x)>0,解得 x>-1,令 F'(x)<0,解得 x<-1, 故 F(x)在(-∞,-1)递减,在(-1,+∞)递增, 故
1 1 F(x)min=F(-1)=- − . 2 e

2023年高考数学22题讲解

2023年高考数学22题讲解

2023年高考数学22题讲解
2023年高考数学第22题是一道关于轨迹和几何证明的题目,难度较大。

题目描述如下:在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,1/2)的距离,记动点P的轨迹为W。

(1) 求W的方程;
(2) 已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于
3√3。

关于第一问,我们可以根据抛物线的定义,抛物线上的任意一点到焦点的距离等于到准线的距离,结合题目中点P到x轴的距离等于点P到点(0,
1/2)的距离,即可求出W的方程。

关于第二问,我们需要证明矩形的周长大于3√3。

可以通过构造法,在抛物线W上取特殊的矩形ABCD,利用特殊值代入法计算出周长,再利用不等
式的性质进行证明。

由于题目难度较大,这里只给出题目的解题思路和部分答案。

如果需要更详细的解答过程和完整答案,建议查阅2023年高考数学试题解析或向数学老师请教。

2021新高考一卷数学22题详解

2021新高考一卷数学22题详解

2021新高考一卷数学22题详解一、题目分析【题目】设函数$f(x) = \{\begin{matrix} - \frac{1}{x},x > 0 \\log_{\frac{1}{2}}( - x),x < 0 \\\end{matrix}$,用函数单调性定义证明当$x \in (0, +\infty)$时,$f(x)$是单调递减函数。

【分析】该题目要求考生对函数单调性的定义进行理解和应用,需要考生能够根据定义证明函数的单调性。

在解答过程中,需要注意定义中的三要素:定义域、值域、单调性。

二、解题步骤1. 证明定义域和值域:根据题意,函数的定义域为$(0, + \infty)$,值域为$( -\infty,0)$。

2. 假设法:假设$x_{1} < x_{2}$,且$x_{1},x_{2} \in (0, + \infty)$。

根据题意,可得到$f(x_{1}) > f(x_{2})$。

3. 利用单调性定义证明:根据函数单调性的定义,需要证明在$x_{1} < x_{2}$的条件下,$f(x_{1}) > f(x_{2})$成立。

根据题意,当$x_{1} < x_{2}$时,$- x_{1} > - x_{2}$,且$- x_{1} \in ( - \infty,0)$,$- x_{2} \in ( - \infty,0)$。

又因为$f(x) = log_{\frac{1}{2}}( - x)$为减函数,所以$f( - x_{2}) >f( - x_{1})$。

又因为$f( - x) = - \frac{1}{x}$为增函数,所以$- \frac{1}{x_{2}} < - \frac{1}{x_{1}}$。

因此有$f( - x_{2}) +f( - x_{1}) =$$log_{\frac{1}{2}}( - x_{2}) + ( -\frac{1}{x_{2}}) <$$log_{\frac{1}{2}}( - x_{1}) + ( -\frac{1}{x_{1}}) =$$f(x_{1}) + f(x_{2})$。

2023新高考二卷数学22题解析

2023新高考二卷数学22题解析

2023新高考二卷数学22题解析一、题目分析在新高考二卷中,数学22题通常被视为一个具有一定难度的解答题。

它主要考察学生对函数、导数以及圆锥曲线等知识点的综合运用能力。

题目通常涉及多个知识点的组合,如函数的单调性、极值与最值,导数的应用,以及圆锥曲线的几何性质等。

因此,对于大部分考生来说,这道题是一道具有挑战性的题目。

二、解题步骤1. 审题:首先,我们需要仔细阅读题目,理解题目的要求和给出的信息。

特别要注意题目中的关键词和关键数据。

2. 建立模型:根据题目所给的条件,建立相应的数学模型。

这可能涉及到函数、导数、圆锥曲线等知识点。

3. 求解:在建立了相应的数学模型后,我们需要运用所学的数学知识进行求解。

这可能包括求函数的单调性、极值和最值,导数的应用,以及圆锥曲线的几何性质等。

4. 验证:求解后,我们需要对结果进行验证,以确保结果的正确性。

5. 书写答案:将求解和验证的结果按照题目要求书写成完整的答案。

三、题目解析假设题目中的函数为f(x),已知曲线C:y = f(x)上的点P(x0,f(x0))处切线过原点,求证:当x0≠0时,$f^{\prime}(x_{0}) \cdot x_{0} \neq 0$。

