[工学]概率统计模型

合集下载

数学建模-第四章-概率统计模型

数学建模-第四章-概率统计模型


学 建
4.2 报纸零售商最优购报问题

报纸零售商售报: a (零a-b;退回一份赔 b-c 题 每天购进多少份可使收入最大?
购进太多卖不完退回赔钱
分 析
购进太少不够销售赚钱少
应根据需求确定购进量
存在一个合 适的购进量
每天需求量是随机的
每天收入是随机的
△+6 △+2
多雨 P(N3)=0.1
△+1.2

学 例4.4.1只包括一个决策点,称为单级决策问 建 题。在有些实际问题中将包括两个或两个以 模 上的决策点,称为多级决策问题,可利用同
样的思路进行决策。
例4.1.2 某工程采用正常速度施工,若无坏天气的 影响,可确保在30天内按期完成工程,但据天气预 报,15天后天气肯定变坏,有40%的可能出现阴雨 天气,但这不会影响工程进度,有50%的可能遇到 小风暴,而使工期推迟15天;另有10%的可能遇到 大风暴而使工期推迟20天。对于以上可能出现的情 况,考虑两种方案:
3
1
1
1
55
E(A2 ) 3 30 3 25 3 0 3
1
1
1
E(A3 ) 3 10 3 10 3 10 10
显然 E(A 1)E(A2)都达到最大值,这时究竟选
那一个策略可由决策者的偏好决定,若是乐观型的,
可选A1,否则选A2 。



模 从本例可以看出,对不确定型的决策问题,采 用不同的决策准则所得到的结果并非完全一致。 但难说哪个准则好,哪个准则不好。究竟在实 际问题中采用哪个准则,依决策者对各种自然 状态的看法而定。因此,为了改进不确定型决 策,人们总是设法得到各自然状态发生的概率, 然后进行决策。

交通工程学--概率统计模型 ppt课件

交通工程学--概率统计模型 ppt课件

T Qet
t 1
(6)小于时间 t的间隔数目为
N 1 1Q 1 e t
车头间隔数目计算
4.2 概率统计模型
t (7)小于 时间的间隔总的时间
T 1 1 31 6 e t 0 t 1 0
(8)小于时间 t的间隔总的时间在一个小时内占的比率 T11 1ett1
3600
(9)小于 t 时间的间隔的平均时间
4.2 概率统计模型
4.2.2 连续型分布
4.2 概率统计模型
4.2.2 连续型分布
4.2 概率统计模型
4.2.2 连续型分布
4.2 概率统计模型
4.2.2 连续型分布
4.2 概率统计模型
车头间隔数目计算
车头间隔是连续的,可认为服从负指数分布。 设小时交通量为 Q(辆/h), Q/3600
§4.2 概率统计模型
Prof. Cao
4.2 概率统计模型
4.2 概率统计模型
◆基本概念
1)交通流分布:交通流的到达特性或在物理空间上的存 在特性; 2)离散型分布(也称计数分布):在一段固定长度的时 间内到达某场所的交通数量的波动性; 3)连续型分布(时间间隔分布、速度分布等):在一段 固定长度的时间内到达某场所交通的间隔时间的统计分布; 4)研究交通分布的意义:预测交通流的到达规律(到达 数及到达时间间隔),为确定设施规模、信号配时、安全 对策提供依据。
4.2 概率统计模型
4.2.1 离散型分布
■车辆的到达具有随机性
■ 描述对象: ■ 在一定的时间间隔内到达的车辆数, ■ 在一定长度的路段上分布的车辆数。
4.2 概率统计模型
4.2.1 离散型分布
■ 1.泊松分布:
■适用条件:车辆(或人)的到达是随机的,相互间的 影响微弱,也不受外界因素干扰,具体表现在交通流密度 不大;

