专家教你如何透彻理解电感

合集下载

什么是电感如何使用它

什么是电感如何使用它

什么是电感如何使用它电感是一种重要的电子元件,广泛应用于电路和电子设备中。

在本文中,将介绍电感的基本原理和用法。

电感是一种能够存储和释放磁能的被动元件。

它通常由导体线圈或线圈组成,当电流通过线圈时,产生磁场,这个磁场会储存电能。

当电流减小或中断时,磁场会崩溃并释放电能。

这种存储和释放电能的特性使得电感在电子电路中具有重要作用。

第一部分:电感的原理电感的原理基于法拉第电磁感应定律,即改变电流通过导体时,会产生相应的电磁感应效应。

电感的大小取决于线圈的匝数、线圈的面积和线圈中的磁通量。

线圈的匝数越多,磁通量越大,电感值也就越大。

第二部分:电感的用途1. 滤波器:电感可以用作滤波器的核心元件,能够滤除电源信号中的高频干扰,使得电路工作更加稳定。

2. 变压器:电感可以通过变换线圈的匝数来改变电流的大小,从而实现电压的升降,这在电力系统中起到非常重要的作用。

3. 谐振电路:电感可以与电容器结合使用,形成谐振电路。

谐振电路可以选择特定频率的信号进行放大或滤波。

4. 发光二极管(LED)驱动:LED驱动电路通常需要一个电感来稳定电流,以保证LED的正常工作。

5. 无线充电:电感被广泛应用于无线充电技术中,通过电感耦合实现电力的传输。

第三部分:使用电感的注意事项1. 避免超限:在使用电感时,应该确保电流不超过电感的额定值,以避免损坏电感。

2. 防止干扰:电感可以产生较强的磁场,可能对周围的电子设备产生干扰,因此应该合理布局和屏蔽线圈。

3. 选择合适的电感:根据具体的电路需求选择合适的电感型号和参数,以确保电路工作的稳定性和性能。

结论:电感是一种重要的电子元件,广泛应用于滤波器、变压器、谐振电路、LED驱动、无线充电等领域。

了解电感的原理和使用注意事项,可以更好地利用电感的特性来设计和构建电子电路。

对于电子爱好者和工程师来说,掌握电感的用法是十分重要的。

通过合理地选择和使用电感,可以提高电路的效率和性能,实现更多的应用。

物理学概念知识:电容和电感

物理学概念知识:电容和电感

物理学概念知识:电容和电感电容和电感是电学中常见的两个重要概念,它们在电路、通讯、能量转换等领域都扮演着重要的角色。

本文将从电容和电感的定义、原理及其在实际应用中的应用举例等方面进行详细阐述。

一、电容的定义和原理电容是指在电路中能够储存电荷的一种装置,通常由两个导体板之间隔以电介质而构成,如平行板电容器、球形电容器等。

电容的单位为法拉(F),其中1法拉等于1库仑/伏,即在1伏特电压下,1库仑的电荷能够存储在电容器中。

电容的原理是基于电介质介电常数的概念,介电常数是描述介质对电场强度影响的一个参数。

当两个导体板之间的电介质填充后,其介电常数不同于空气或真空,所以导电板之间的电场强度就会减弱。

因此,在外加电压的作用下,导体板上就会储存电荷,这就是电容的原理。

二、电感的定义和原理电感是指在电路中能够储存磁能量的一种元件,通常由线圈等导体制成。

而电感的单位为亨(H),其中1亨等于1秒/安培,即在1安培的电流下,1秒的时间内在电感中储存的磁能量。

电感的原理是基于磁感应定律,根据磁感线在闭合线圈中的情况,可以得出闭合线圈中磁场的大小和方向。