【分析】根据题意,我们可以将问题转化为证明当$x_{0} \neq 0$时,曲线C上点$P(x_{0},f(x_{0}))$处的切线与$x$轴不垂直。

由此,我们可以运用导数的几何意义和斜率公式进行证明。

【解答】首先,根据导数的几何意义,可得曲线C上点$P(x_{0},f(x_{0}))$处的切线斜率为$k = f^{\prime}(x_{0})$。

假设当$x_{0} \neq 0$时,曲线C上点$P(x_{0},f(x_{0}))$处的切线与$x$轴垂直,即$k = f^{\prime}(x_{0}) = 0$。

此时,由导数的定义可得$f^{\prime}(x_{0}) = 0$,这与已知条件矛盾。

高考数学20题知识点

高考数学20题知识点

高考数学20题知识点【高考数学20题知识点】高考数学是每个考生必须面对的一门重要考试科目。

为了帮助考生更好地备考数学,本文将针对高考数学中的20个常见题型,总结并介绍相应的知识点。

以下为具体内容:一、选择题选择题是高考数学中常见的题型,考查对基本概念、定理和方法的理解和应用能力。

常见的选择题包括等式与不等式、函数与方程、平面几何与立体几何等。

这些题目的知识点涵盖了数学的基础内容,掌握好这些知识点对于解答选择题至关重要。

二、填空题填空题是要求考生根据问题的条件,填入一个合适的数值或表达式,使方程或不等式等成立。

在填空题中,掌握运算法则、化简与推导的方法是解题的关键。

三、解答题解答题是数学考试中的主要题型之一,要求考生进行详细的推理和证明,展示解题思路和严密的逻辑。

常见的解答题包括证明题、计算题和应用题等。

解答题的关键在于准确把握问题的要求,运用合适的数学方法进行推理和证明。

四、几何证明题几何证明题在高考数学中占有一定比重,考查着重对几何定理和性质的理解和应用。

在几何证明题中,要注意辨析题目所给的条件和结论,灵活运用几何知识,清晰地展示证明过程。

五、应用题应用题是数学中最能考察问题解决能力的题型,要求考生把数学知识应用于实际问题,进行分析和解决。

在应用题中,理解问题的背景和条件,构建数学模型,进行合理的推理和计算是解题的关键。

六、计算题计算题是数学考试中的常见题型,主要考察考生的计算能力和运算技巧。

在计算题中,注意运算符和顺序,灵活选择计算方法,准确计算是解答计算题的关键。

七、概率与统计题概率与统计是高考数学中的一部分内容,对于考生来说较为实用。

概率与统计题常考察对概率与统计基本概念的理解和应用。

以上就是高考数学中的20个常见题型及相应的知识点。

只有充分掌握了这些知识点,才能在高考数学中取得好成绩。

因此,考生在备考数学时,应将这些知识点作为重点进行学习和训练,熟练掌握数学的基本概念、定理和方法。

只有全面、准确地理解和应用这些知识点,才能在高考中取得好成绩。

2020年高考数学23道题必考考点各个击破精讲主题02 复数(含详细答案解析)

2020年高考数学23道题必考考点各个击破精讲主题02 复数(含详细答案解析)