概率统计数学模型

概率统计数学模型

概率统计数学模型在数学领域,概率统计是一个非常重要的分支,它涉及到各种随机现象的数学描述和统计分析。

概率统计数学模型则是这些分析的基础,它能够准确地描述和预测各种随机现象的结果。

一、概率统计数学模型的基本概念概率统计数学模型是建立在随机试验基础上的数据分析方法。

在概率论中,随机试验的结果通常被视为不可预测的,但可以通过概率分布来描述它们。

而统计方法则是对数据进行收集、整理、分析和推断的方法,它依赖于概率论的知识。

二、概率统计数学模型的应用概率统计数学模型在各个领域都有广泛的应用,例如在金融领域中,它可以帮助我们预测股票价格的波动;在医学领域中,它可以帮助我们理解疾病的传播方式;在工程领域中,它可以帮助我们优化设计方案。

三、概率统计数学模型的建立过程建立概率统计数学模型通常包括以下几个步骤:1、确定研究问题:首先需要明确研究的问题是什么,以及我们想要从中获得什么样的信息。

2、设计随机试验:针对研究问题,设计合适的随机试验,以便收集数据。

3、收集数据:通过试验或调查等方式收集数据,并确保数据的准确性和可靠性。

4、分析数据:利用统计分析方法对收集到的数据进行处理和分析,提取有用的信息。

5、建立模型:根据分析结果,建立合适的概率统计模型,以描述数据的分布规律和预测未来的趋势。

6、验证模型:对建立的模型进行验证,确保其准确性和适用性。

7、应用模型:将建立的模型应用于实际问题的解决和预测中。

概率统计数学模型是处理和分析随机现象的重要工具,它在各个领域都有广泛的应用前景。

通过建立合适的概率统计模型,我们可以更好地理解和预测各种随机现象的结果,从而为实际问题的解决提供有力的支持。

概率统计数学模型在投资决策中的应用在投资决策的制定过程中,准确理解和应用概率统计数学模型是至关重要的。

概率统计数学模型为投资者提供了定量分析工具,帮助他们更准确地预测投资结果,从而做出更合理的决策。

一、概率模型的应用概率模型在投资决策中的应用广泛。

概率统计模型

概率统计模型
来自-46000 -38000
-50000
对决策D,因为采取应急措施的数学期望为-50800,正常施工的期望即为-50000 显然,应采取决策为正常施工。
同理,对决策C,应采取应急措施进行施工,即C的期望值为-19800
提前加班
阴雨 0.4
-19800
(0.5)
-14900
应急
-19800
A
正常速度 B
为:E(B)=0×0.4+(-19800) ×0.5+(-50000) ×0.1=-14900
提前加班
阴雨 0.4
-19800
(0.5)
-14900
应急
-19800
A
正常速度 B
0.5 风暴
C
E
(0.3)
(0.2)
正常施工
台风 0.1
-
应急
-50000
-50800
F
D 正常施工
最后结论:
-18000 0 -24000
应急
减少误工3天(0.2) F
减少误工4天(0.1)
-54000 -46000 -38000
D 正常施工
-50000
提前加班
阴雨 0.4
-19800
(0.5)
应急
E
(0.3) (0.2)
A
正常速度 B
0.5 风暴
C
正常施工
台风 0.1
应急
-50800
F
-18000 0 -24000
-18000 -12000
方案或策略:参谋人员为决策者提供的各种可行计划和谋 略.
风险决策的基本要素
内容包括:决策者、方案、准则、状态、结果

概率统计模型决策模型教学课件

概率统计模型决策模型教学课件

THANKS FOR WATCHING
感谢您的观看
过程能力分析
通过概率统计模型分析生产过程中的能力指数,评估生产 过程的稳定性和可靠性,为生产计划的制定提供依据。
故障模式分析
使用概率统计模型对生产过程中出现的故障模式进行分析 ,找出故障原因和解决方法,提高生产效率和产品质量。
在医疗诊断中的应用
疾病预测
基于大数据和概率统计模型,可以对患者的疾病风险进行预测和分 析,为医生提供更加准确的诊断依据。
不确定决策模型
不确定决策模型的概述
不确定决策模型是指在决策过程中,各种因素的发生概率是未知的,决策者需要 根据历史数据和经验进行推断。
不确定决策模型的应用场景
不确定ห้องสมุดไป่ตู้策模型广泛应用于风险管理、预测等领域,如天气预报、市场预测等。
基于偏好关系的决策模型
基于偏好关系的决策模型的概述
基于偏好关系的决策模型是指在决策过程中,决策者根据自身偏好进行决策,这些偏好关系可以用数学模型表示 。
02
概率统计模型在科学、工程、医 学等领域有广泛的应用,为决策 提供科学依据。
概率统计模型的基本概念
01
02
03
04
随机试验
指可能出现不同结果的事件, 且每个结果的出现具有不确定
性。
随机事件
指随机试验中可能出现的观察 结果,如扔硬币的正面或反面