当线圈中有电流流过时,就会产生磁通量,这就是电感储存磁能的原理。

三、电容和电感的区别虽然电容和电感都是能量储存器,但是它们却有着很大的区别。

首先,电容储存的是电荷能量,而电感储存的则是磁能量。

其次,电容对电流的改变有很高的响应速度,而电感对电流的改变响应较慢。

最后,电容可以让交流信号通过,而电感却可以抵消掉交流信号。

四、电容和电感的实际应用举例电容和电感的实际应用非常广泛,下面将从通讯、能量转换、电路等角度举例说明。

1、通讯:在通讯系统中,电容和电感分别用于信号的滤波和匹配。

使用电容器可以过滤掉高频噪声信号从而提高信噪比,而使用电感器可以匹配阻抗,实现信号强度的最大输出。

2、能量转换:电容和电感在能量转换中也发挥着重要的作用。

例如,在直流电源与交流电网之间需要一个更好的能量转换器来升高或降低电压,此时电容、电感等电路元件可以升高能量效率,提高能源利用率,减少功率损失。

电感作用及工作原理

电感作用及工作原理

电感作用及工作原理
嘿,朋友们!今天咱来聊聊电感这个神奇的玩意儿及其工作原理。

电感啊,你可以把它想象成一个特别会“储存能量”的小能手。

就好比你有个小钱包,能把钱存起来,电感呢,就是专门存电的。

电在电感里进进出出,就像我们每天忙忙碌碌地跑来跑去。

当电流通过电感时,电感就开始发挥它的魔力啦!它会产生一种力量,这种力量能阻碍电流的变化,就好像你跑步的时候遇到一股阻力,让你没那么容易加速或者减速。

电感的这种特性在很多地方都大有用处呢!比如说在一些电子设备里,它能帮忙稳定电流,让设备工作得更顺畅。

这就像给机器加上了一道保险,让它不会因为电流的波动而“闹脾气”。

你想想看,要是没有电感,那电流可能就像个调皮的孩子,一会儿跑得快,一会儿跑得慢,那电子设备还不得乱套呀!所以电感就像一个默默守护的卫士,虽然不显眼,但却超级重要。

而且哦,电感还能在一些电路里起到滤波的作用呢!它能把那些乱七八糟的杂波给过滤掉,让电流变得更纯净。

这就好比我们喝水,要把水里的杂质过滤掉才能喝得放心。

在实际生活中,电感无处不在。

从我们每天用的手机、电脑,到各种各样的电器,都有电感的身影。

它就像一个幕后英雄,默默地为我们的生活提供便利。

哎呀,你说这电感是不是很厉害呀!它虽然小小的,但是作用可大了去了。

它能让电流变得更听话,能让电子设备更稳定地工作。

我们真得好好感谢电感这个小家伙呀!
总之,电感就是这么一个神奇又重要的东西。

它的工作原理虽然不复杂,但是却能在电子世界里发挥巨大的作用。

下次你再使用那些电子设备的时候,不妨想想里面的电感正在努力工作呢,是不是觉得很有意思呀!。

电感基础知识

电感基础知识

电感基础知识一、电感的概念和定义电感是指导体中的电流发生变化时所产生的自感现象,也可以理解为电流通过线圈时所产生的磁场与线圈本身相互作用而形成的一种电学现象。

二、电感的单位及计算方法1. 电感的单位:亨利(H)2. 计算方法:- 空气芯线圈的电感公式:L = (μ0 × N² × S) / l- 铁芯线圈的电感公式:L = (μ × N² × S) / l其中,L表示线圈的电感,μ0和μ分别表示真空磁导率和铁磁材料磁导率,N表示线圈匝数,S表示线圈截面积,l表示线圈长度。