2020年新课标高考数学23道题必考考点各个击破(按题号与考点编排)主题02 复数【主题考法】本主题考查形式为选择或者填空题,主要考查复数的概念、四则运算、几何意义等等复数知识,考查运算求解能力,为基础题.2020年的高考仍将以选择或填空形式考查复数的概念、四则运算、几何意义等等复数知识,考查运算求解能力,为基础题,分值为5分.【主题考前回扣】1.复数的相关概念及运算法则(1)复数z=a+b i(a,b∈R)的分类①z是实数⇔b=0;②z是虚数⇔b≠0;③z是纯虚数⇔a=0且b≠0.(2)共轭复数复数z=a+b i的共轭复数z=a-b i.(3)复数的模复数z=a+b i的模|z|=a2+b2.(4)复数相等的充要条件a+b i=c+d i⇔a=c且b=d(a,b,c,d∈R).特别地,a+b i=0⇔a=0且b=0(a,b∈R).(5)复数的运算法则加减法:(a+b i)±(c+d i)=(a±c)+(b±d)i;乘法:(a+b i)(c+d i)=(ac-bd)+(ad+bc)i;除法:(a+b i)÷(c+d i)=ac+bdc2+d2+bc-adc2+d2i.()其中a,b,c,d∈R.2.复数的几个常见结论 (1)(1±i)2=±2i. (2)1+i 1-i =i ,1-i1+i=-i. (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈Z ). (4)ω=-12±32i ,且ω0=1,ω2=ω,ω3=1,1+ω+ω2=0. 【易错点提醒】1.复数z 为纯虚数的充要条件是a =0且b ≠0(z =a +b i ,a ,b ∈R ).还要注意巧妙运用参数问题和合理消参的技巧.2.复数的运算与多项式运算类似,要注意利用i 2=-1化简合并同类项.1.复数z 为纯虚数的充要条件是a =0且b ≠0(z =a +b i ,a ,b ∈R ).还要注意巧妙运用参数问题和合理消参的技巧.2.复数的运算与多项式运算类似,要注意利用i 2=-1化简合并同类项. 【主题考向】 考向一 复数的概念 【解决法宝】 1.复数的有关概念 (1)复数的概念:设a ,b 都是实数,形如a +b i 的数叫做复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若b ≠0且a =0,则a +b i 为纯虚数. (2)复数相等:a +b i =c +d i ⇔a =c 且b =d ;a +b i =0⇔a =0且b =0. (3)共轭复数:如果两个复数的实部相等,而虚部互为相反数,则这两个复数叫做互为共轭复数,复数z =a +b i 的共轭复数z =a -b i.2.复数的概念问题,关键在理解概念的基础上,利用复数的有关概念解题. 例1已知复数z 满足3z z i +=+,则z =( )A. 1i -B. 1i +C.43i - D. 43i + 【分析】先设出复数z ,再利用复数相等的充要条件求出复数z.【解析】设(),z a bi a b R =+∈,则22z a b =+,由已知有223a bi a b i +++=+,所以223{ 1a a b b ++== ,解得4{ 31a b == ,即43z i =+,选D.考向二 复数的运算 【解决法宝】复数的运算(1)复数的加、减、乘、除运算法则: 设z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b ic +d i =a +b ic -d i c +d ic -d i=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i≠0). (2)复数加法的运算定律:复数的加法满足交换律、结合律,即对任何z 1、z 2、z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).例2设复数z 满足()13z i i +=-,则复数zi的实部为( ) A. -2 B. 2 C. -1 D. 1【分析】利用复数的除法运算求出复数z ,再根据共轭复数的概念求出z 的共轭复数,利用方式的除法求出复数zi,即可求出其实部..考向三 复数的几何意义 【解决法宝】1.复数z =a +b i←――→一一对应有序实数对(a ,b )←――→一一对应点Z (a ,b ). 2.一般情况下复数不能比较大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必考问题11 数列的综合应用问题1.(2012·湖北)定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”,现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )=|x |;④f (x )=ln|x |.