概率
指随机事件发生的可能性,用 介于0和1之间的实数表示。
平均数
所有变量值的和除以变量值的 个数,反映变量的集中趋势。
标准差
衡量变量值离散程度的指标, 反映变量的波动大小。
推论性统计模型
参数估计
根据样本数据推断总体参数的方法, 如点估计和区间估计。

《概率统计模型》课件

《概率统计模型》课件
回归分析在市场预测中的应用还包括价 格分析、消费者行为分析等方面。
在市场营销领域,回归分析可以用于预 测产品需求、销售量、市场份额等方面 。
通过回归分析,企业可以了解市场趋势 ,制定有针对性的营销策略,提高市场 竞争力。
THANKS FOR WATCHING
感谢您的观看
03
统计方法在医学领域的应用还包括疾病预测、诊断和治疗效果评估等 方面。
04
统计方法在医学领域的应用有助于提高医学研究的准确性和可靠性。
回归分析在市场预测中的应用
回归分析是一种常用的统计分析方法, 用于探索变量之间的关系,并对未来趋 势进行预测。
回归分析在市场预测中的应用有助于企 业做出科学合理的决策,提高市场占有 率和盈利能力。
详细描述
时间序列分析涉及对按时间顺序排列的数据 进行统计处理,以揭示其内在的规律和特性 。这种方法广泛应用于金融、气象、医学等 领域,用于预测未来趋势和进行决策分析。
06 案例研究
概率论在金融中的应用
概率论在金融领域中有着 广泛的应用,如风险评估 、投资组合优化、期权定 价等。
概率论在金融领域的应用 还包括信用评级、保险精 算、风险管理等方面。
描述随机变量取值的平均水平和分散程度。
常见的随机变量分布
二项分布、泊松分布、正态分布等。
02 统计推断
参数估计
参数估计的概念
参数估计是用样本信息来估计总体参 数的过程,是统计推断的重要内容之 一。
点估计
点估计是指用一个单一的数值来估计 总体参数,常用的方法有矩估计和极 大似然估计。
区间估计
区间估计是指用一个区间范围来估计 总体参数,常用的方法有置信区间和 预测区间。
假设检验的步骤

概率统计方法建模PPT课件

概率统计方法建模PPT课件
若某人投保时健康, 问10年后他仍处于健康状态的概率。
第3页/共23页
5.5 随机状态转移模型
状态与状态转移 ➢随机变量Xn:第n年的状态 状态概率 ai (n)
Xn
1, 2,
第n年健康 第n年疾病
ai (n) P(Xn i), i 1, 2, n 0,1,
➢今年处于状态i, 来年处于状态j的概率 pi:j 转移概率
存贮策略是周末库存量为零时订购3架 周末的库存量可 能是0, 1, 2, 3,周初的库存量可能是1, 2, 3。 用马氏链描述不同需求导致的周初库存状态的变化。 动态过程中每周销售量不同,失去销售机会(需求超过 库存)的概率不同。
可按稳态情况(时间充分长以后)计算失去销售机会的 概率和每周的平均销售量。
马氏链的两个重要类型
设状态i是非吸收状态,j是吸收状态,则首达概率f ij (n) 实际上是i经n次转移被j吸收的概率。而
fij = fij (1) + fij(2) + … + fij(n) + …
则是从非吸收状态i出发终将被吸收状态j吸收的概率。 记 F={f ij} 则 F=MR
例如,可以算出前面第二种情况中
第19页/共23页
5. 6 马尔可夫链的应用模型
模型求解 ➢ 估计这种策略下每周的平均销售量
第n周平均售量Rn
需求不超过存 量,销售需求
需求超过存量, 销售存量
3i
Rn [ jP(Dn j, Sn i) iP(Dn i, Sn i)] i1 j 1 3i [ jP(Dn j Sn i) iP(Dn i Sn i)]P(Sn i) i1 j 1
p23 p33
P(Dn k) e1 / k ! (k 0,1, 2 )

