中考专题复习:第三讲 整式

合集下载

专题03整式的加减(3个知识点6种题型4种中考考法)(解析版)

专题03整式的加减(3个知识点6种题型4种中考考法)(解析版)

专题03整式的加减(3个知识点6种题型4种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1:合并同类项知识点2:去括号法则与整式的化简知识点3:整式的加减运算与求值【方法二】实例探索法题型1:同类项的概念题型2:合并同类项与求值题型3:几次几项式题型4:去括号题型5:整式的加减题型6:化简求值【方法三】仿真实战法考法1:同类项考法2:合并同类项考法3:整式的加减考法4:整式的加减——化简求值【方法四】成果评定法【倍速学习五种方法】【方法一】脉络梳理法知识点1:合并同类项1.同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.2.合并同类项1.概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2)合并同类项,只把系数相加减,字母、指数不作运算.知识点2:去括号法则与整式的化简1.去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.2.添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号知识点3:整式的加减运算与求值一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【方法二】实例探索法题型1:同类项的概念1.下列各组单项式是同类项的是()A.2x y 与2xy ;B.33x y -与332x y ;C.12xy 与212x ; D.2x 与3y【答案】B ;【解析】解:A.2x y 与2xy 不是同类项,因为相同字母的指数不同,故A 错误;B.33x y -与332x y 是同类项,故B 正确;C.12xy 与212x 不是同类项,因为所含字母不相同,故C 错误;D.2x 与3y 不是同类项,因为字母不同,故D 错误,故答案选B.2.(2022秋•静安区月考)若﹣2x 3y m 与33x n y 2是同类项,则m +n =.【解答】解:∵﹣2x 3y m 与33x n y 2是同类项,∴m =2,n =3,∴m +n =2+3=5.故答案为:5.3.(2022秋•浦东新区校级期中)如果﹣3a m ﹣1b 2n 和是同类项,那么|3m ﹣7n |=.【解答】解:由题意得:m ﹣1=2,2n =4,解得:m =3,n =2,∴|3m ﹣7n |=|3×3﹣7×2|=|9﹣14|=|﹣5|=5,故答案为:5.4.(2022秋•奉贤区期中)如果单项式与是同类项,那么xy.【解答】解:根据题意得:x +2=3x ,y ﹣3=2,解得:x =1,y =5,∴xy =1×5=5.故答案为:5.题型2:合并同类项与求值5.单项式313x 与32x 合并的结果是()A.673x B.373x C.473x D.973x 【答案】B ;【解析】解:313x +32x =3123x ⎛⎫+ ⎪⎝⎭=373x ,故选B.6.若关于x 、y 的多项式2x 2+mx +5y ﹣2nx 2﹣y +5x +7的值与x 的取值无关,则m +n =()A .﹣4B .﹣5C .﹣6D .6【答案】A ;【解析】解:2x 2+mx +5y ﹣2nx 2﹣y +5x +7=(2﹣2n )x 2+(m +5)x +4y +7,∵关于x 、y 的多项式2x 2+mx +5y ﹣2nx 2﹣y +5x +7的值与x 的取值无关,∴2﹣2n =0,解得n =1,m +5=0,解得m =﹣5,则m +n =﹣5+1=﹣4.故选:A .7.合并同类项:222-564243a b ab ab ba ba +-+++=________________.【答案】-3a 2b+6ab 2+3;【解析】解:222-564243a b ab ab ba ba +-+++=(-5a 2b+2ba 2)+(-4ab+4ba)+6ab 2+3=-3a 2b+6ab 2+3,故答案为:-3a 2b+6ab 2+3.8.将22221110.370.13232x y y x xy yx --++合并同类项,并将结果按y 的降幂排列.【答案】22511622xy x y -++.【解析】解:22221110.370.13232x y y x xy yx --++=22221110.370.13232x y yx y x xy +--+=()221110.370.13232x y xy ⎛⎫++--+ ⎪⎝⎭=22151262x y xy -+=22511622xy x y -++.题型3:几次几项式9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则()A.P+Q 是关于x 的八次多项式;B.P-Q 是关于x 的二次多项式;C.P +Q 是关于x 的五次多项式;D.P•Q 是关于x 的十五次多项式;【答案】C ;【解析】解:A 、两式相加只能为5次多项式,故A 错误;B 、两式相减只能为5次多项式,故B 错误;C 、两式相加只能为5次多项式,故C 正确;D 、两式相乘只能为关于x 的八次多项式,故D 错误;答案为C.10.