其中属于“保等比数列函数”的f (x )的序号为( ). A .①② B .③④ C .①③D .②④答案: C [设等比数列{a n }的公比为q ,则{a 2n }的公比为q 2,{|a n |}的公比为|q |,其余的数列不是等比数列.]2.(2012·浙江)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( ).A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列答案:C [A 、B 、D 均正确,对于C ,若首项为-1,d =2时就不成立.] 3.(2010·辽宁)已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n n 的最小值为( ).A.172 B.212 C .10D .21答案:B [在a n +1-a n =2n 中,令n =1,得a 2-a 1=2;令n =2得,a 3-a 2=4,…,a n -a n -1=2(n -1).把上面n -1个式子相加,得a n -a 1=2+4+6+…+2(n -1)=(2+2n -2)(n -1)2=n 2-n ,∴a n =n 2-n +33,∴a n n =n +33n -1,又n ∈N *,n ≥1.∴当n =6时,a n n 有最小值212.] 4.(2012·福建)数列{a n }的通项公式a n =n cos n π2+1,前n 项和为S n ,则S 2 012=________.解析 ∵a n =n cos n π2+1,∴a 1+a 2+a 3+a 4=6,a 5+a 6+a 7+a 8=6,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=6,k ∈N ,故S 2 012=503×6=3 018.答案 3 0181.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇. 2.解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题具有综合性强、立意新、角度活、难度大的特点.1.数列试题形态多变,时常有新颖的试题入卷,学生时常感觉难以把握,为了在高考中取得好成绩,必须复习、掌握好数列这一板块及其相关的知识技能,了解近几年来高考中对解数列试题的能力考察特点,掌握相关的应对策略,以提高解决数列问题的能力.2.近几年高考中一些难题均是以高等数学的某些知识为背景而用初等数学的语言表述的试题.这就启示我们在复习备考时,要在高等数学与初等数学的衔接点上多下工夫,要提高将陌生问题转化、化归为熟知问题的能力.复习时要抓住主流综合,同时做到不忽视冷门、新型综合.必备知识在数列求和时,为了证明的需要,需合理变形,常用到放缩法,常见的放缩技巧有:(1)1k 2<1k 2-1=12⎝⎛⎭⎫1k -1-1k +1; (2)1k -1k +1<1k 2<1k -1-1k +1; (3)2(n +1-n )<1n<2(n -n -1); (4)利用(1+x )n 的展开式进行放缩.数列是特殊的函数,是定义在正整数集上的一列函数值.通项公式及求和公式揭示了项和项数的依赖关系的本质属性.用“函数与方程”的思想解决数列中的综合问题,通常有如下情形:(1)用等差数列中的公差为“斜率”的意义沟通关系解题; (2)用等差数列的前n 项和为项数n 的二次函数解题;(3)用函数观点认识数列的通项,用函数单调性的定义研究数列的增减性解决最值问题;(4)通项公式求解中方程思想的应用;(5)应用问题中方程思想的应用.必备方法1.解决数列和式与不等式证明问题的关键是求和,特别是既不是等差、等比数列,也不是等差乘等比的数列求和,要利用不等式的放缩法,放缩为等比数列求和、错位相减法求和、裂项相消法求和,最终归结为有限项的数式大小比较.2.解答数列综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解.数列与新背景、新定义的综合问题该类问题出题背景广、新颖,解题的关键是读懂题意,有效地将信息转化,能较好地考查学生分析、解决问题的能力和知识的迁移能力、以客观题或解答题的形式出现,属于低中档题.【例1】► 在直角坐标平面内,已知点P 1(1,2),P 2(2,22),P 3(3,23),…,P n (n,2n ),….如果n 为正整数,则向量P 1P 2→+P 3P 4→+P 5P 6→+…+P 2n -1P 2n 的纵坐标为________.[审题视点] [听课记录][审题视点] 由P k P k +1=(k +1-k,2k +1-2k )=(1,2k )可求解.解析 P k P k +1=(k +1-k,2k +1-2k )=(1,2k ),于是P 1P 2→+P 3P 4→+P 5P 6→+…+P 2n -1P 2n 的纵坐标为2+23+25+…+22n -1=2(1-4n )1-4=23(4n -1). 