概率统计模型的原理和应用

概率统计模型的原理和应用

概率统计模型的原理和应用前言概率统计模型是一种基于概率论和统计学原理建立的数学模型,用于描述和推断随机现象的规律。

在实际应用中,概率统计模型被广泛应用于各个领域,包括金融、医学、工程等。

本文将介绍概率统计模型的原理和应用,并以列点的方式呈现相关内容。

概率统计模型的基本概念•概率:指事件发生的可能性或程度,用数值表示。

•统计:指通过对样本数据的观察和分析,对总体特征进行推断。

•随机变量:指表示随机现象结果的数值化变量,在概率统计模型中起重要作用。

•概率分布:指随机变量所有可能取值及其对应概率的分布情况,常见的概率分布包括正态分布、均匀分布等。

概率统计模型的原理1.概率论基础:概率统计模型建立在概率论的基础上,概率论提供了描述随机现象的理论框架和推断方法。

概率论中的公理系统和概率推断方法为概率统计模型的构建和分析提供了理论基础。

2.参数估计:参数估计是概率统计模型中的一个重要步骤,用于通过样本数据来估计总体参数。

常见的参数估计方法包括极大似然估计、最小二乘估计等。

3.假设检验:假设检验是通过观察样本数据,判断总体参数是否符合某个假设的一种推断方法。

假设检验在概率统计模型中应用广泛,用于验证模型的有效性和检测变量之间的相关性。

4.相关性分析:概率统计模型可以通过相关性分析来探索变量之间的关系。

常见的相关性分析方法包括相关系数分析和回归分析等。

概率统计模型的应用概率统计模型在各个领域有广泛的应用,以下是一些常见的应用场景: 1. 金融领域:通过概率统计模型可以对股票价格、汇率变动等金融现象进行建模和预测,帮助投资者做出决策。

2. 医学领域:概率统计模型在医学研究和临床实践中有重要应用,例如用于分析疾病的发病机制、评估疗效等。

3. 工程领域:在工程项目中,概率统计模型可以用于风险评估、质量控制等方面。

例如,建筑工程中的结构安全分析。

4. 社会科学领域:概率统计模型可以用于社会调查、数据分析等方面,帮助研究人员理解社会现象和预测社会趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

背景 • 一个人的出生和死亡是随机事件
一个国家或地区
平均生育率 平均死亡率
确定性模型
一个家族或村落
出生概率 死亡概率
随机性模型
对象
X(t) ~ 时刻 t 的人口, 随机变量.
Pn(t) ~概率P(X(t)=n), n=0,1,2,…
研究Pn(t)的变化规律;得到X(t)的期望和方差
模型假设
若X(t)=n, 对t到t+t的出生和死亡概率作以下假设
数学建模竞赛
第五讲 概率统计模型
§1 报童的诀窍 §2 随机人口模型 §3 牙膏的销售量 §4 健康与疾病 §5 钢琴销售的存贮策略
随机模型 确定性因素和随机性因素
随机因素可以忽略
随机因素影响可以简单 地以平均值的作用出现
确定性模型
随机因素影响必须考虑
随机性模型
概率模型 统计回归模型 马氏链模型
§1 报童的诀窍
报童售报: a (零售价) > b(购进价) > c(退回价)
问 售出一份赚 a-b;退回一份赔 b-c 题 每天购进多少份可使收入最大?
购进太多卖不完退回赔钱
分 析
购进太少不够销售赚钱少
应根据需求确定购进量
存在一个合 适的购进量
每天需求量是随机的
每天收入是随机的
优化问题的目标函数应是长期的日平均收入 等于每天收入的期望
n 1
n+1=k
( ) n2 Pn (t)
n 1
dE dt