三、电感与磁场1. 产生磁场:当有电流通过一个导体时,会在其周围产生一个磁场。

2. 自感现象:当通过一个导体中的电流发生变化时,会在这个导体周围产生一个自己本身所引起的反向磁通量。

3. 互感现象:当两个或多个线圈靠近时,它们之间会相互影响而引起一些变化。

这种现象被称为互感。

四、电感的应用1. 电感器:电感器是一种用于存储能量的元件,它可以将电流转化为磁场并将其储存,同时也可以将磁场转化为电流。

2. 滤波器:在电路中,滤波器可以通过选择适当的电容和电感来滤除高频噪声和杂波信号。

3. 传感器:由于线圈中的磁场与周围环境有很大关系,因此可以将线圈作为传感器来测量环境中的物理量,如温度、湿度和磁场等。

4. 变压器:变压器是一种利用互感现象来改变交流电压大小的装置。

它由两个或多个线圈组成,当其中一个线圈通入交流电时,会在另一个线圈中产生一个相应大小和相反方向的交流电。

五、常见问题解答1. 什么是自感现象?答:当通过一个导体中的电流发生变化时,会在这个导体周围产生一个自己本身所引起的反向磁通量。

这种现象被称为自感现象。

2. 什么是互感现象?答:当两个或多个线圈靠近时,它们之间会相互影响而引起一些变化。

这种现象被称为互感。

3. 电感的单位是什么?答:电感的单位是亨利(H)。

4. 电感器有什么作用?答:电感器是一种用于存储能量的元件,它可以将电流转化为磁场并将其储存,同时也可以将磁场转化为电流。

电感的基本概念与计算

电感的基本概念与计算

电感的基本概念与计算电感是电学中的重要概念之一,它指的是电流变化时产生的磁场对电流自身的影响。

通过电感的概念和计算,我们可以更好地理解电路中的电流与磁场之间的相互作用,为电路设计和电磁学研究提供基础和指导。

首先,我们来探讨电感的基本概念。

电感是由导线所形成的线圈或线元所产生的磁场与通过这个线圈或线元的电流之间的关系。

当电流通过导线时,会产生一个环绕导线的磁场。

当电流变化时,这个磁场也会产生变化。

这种变化的磁场将会对流过导线的电流产生作用,产生一种抵抗电流变化的作用力,即所谓的自感应电动势。

这种自感应电动势是由磁场对导线中的电荷产生的力所引起的,阻碍了电流的变化。

接下来,我们来讨论电感的计算。

电感的计算可采用法拉第定律,即L = Φ/I,其中L表示电感,Φ表示通过线圈的磁通量,I表示电流。

这个公式告诉我们,电感与穿过线圈的磁通量和电流成正比。

那么,磁通量又是怎样计算的呢?磁通量Φ是通过一个面积S的闭合曲面的磁场B的数量。

根据比奥-萨伐尔定律,磁场B与电流I之间存在线性关系:B = μ₀I/(2πr),其中μ₀是真空中的磁导率,r为曲面与导线的距离。

因此,我们可以得到磁通量Φ的计算公式为:Φ = B·S =(μ₀I/(2πr))·S。

将这个公式代入电感计算公式中,我们可以得到电感的具体计算公式为:L = (μ₀S/(2πr))·N²,其中N表示线圈的匝数。

电感的计算可通过上述公式进行,但在实际应用中,由于磁场的复杂性,常常需要借助于电磁场仿真软件进行计算和分析。

通过计算和分析,我们可以更好地了解电感与电流、磁场之间的相互关系,优化电路设计和电磁学研究。

除了上述的基本概念和计算方法,电感还有一些实际应用。

例如,电感可用于构建滤波电路,通过它可以滤除电路中的高频噪声,以保证信号的纯净和稳定。

此外,电感还可以用于电源电路的稳压和稳流,起到抑制电流变化和保护无线传输的作用。

什么是电感如何计算电感

什么是电感如何计算电感

什么是电感如何计算电感电感是电学中的一个重要概念,它指的是导体中的电流随时间发生变化时,所产生的自感电动势。

简单来说,电感是电流对磁场的感应作用,它是电磁感应的一种体现。

电感的计算可以通过以下公式来进行:L = (μ₀μᵣN²A)/l其中,L代表电感,μ₀代表真空中的磁导率,μᵣ代表材料的相对磁导率,N代表匝数,A代表线圈的截面积,l代表线圈的长度。

在实际应用中,电感常常以亨利(H)作为单位。

为了更好地理解电感的概念和计算方法,下面将对电感的基本原理和计算方法进行更详细的介绍。

一、电感的基本原理电感是由电流通过导体所产生的磁场引起的。

当导体中的电流随时间发生变化时,磁场也会随之变化。

这种变化的磁场会导致导体中产生自感电动势,即电感。

根据法拉第电磁感应定律,当磁通量Φ发生变化时,就会在回路中产生感应电动势。

而电感实际上就是这种感应电动势的一种体现。

二、电感的计算方法根据上述公式,电感的计算与线圈本身的特性有关。

以下将介绍一些常用的电感计算方法。

1. 空心线圈的计算对于空心线圈,其计算公式为:L = μ₀μᵣ(N²A - N₁²A₁)/l其中,N、A、l的含义与上述相同,N₁和A₁分别代表内部导体的匝数和截面积。

2. 球形线圈的计算对于球形线圈,其计算公式为:L = (μ₀μᵣN²r)/6其中,r代表球的半径。

3. 扁平线圈的计算对于扁平线圈,其计算公式为:L = (4μ₀μᵣN²a²b)/(π(d-t))其中,a和b代表线圈的长和宽,d代表线圈的直径,t代表线圈的厚度。