(2022秋•闵行区期中)如果A 、B 都是关于x 的单项式,且A •B 是一个九次单项式,A +B 是一个五次多项式,那么A ﹣B 的次数()A .一定是九次B .一定是五次C .一定是四次D .无法确定【解答】解:∵A •B 是一个九次单项式,A +B 是一个五次多项式,∴单项式A 、B 一个是5次单项式,一个是4次单项式,∴A ﹣B 的次数是5次.故选:B .题型4:去括号11.下列去括号的结果正确的是()A.223a--a 3ab 1-3a a 3ab 1-++=+++();B.223a--a 3ab 1-3a a 3ab 1-++=+--()C.223a -a 3ab 1-3a a 3ab 1-++-=---();D.223a -a 3ab 1-3a a 3ab 1-++-=++-()【答案】B【解析】解:A.223a--a 3ab 1-3a a 3ab 1-++=+--(),故错误;B.223a--a 3ab 1-3a a 3ab 1-++=+--(),正确;C.223a -a 3ab 1-3a a 3ab 1-++-=-+-(),故错误;D.223a -a 3ab 1-3a a 3ab 1-++-=-+-(),故错误;故选B.12.x 2y -3a-4b x-3a -+=()()()().【答案】-2y-4b ;【解析】解:设所求的代数式为A ,故x 2y -3a-4b x-3a -+=()()()A,∴A=x-3a -x 2y 3a-4b +()()+()=x-3a-x 2y 3a-4b -+=-2y-4b,故填:-2y-4b.题型5:整式的加减13.计算:223(923)(2)x x x x x +---+-=.【答案】324+4+9x x x -;【解析】解:原式=223923+2-+x x x x x +-=324+4+9x x x -.14.已知关于x 、y 的两个多项式222323mx x y x x y -+-++与的差中不含2x 项,则代数式231m m ++的值为.【答案】1;【解析】解:222(323)mx x y x x y -+--++=222323mx x y x x y -++--=222323mx x y x x y -++--.15.化简:222213(33)22x x xy y y --+-.【答案】225922x xy y -+-;【解析】解:原式=2222133322x x xy y y -+--=225922x xy y -+-.16.已知:432231,2A x x x x B x x =-+-+=--+,求2[()]A B B A ---.【答案】43231x x x x -+-+;【解析】解:原式=2A B B A A -+-=,因为43231A x x x x =-+-+,所以原式=43231x x x x -+-+.17.列式计算:如果22(2)x x -+减去某个多项式的差是122x -,求这个多项式.【答案】25262x x -+;【解析】解:根据题意,得212(2)(2)2x x x -+--,化简得:212(2)(2)2x x x -+--=2122422x x x -+-+=25262x x -+.所以这个多项式是25262x x -+.18.(2022秋•青浦区校级期中)已知:A =x 3﹣5x 2+6x ,且A ﹣2B =x 3﹣7x 2+28x ﹣4,求B .【解答】解:∵A =x 3﹣5x 2+6x ,A ﹣2B =x 3﹣7x 2+28x ﹣4,∴B =[(x 3﹣5x 2+6x )﹣(x 3﹣7x 2+28x ﹣4)]=(x 3﹣5x 2+6x ﹣x 3+7x 2﹣28x +4)=(2x 2﹣22x +4)=x 2﹣11x +2.19.已知A -B=7a 2-7ab ,且B=-4a 2+5ab +8.求A 等于多少.【答案】A=3a 2-2ab+8【解析】解:∵A-B=7a 2-7ab ,且B=-4a 2+5ab+8,∴A-(-4a 2+5ab+8)=7a 2-7ab ,∴A=7a 2-7ab +(-4a 2+5ab+8)=3a 2-2ab+8.题型6:化简求值20.先化简,再求值:22223122[32()](2)2xy y xy x y xy x y ⋅-----,其中11,2x y =-=.【答案】化简为:63282x y x y +;原式的值为2;【解析】解:原式=2222634(32)8xy xy x y xy x y --++=2222634328xy xy x y xy x y -+-+=63282x y x y +;当11,2x y =-=时,63282x y x y +=118121282⨯⨯+⨯⨯=.21.先化简,再求值:当1a -b -32==时,求2222225a -3b -a -b -3a 4b ⎡⎤+⎣⎦()()的值。