答案 23(4n -1)解决数列与新背景、新定义的综合问题,可通过对新数表、图象、新定义的分析、探究,将问题转化为等差(比)数列的问题.【突破训练1】 (2012·东北三校二模)已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),点Q (2 011,a 2 011),则OP →·OQ →=( ).A .2 011B .-2 011C .0D .1答案: A [设S n =An 2+Bn ,当n ≥2时,a n =S n -S n -1=(2n -1)A +B ,由S 21=S 4 000,知4 021 A +B =0,所以a 2 011=0,OP →·OQ →=2 011+a n ×a 2 011=2 011,故选A.]数列与函数的综合问题由于数列与函数的紧密联系,近几年高考在数列与函数的综合处命题有加强的趋势,常考查以函数为背景的数列问题,该类问题的知识综合性比较强,能很好地考查逻辑推理能力和运算求解能力.需掌握与函数、函数性质等相关方面的知识,难度较大.【例2】► (2012·陕西五校联考)已知函数f (x )=x 2-2(n +1)x +n 2+5n -7. (1)设函数y =f (x )的图象的顶点的纵坐标构成数列{a n },求证:{a n }为等差数列;(2)设函数y =f (x )的图象的顶点到x 轴的距离构成数列{b n },求{b n }的前n 项和S n . [审题视点] [听课记录][审题视点] (1)配方可求顶点的纵坐标,再用定义可证;(2)由b n =|a n |知分类求和. (1)证明 ∵f (x )=x 2-2(n +1)x +n 2+5n -7=[x -(n +1)]2+3n -8,∴a n =3n -8,∴a n +1-a n =3(n +1)-8-(3n -8)=3,∴数列{a n }为等差数列.(2)解 由题意知,b n =|a n |=|3n -8|, ∴当1≤n ≤2时,b n =8-3n ,S n =b 1+…+b n =n (b 1+b n )2=n [5+(8-3n )]2=13n -3n 22.当n ≥3时,b n =3n -8,S n =b 1+b 2+b 3+…+b n =5+2+[1+4+…+(3n -8)] =7+(n -2)[1+(3n -8)]2=3n 2-13n +282,∴S n=⎩⎨⎧13n -3n 22,1≤n ≤2.3n 2-13n +282,n ≥3., 解决此类问题时要注意把握以下两点:(1)正确审题,深抠函数的性质与数列的定义; (2)明确等差、等比数列的通项、求和公式的特征.【突破训练2】 (2012·潍坊二模)已知函数f (x )=(x -1)2,数列{a n }是各项均不为0的等差数列,点(a n +1,S 2n -1)在函数f (x )的图象上;数列{b n }满足b n =34n -1.(1)求a n ;(2)若数列{c n }满足c n =a n4n -1·b n,求数列{c n }的前n 项和.解 (1)因为点(a n +1,S 2n -1)在函数f (x )的图象上,所以a 2n =S 2n -1. 令n =1,n =2,得⎩⎪⎨⎪⎧ a 21=S 1,a 22=S 3,即⎩⎪⎨⎪⎧a 21=a 1, ①(a 1+d )2=3a 1+3d , ②由①知a 1=0或a 1=1,∵a 1≠0,∴a 1=1.代入②解得d =-1或d =2,又d =-1时,a 2=0不合题意,∴d =-1(舍去),∴d =2.即a n =2n -1.(2)由(1)得c n =a n4n -1·b n =2n -14n -1·34n -1=2n -13n -1.令T n =c 1+c 2+c 3+…+c n ,则T n =130+331+532+…+2n -33n -2+2n -13n -1,①13T n =131+332+533+…+2n -33n -1+2n -13n ,② ①-②得,23T n =130+231+232+233+…+23n -1-2n -13n=1+23·1-13n -11-13-2n -13n =2-13n -1-2n -13n =2-2(n +1)3n .所以T n =3-n +13n -1.数列与不等式的综合问题数列与不等式的综合问题是高考的热点,常考查:①以数列为载体,比较两项的大小或证明不等式;②以数列为载体,利用不等式恒成立求参数.在解答时需要我们抓住本质,进行合理变形、求和,再结合与不等式有关的知识求解.试题难度较大.【例3】► (2011·广东)设b >0,数列{a n }满足a 1=b ,a n =nba n -1a n -1+n -1(n ≥2).