通过以上的计算方法,可以得出电感的具体数值。

在实际应用中,可以根据具体的电路要求来选择电感器件,并通过计算来确定所需要的电感数值。

总结:电感是电学中的重要概念,它是电流对磁场的感应作用。

电感的计算可以通过公式L = (μ₀μᵣN²A)/l进行,其中包括了线圈的匝数、截面积和长度等参数。

电感电容知识点总结

电感电容知识点总结

电感电容知识点总结电感的基本知识点总结电感是一种利用导体的线圈产生电磁感应的元件,它能够存储磁场能量,在交流电路中具有阻抗的作用。

电感的基本特性包括自感和互感,自感是指导体线圈中的电流产生的磁场感应自身的电动势,而互感是指两个线圈通过磁场感应产生相互之间的电动势。

电感的单位是亨利(H),一亨利等于一个安培的电流在一个导线中产生一个恒定磁场时,导线中的电流变化率为每秒钟一个秒特斯拉的感应电动势。

电感的计算公式包括自感和互感的计算公式。

自感的计算公式为:L = (μ0 * N^2 * A) / l其中,L为电感,μ0为真空中的磁导率(4π*10^-7 H/m),N为线圈中的匝数,A为线圈的面积,l为线圈的长度。

互感的计算公式为:M = (μ0 * N1 * N2 * A) / l其中,M为互感,N1和N2分别为两个线圈的匝数,A为两个线圈之间的交叉面积,l为两个线圈的中心间距。

电感在电路中的应用包括滤波器、振荡电路、变压器和感应电感电动势。

在交流电路中,电感可以通过调节线圈的匝数和面积来调节阻抗,实现对电路的控制和调节。

电容的基本知识点总结电容是一种能够储存电荷并产生电势差的元件,它由两个导体之间隔绝的绝缘介质组成。

电容的基本特性包括介电极性、电容值和电容的工作原理。

介电极性是指绝缘介质的极化效应产生的电场和电势差,它与绝缘介质的介电常数有关;电容值是指电容器所能储存的电荷量,单位是法拉(F);电容的工作原理是通过两个导体之间的绝缘介质储存电荷,产生电场和电势差。

电容的计算公式包括并联电容和串联电容的计算公式。

并联电容的计算公式为:C = C1 + C2 + … + Cn其中,C为并联电容的总电容值,C1、C2等为并联电容的单个电容值。

串联电容的计算公式为:1/C = 1/C1 + 1/C2 + … + 1/Cn其中,C为串联电容的总电容值,C1、C2等为串联电容的单个电容值。

电容在电路中的应用包括滤波器、耦合电容、隔直电容和时延电容。

电感知识点总结

电感知识点总结

电感知识点总结1. 电感的基本概念电感是电路中常见的一个元件,它是一种利用电磁感应现象而产生的电压的器件。

电感的作用是阻碍电流的变化,通过在电路中产生感应电动势来阻碍电流的变化。

电感的单位是亨利(H),通常用L来表示。

电感的大小和线圈的匝数、线圈的截面积、线圈的长度、线圈中的磁性材料有关。

2. 电感的特性电感具有一些特性,包括自感和互感。

自感是指电流在电感中自身产生的感应电动势,是由电流本身的变化引起的电压。

互感是指两个电感相互感应产生的电动势,是由两个电感的磁耦合引起的电压。

另外,电感的等效电路可以用一个电压源和一个电阻来表示,即电感的等效电路是一个串联电阻和电动势源。

3. 电感的应用电感在电路中有很多应用,比如用来构成LC振荡电路、滤波电路、变压器等。

在LC振荡电路中,电感和电容构成一个振荡回路,产生正弦波输出。

在滤波电路中,电感可以作为滤波器的一部分,用来滤除特定频率的信号。

在变压器中,电感用来将电压变换到需要的大小。

另外,电感还可以用来储存能量,比如电感储能器。

4. 电感的计算电感的计算可以通过多种方式进行,其中最基本的方法是使用法拉第定律,即电感的大小和线圈的匝数、线圈的截面积、线圈的长度有关。

另外,还可以通过电感的等效电路进行计算,找到电感的等效电阻和电动势源,从而计算出电感的大小。

5. 电感的制造电感可以通过多种方法制造,包括绕制、铁心、空心和铁氧体电感。

绕制电感是最基本的一种制造方式,即将导线绕制成螺旋线圈。

铁心电感是在线圈中加入铁芯,以增强磁耦合。

空心电感是将线圈绕制在空心的介质材料上,以减少磁耦合。

铁氧体电感是利用铁氧体材料的特性来制造电感,以增强磁耦合。

6. 电感的性能指标电感的性能指标包括电感值、电感公差、最大电流、质量因数等。

其中,电感值是电感的大小,单位是亨利;电感公差是电感值的允许偏差范围;最大电流是可以通过电感的最大电流值;质量因数是描述电感性能的一个指标,是电感的能量储存能力和能量损失能力的比值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、电感器的定义。