(



)
nP n
(t
)
n1
பைடு நூலகம்

(

) E (t )
求解
dE ( )E(t)
dt E(0) n0
E(t) n0ert , r
r ~ 增长概率
比较:确定性指数增长模型 x(t) x0ert r ~ 平均增长率
X(t)的方差

D(t) n2 Pn (t) E 2 (t)
E
E(t)+(t)
n1
D(t)

n0



e [e ( )t ( )t
1]
n0
E(t)-(t)
0
t
X(t)大致在 E(t)2(t) 范围内( (t) ~均方差)
- = r D(t) , D(t)
§3 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
收集了30个销售周期本公司牙膏销售量、价格、
广告费用,及同期其它厂家同类牙膏的平均售价
销售 本公司价 周期 格(元)
1
3.85
其它厂家 价格(元)
3.80
广告费用 (百万元)
5.50
价格差 (元)
n

G(n) [(a b)r (b c)(n r)] f (r) (a b)nf (r)
r0
r n1
求 n 使 G(n) 最大
求解 将r视为连续变量 f (r) p(r) (概率密度)
G(n)

n
0
[(
a

b)r

(b

c)(n

r
)]
p(r
)dr


dPn dt
(n 1)Pn1(t) (n 1)Pn1(t) ( )nPn (t)
1, Pn (0) 0,
n n0 n n0
(t=0时已知人口为n0)
~一组递推微分方程——求解的困难和不必要
转而考察X(t)的期望和方差
基本方程
dP n dt
(n 1)Pn1(t) (n 1)Pn1(t) ( )nPn (t)
1)出生一人的概率与t成正比,记bnt ; 出生二人及二人以上的概率为o(t).
2)死亡一人的概率与t成正比,记dnt ; 死亡二人及二人以上的概率为o(t).
3)出生和死亡是相互独立的随机事件。
进一步假设
bn与n成正比,记bn=n , ~出生概率; dn与n成正比,记dn=n,~死亡概率。
建模 为得到Pn(t)=P(X(t)=n),的变化规律,
考察Pn(t+t) =P(X(t +t)=n).
事件X(t +t)=n的分解 X(t)=n-1, t内出生一人 X(t)=n+1, t内死亡一人 X(t)=n, t内没有出生和死亡
其它(出生或死亡二人, 出生且死亡一人,… …)
概率Pn(t+t) Pn-1(t) bn-1t Pn+1(t) dn+1t Pn(t)(1-bnt -dn t)

a b bc
结果解释
n
0

n
p(r)dr p(r)dr

ab bc
取n使
n
0
p(r)dr

P1 ,

n
p(r)dr

P2
p
P ab 1
P bc 2
a-b ~售出一份赚的钱 b-c ~退回一份赔的钱
P1 P2
0
n
r
(a b) n , (b c) n
§2 随机人口模型
准 调查需求量的随机规律——每天 备 需求量为 r 的概率 f(r), r=0,1,2…
建 • 设每天购进 n 份,日平均收入为 G(n) 模 • 已知售出一份赚 a-b;退回一份赔 b-c
r n 售出r 赚(a b)r
退回n r 赔(b c)(n r)
r n 售出n 赚(a b)n
n
(a

b)np(r
)dr
dG (a b)np(n)
n
(b c) p(r)dr
dn
0

(a b)np(n) n (a b) p(r)dr
n

(b c)0 p(r)dr (a b)n p(r)dr
dG 0 dn
n
0

n
p(r)dr p(r)dr
o(t)
Pn (t t) Pn1 (t)bn1t Pn1 (t)dn1t Pn (t)(1 bnt dnt) o(t)
建模
微分方程
dPn dt
b P n1 n1 (t) d P n1 n1 (t) (bn
dn )Pn (t)
bn=n,dn=n

求解 X(t)的期望 E(t) nPn (t) n 1
dE n dPn
dt n1 dt
n-1=k
dE dt


n(n n 1

1)
P n
1
(t
)

k (k 1)Pk (t) k1

n(n 1)Pn1 (t)
k (k 1)Pk (t) k 1
相关文档
最新文档