(1)求数列{a n }的通项公式;(2)证明:对于一切正整数n,2a n ≤b n +1+1. [审题视点] [听课记录][审题视点] (1)对所给递推关系式变形(取倒数)后构造等比数列求解. (2)利用基本不等式放缩. (1)解 由a 1=b >0,知a n =nba n -1a n -1+n -1>0,n a n =1b +1b n -1a n -1.令A n =n a n ,A 1=1b.当n ≥2时,A n =1b +1b A n -1=1b +…+1b n -1+1b n -1A 1=1b +…+1b n -1+1b n .①当b ≠1时,A n =1b 1-1b n 1-1b=b n -1b n (b -1);②当b =1时,A n =n .所以a n =⎩⎪⎨⎪⎧nb n(b -1)b n -1,b ≠1.1,b =1(2)证明 当b ≠1时,欲证2a n =2nb n (b -1)b n -1≤b n +1+1,只需证2nb n ≤(b n +1+1)b n -1b -1.因为(bn +1+1)b n -1b -1=b 2n +b 2n -1+…+b n +1+b n -1+b n -2+…+1=b n ⎝⎛⎭⎫b n +1b n +⎝⎛⎭⎫b n -1+1b n -1+…+⎝⎛⎭⎫b +1b >b n (2+2+…+2)=2nb n ,所以2a n =2nb n(b -1)b n -1<1+b n +1. 当b =1,2a n =2=b n +1+1. 综上所述,2a n ≤b n +1+1.与数列有关的不等式证明常用的方法有:比较法(作差作商)、放缩法、利用函数的单调性、数学归纳法证明,其中利用不等式放缩证明是一个热点,常常出现在高考的压轴题中,是历年命题的热点.利用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩.【突破训练3】 (2012·日照一模)已知各项均不相等的等差数列{a n }的前四项和S 4=14,a 3是a 1,a 7的等比中项.(1)求数列{a n }的通项公式;(2)设T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,若T n ≤1λa n +1对一切n ∈N *恒成立,求实数λ的最大值.解 (1)设公差为d ,由已知得,⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得d =1或d =0(舍去), ∴a 1=2,故a n =n +1. (2)∵1a n a n +1=1(n +1)(n +2)=1(n +1)-1(n +2), ∴T n =12-13+13-14+…+1n +1-1n +2=12-1n +2=n 2(n +2), ∵T n ≤1λa n +1,∴n 2(n +2)≤1λ(n +2),即λ≤2(n +2)2n =2n +4n+4,又2n +4n+4≥2×(4+4)=16,∴λ的最大值为16.数列与函数的“巧妙”对接纵观2012年高考,有多份试卷以数列与函数的综合题为压轴题,有些大题还穿插了导数来研究函数的工具作用,既考查了函数的知识,又考查了数列的知识,试题综合性强,分步解答,有利于高校选拔优秀的考生,是一种非常热门的题型,预计2013年高考仍将在此命题.【示例】► (2012·天津)已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0. (1)求a 的值;(2)若对任意的x ∈[0,+∞),有f (x )≤kx 2成立,求实数k 的最小值;(3)证明:∑i =1n22i-1-ln(2n +1)<2(n ∈N *). [满分解答] (1)f (x )的定义域为(-a ,+∞). f ′(x )=1-1x +a =x +a -1x +a. 由f ′(x )=0,解得x =1-a >-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-a,1-a )1-a (1-a ,+∞)f ′(x ) -0 +f (x )极小值因此,f ( 1.(4分) (2)当k ≤0时,取x =1,有f (1)=1-ln 2>0, 故k ≤0不合题意.当k >0时,令g (x )=f (x )-kx 2, 即g (x )=x -ln(x +1)-kx 2.g ′(x )=xx +1-2kx =-x [2kx -(1-2k )]x +1.令g ′(x )=0,得x 1=0,x 2=1-2k2k>-1. ①当k ≥12时,1-2k 2k ≤0,g ′(x )<0在(0,+∞)上恒成立,因此g (x )在[0,+∞)上单调递减.从而对于任意的x ∈[0,+∞),总有g (x )≤g (0)=0,即f (x )≤kx 2在[0,+∞)上恒成立.故k ≥12符合题意.②当0<k <12时,1-2k 2k >0,对于x ∈⎝ ⎛⎭⎪⎫0,1-2k 2k ,g ′(x )>0,故g (x )在⎝⎛⎭⎪⎫0,1-2k 2k 内单调递增.