1.1 电感的定义:电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。

当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。

根据法拉弟电磁感应定律-磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。

当形成闭合回路时,此感应电势就要产生感应电流。

由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。

由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。

电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。

总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。

这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。

由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。

1.2 电感线圈与变压器电感线圈:导线中有电流时,其周围即建立磁场。

通常我们把导线绕成线圈,以增强线圈内部的磁场。

电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。

一般情况,电感线圈只有一个绕组。

变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。

两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。

1.3电感的符号与单位电感符号:L电感单位:亨(H)、毫亨(mH)、微亨(uH),1H=103mH=106uH。

电感量的标称:直标式、色环标式、无标式电感方向性:无方向检查电感好坏方法:用电感测量仪测量其电感量;用万用表测量其通断,理想的电感电阻很小,近乎为零。

1.4 电感的分类:按电感形式分类:固定电感、可变电感。

按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。

按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。

按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。

按工作频率分类:高频线圈、低频线圈。

按结构特点分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等。

二、电感的作用基本作用:滤波、振荡、延迟、陷波等形象说法:“通直流,阻交流”细化解说:在电子线路中,电感线圈对交流有限流作用,它与电阻器或电容器能组成高通或低通滤波器、移相电路及谐振电路等;变压器可以进行交流耦合、变压、变流和阻抗变换等。

由感抗XL=2πf L知,电感L越大,频率f越高,感抗就越大。

该电感器两端电压的大小与电感L成正比,还与电流变化速度△i/△t成正比,这关系也可用下式表示:电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示:可见,线圈电感量越大,流过越大,储存的电能也就越多。

电感在电路最常见的作用就是与电容一起,组成LC滤波电路。

我们已经知道,电容具有“阻直流,通交流”的本领,而电感则有“通直流,阻交流”的功能。

如果把伴有许多干扰信号的直流电通过LC滤波电路(如图),那么,交流干扰信号将被电容变成热能消耗掉;变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。

LC滤波电路在线路板电源部分的电感一般是由线径非常粗的漆包线环绕在涂有各种颜色的圆形磁芯上。

而且附近一般有几个高大的滤波铝电解电容,这二者组成的就是上述的LC滤波电路。

另外,线路板还大量采用“蛇行线+贴片钽电容”来组成LC 电路,因为蛇行线在电路板上来回折行,也可以看作一个小电感。

三、电感的主要特性参数2.1 电感量L电感量L表示线圈本身固有特性,与电流大小无关。

除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。

2.2 感抗XL电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。

它与电感量L和交流电频率f的关系为XL=2πf L2.3 品质因素Q品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。

线圈的Q值愈高,回路的损耗愈小。

线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。

线圈的Q值通常为几十到几百。

采用磁芯线圈,多股粗线圈均可提高线圈的Q 值。

2.4 分布电容线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。

分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。

采用分段绕法可减少分布电容。

2.5 允许误差:电感量实际值与标称之差除以标称值所得的百分数。

2.6 标称电流:指线圈允许通过的电流大小,通常用字母A、B、C、D、E分别表示,标称电流值为50mA、150mA、300mA、700mA、1600mA。

四、常用电感线圈3.1 单层线圈单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。

如晶体管收音机中波天线线圈。

3.2 蜂房式线圈如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。

而其旋转一周,导线来回弯折的次数,常称为折点数。

蜂房式绕法的优点是体积小,分布电容小,而且电感量大。

蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小3.3 铁氧体磁芯和铁粉芯线圈线圈的电感量大小与有无磁芯有关。

在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。

3.4 铜芯线圈铜芯线圈在超短波范围应用较多,利用旋动铜芯在线圈中的位置来改变电感量,这种调整比较方便、耐用。

3.5 色码电感线圈是一种高频电感线圈,它是在磁芯上绕上一些漆包线后再用环氧树脂或塑料封装而成。

它的工作频率为10KHz至200MHz,电感量一般在0.1uH到3300uH之间。

色码电感器是具有固定电感量的电感器,其电感量标志方法同电阻一样以色环来标记。

其单位为uH。

3.6 阻流圈(扼流圈)限制交流电通过的线圈称阻流圈,分高频阻流圈和低频阻流圈。

3.7 偏转线圈偏转线圈是电视机扫描电路输出级的负载,偏转线圈要求:偏转灵敏度高、磁场均匀、Q值高、体积小、价格低。

五、电感的型号、规格及命名。

国内外有众多的电感生产厂家,其中名牌厂家有SAMUNG、PHI、TDK、AVX、VISHAY、NEC、KEMET、ROHM等。

5.1 片状电感电感量:10NH~1MH材料:铁氧体绕线型陶瓷叠层精度:J=±5% K=±10% M=±20%尺寸: 0 4 0 2 0 6 0 3 0 8 0 5 10 0 8 12 0 6 1210 1812 10 0 8 =2 . 5m m* 2 .0 m m 1210=3.2mm*2.5mm个别示意图:5.2 功率电感电感量:1NH~20MH带屏蔽、不带屏蔽尺寸:SMD43、SMD54、SMD73、SMD75、SMD104、SMD105;RH73/RH74/RH104R/RH105R/RH124;CD43/54/73/75/104/105;个别示意图:5.3 片状磁珠种类:CBG(普通型)阻抗:5Ω~3KΩCBH(大电流)阻抗:30Ω~120Ω CBY(尖峰型)阻抗:5Ω~2KΩ个别示意图:规格:0402/0603/0805/1206/1210/1806(贴片磁珠)规格:SMB302520/SMB403025/SMB853025(贴片大电流磁珠)5.4 插件磁珠规格:RH3.55.5 色环电感电感量:0.1uH~22MH尺寸:0204、0307、0410、0512豆形电感:0.1uH~22MH尺寸:0405、0606、0607、0909、0910 精度:J=±5% K=±10% M=±20%精度:J=±5% K=±10% M=±20%插件的色环电感读法:同色环电阻的标示5.6 立式电感电感量:0.1uH~3MH规格:PK0455/PK0608/PK0810/PK09125.7轴向滤波电感规格:LGC0410/LGC0513/LGC0616/LGC1019电感量:0.1uH-10mH。

额定电流:65mA~10A。

Q值高,价位一般较低,自谐振频率高。

5.8 磁环电感规格:TC3026/TC3726/TC4426/TC5026尺寸(单位mm):3. 25~15. 885.9 空气芯电感空气芯电感为了取得较大的电感值,往往要用较多的漆包线绕成,而为了减少电感本身的线路电阻对直流电流的影响,要采用线径较粗的漆包线。

但在一些体积较少的产品中,采用很重很大的空气芯电感不太现实,不但增加成本,而且限制了产品的体积。

为了提高电感值而保持较轻的重量,我们可以在空气芯电感中插入磁心、铁心,提高电感的自感能力,借此提高电感值。

目前,在计算机中,绝大部分是磁心电感。

六、常见的磁芯磁环铁粉芯系列材质有:-2材(红/透明)、-8材(黄/红)、-18材(绿/红)、-26材(黄/白)、-28材(灰/绿)、-33材(灰/黄)、-38材(灰/黑)、-40材(绿/黄)、-45材(黑色)、-52材(绿/蓝);尺寸:外径大小从30到400D(注解:外径从7.8mm到102mm)。

铁硅铝系列主要u值有:60、75、90、125;尺寸:外径大小从3.5mm到77.8mm。

两种产品的规格除了主要的环形外,另有E形,棒形等,还可以根据客户提供的各项参数定做。

它们广泛应用于计算机主机板,计算机电源,电源供应器,手机充电器,灯饰变压调光器,不间断电源(UPS),各种家用电器控制板等。

七、电感在使用过程中要注意的事项7.1电感使用的场合潮湿与干燥、环境温度的高低、高频或低频环境、要让电感表现的是感性,还是阻抗特性等,都要注意。

7.2电感的频率特性在低频时,电感一般呈现电感特性,既只起蓄能,滤高频的特性。

但在高频时,它的阻抗特性表现的很明显。

有耗能发热,感性效应降低等现象。

不同的电感的高频特性都不一样。

下面就铁氧体材料的电感加以解说:铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。

铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。

在高频情况下,他们主要呈电抗特性比并且随频率改变。

实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。

相关文档
最新文档