因此当取x 0∈⎝⎛⎭⎪⎫0,1-2k 2k 时,g (x 0)>g (0)=0,即f (x 0)≤kx 20不成立.故0<k <12不合题意.综上,k 的最小值为12.(8分)(3)当n =1时,不等式左边=2-ln 3<2=右边,所以不等式成立.当n ≥2时,∑i =1nf ⎝ ⎛⎭⎪⎫22i -1=∑i =1n ⎣⎢⎡⎦⎥⎤22i -1-ln ⎝ ⎛⎭⎪⎫1+22i -1=∑i =1n 22i -1-∑i =1n [ln(2i +1)-ln(2i -1)]=∑i =1n22i -1-ln(2n +1).在(2)中取k =12,得f (x )≤x 22(x ≥0),从而f ⎝ ⎛⎭⎪⎫22i -1≤2(2i -1)2<2(2i -3)(2i -1)(i ∈N *,i ≥2), 所以有∑i =1n22i -1-ln(2n +1)=∑i =1n f ⎝ ⎛⎭⎪⎫22i -1=f (2)+∑i =2n f ⎝ ⎛⎭⎪⎫22i -1<2-ln 3+∑i =2n2(2i -3)(2i -1)=2-ln 3+∑i =2n⎝ ⎛⎭⎪⎫12i -3-12i -1=2-ln 3+1-12n -1<2. 综上,∑i =1n22i -1-ln(2n +1)<2,n ∈N *.(14分)老师叮咛:本题第(1)问应用导数研究函数的单调性、极值,难度较小,属于送分题;第(2)问属于含参函数的恒成立求参数范围问题,需构造新函数,再利用导数研究新函数的单调性、极值与最值等.其中,需对k 进行分类讨论,对k 的每个范围利用分析法求得适合题意的k 的范围;第(3)问考查了考生赋值、数列的求和、放缩法证明不等式等知识.其中,推导是联系数列与函数的纽带.再借用第(2)问的结果可得f (x )≤x 22.从而f ⎝ ⎛⎭⎪⎫22i -1≤2(2i -1)2<⎝ ⎛⎭⎪⎫12i -3-12i -1.为后面利用放缩法证明不等式打下基础. 【试一试】 已知函数f (x )=1-ax -ln x (a 为实常数).(1)若函数f (x )在区间(0,2)上无极值,求实数a 的取值范围; (2)讨论函数g (x )=f (x )-2x 的单调性;(3)已知n ∈N *且n ≥3,求证:ln n +13<13+14+15+ (1). (1)解 f ′(x )=a x 2-1x =a -x x 2. 当a ≤0时,f ′(x )<0在(0,+∞)上恒成立,此时函数f (x )在(0,2)上无极值;当a >0时,由f ′(x )>0,得x <a ;由f ′(x )<0,得x >a ,即函数f (x )在(0,a )上单调递增,在(a ,+∞)上单调递减,要使函数f (x )在(0,2)上无极值,只要a ≥2即可.故所求的实数a 的取值范围是(-∞,0]∪[2,+∞).(2)解 g (x )=f (x )-2x =1-a x-l n x -2x , g ′(x )=a x 2-1x -2=-2x 2+x -a x 2. 令k (x )=2x 2+x -a ,则Δ=1+8a .当Δ<0,即a <-18时,k (x )>0恒成立,即g ′(x )<0恒成立,此时函数g (x )在(0,+∞)上单调递减;当Δ=0,即a =-18时,只有在x =-14时,k (x )=0,故k (x )>0在(0,+∞)上恒成立,即g ′(x )<0在(0,+∞)上恒成立,此时函数g (x )在(0,+∞)上单调递减;当Δ>0,即a >-18时,方程k (x )=0的两个实数根是x 1=-1-1+8a 4<0,x 2=-1+1+8a 4,若1+8a ≤1,即a ≤0,则x 2≤0,此时,k (x )>0在(0,+∞)上恒成立,即g ′(x )<0在(0,+∞)上恒成立,此时,函数g (x )在(0,+∞)上单调递减;若1+8a >1,则x 2>0,此时在(0,x 2)上k (x )<0,g ′(x )>0,在(x 2,+∞)上k (x )>0,g ′(x )<0,故函数g (x )在(0,x 2)上单调递增,在(x 2,+∞)上单调递减.综上所述:当a ≤0时,函数g (x )在(0,+∞)上单调递减;当a >0时,函数g (x )在⎝ ⎛⎭⎪⎫0,-1+1+8a 4上单调递增,在⎝ ⎛⎭⎪⎫-1+1+8a 4,+∞上单调递减. (3)证明 构造函数h (x )=l n (1+x )-x ,则h ′(x )=1x +1-1=-x x +1,当x >0时,h ′(x )<0,故函数h (x )在(0,+∞)上单调递减,所以h (x )<h (0)=0,即不等式l n (1+x )<x 对任意正实数x 恒成立.令x =1n ,得l n n +1n <1n ,即l n (n +1)-l n n <1n, 所以l n n +13=l n (n +1)-l n 3=l n n +1n +l n n n -1+…+l n 43<13+14+15+…+1n .。

相关文档
最新文档