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

知识回顾专题03整式的运算与因式分解2023年中考数学必考考点总结1.合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。

2.整式的加减的实质:合并同类项。

3.整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。

②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。

③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。

④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。

4.乘法公式:①平方差公式:()()22b a b a b a -=-+。

②完全平方公式:()2222b ab a b a +±=±。

5.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22完全平方公式:()2222b a b ab a ±=+±。

③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。

专题练习31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+b 2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21.【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时,原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值:(1)(x ﹣x 1)2;(2)x 4+41x .【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵,∴===﹣4x •=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。

中考数学 精讲篇 考点系统复习 第一章 数与式 第三节 整式与因式分解

中考数学 精讲篇 考点系统复习 第一章 数与式 第三节 整式与因式分解
(5)若 x2-x-1=0,则 x3-x2-x+2 021=2 2 020211.
3.计算:
(1)m2·m3=m m55;
(2)(m2)3=m m66;
(3)a7÷a4=a a3 3;
(4)(x2y)3=x x6y63y3;
(5)-4mn+3mn=--mmnn; (6)(mn-3n)-3(m2-n)=mnmn--33mm22;
∵m 是方程 x2+x-2=0 的根, ∴m2+m-2=0,∴m2+m=2, ∴原式=2×(2-1)=2.
重难点 1:幂的运算 下列运算中,正确的是
A.x2+2x2=3x4 B.x2·x3=x5 C.(x3)2=x5 D.(xy)2=x2y
( B)
【思路点拨】 选项 法则 A 合并同类项法则 B 同底数幂的乘法法则 C 幂的乘方运算 D 积的乘方运算
=3x2+2x+1-4x2+2x-5 =-x2+4x-4, P=(2x-5)+(-x2+4x-4) =-x2+6x-9, 当 x=1 时,P=-1+6-9=-4.
(7)(m+4)2=m2+m2+88mm++116;6 (8)(-a-1)(a-1)=1-1-aa22;
(9)-4x3y5÷2x2y3=-2-2xxyy22.
4.(RJ 八上 P112 习题 T7 改编)已知 a+b=5,ab=3,则 a2+b2=1199 , (a-b)2=113 3.
5.分解因式: (1)m2-3m=m(mm(m--33)); (2)a2-9=(a(a++33))((aa--3); (3)8a3-2ab2=3)2a2a(2(2aa++bb))((2a2-a-b); (4)2x2-4=2(x2+(xb+))(x2-)(x- 2) );(在实数范围内分解) (5)(x-y)2-x+y=(x-(x-yy))((xx--y-y-1); (6)x2+5x+4= (x(+x+1)11))((xx++44);)

2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式一.选择题(共15小题)1.计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x6【解答】解:(2x2)3=8x6.故选:D.2.下列运算正确的是()A.a2•a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a2【解答】解:a2•a3=a5,故A正确,符合题意;(a2)3=a6,故B错误,不符合题意;(a2b)3=a6b3,故C错误,不符合题意;a6÷a3=a3,故D错误,不符合题意;故选:A.3.计算a2•a()A.a B.3a C.2a2D.a3【解答】解:原式=a1+2=a3.故选:D.4.下列运算正确的是()A.a2•a3=a5B.(a3)2=a5 C.(ab)2=ab2D. a3(a≠0)【解答】解:A.因为a2•a3=a2+3=a5,所以A选项运算正确,故A选项符合题意;B.因为(a3)2=a2×3=a6,所以B选项运算不正确,故B选项不符合题意;C.因为(ab)2=a2b2,所以C选项运算不正确,故C选项不符合题意;D.因为 a6﹣2=a4,所以D选项运算不正确,故D选项不符合题意.故选:A.5.计算a3•a2的结果是()A.a B.a6C.6a D.a5【解答】解:a3•a2=a5.故选:D.6.若24×22=2m,则m的值为()A.8B.6C.5D.2【解答】解:∵24×22=24+2=26=2m,∴m=6,故选:B.7.化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a4【解答】解:(3a2)2=9a4.故选:C.8.计算a3÷a得a,则“?”是()A.0B.1C.2D.3【解答】解:根据同底数幂的除法可得:a3÷a=a2,∴?=2,故选:C.9.计算﹣a2•a的正确结果是()A.﹣a2B.a C.﹣a3D.a3【解答】解:﹣a2•a=﹣a3,故选:C.10.下列运算正确的是()A.3a﹣2a=1B.a3•a5=a8C.a8÷2a2=2a4D.(3ab)2=6a2b2【解答】解:3a﹣2a=a,故选项A错误,不符合题意;a3•a5=a8,故选项B正确,符合题意;a8÷2a2 a6,故选项C错误,不符合题意;(3ab)2=9a2b2,故选项D错误,不符合题意;故选:B.11.下列计算正确的是()A.m2•m3=m6B.﹣(m﹣n)=﹣m+nC.m(m+n)=m2+n D.(m+n)2=m2+n2【解答】解:A选项,原式=m5,故该选项不符合题意;B选项,原式=﹣m+n,故该选项符合题意;C选项,原式=m2+mn,故该选项不符合题意;D选项,原式=m2+2mn+n2,故该选项不符合题意;故选:B.12.下列计算结果正确的是()A.5a﹣3a=2B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项符合题意;故选:D.13.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a7【解答】解:(2a4)3=8a12,故选:B.14.计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.15.对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m ﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z ﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.二.填空题(共10小题)16.计算:a•a3=a4.【解答】解:a3•a,=a3+1,=a4.故答案为:a4.17.单项式3xy的系数为3.【解答】解:单项式3xy的系数为3.故答案为:3.18.若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为y2﹣xy+3.【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.19.已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为 或 ..【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t 或t .故答案为: 或 .20.已知x+y=4,x﹣y=6,则x2﹣y2=24.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.21.计算m•m7的结果等于m8.【解答】解:m•m7=m8.故答案为:m8.22.计算:m4÷m2=m2.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.23.计算:3a3•a2=3a5.【解答】解:原式=3a3+2=3a5.故答案为:3a5.24.计算:(﹣a3)2=a6.【解答】解:(﹣a3)2=a6.25.已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.三.解答题(共8小题)26.下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6.【解答】解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.27.已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.28.先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.【解答】解:(a+b)(a﹣b)+b(2a+b)=a2﹣b2+2ab+b2=a2+2ab,将a=1,b=﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.29.先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x .【解答】解:(1+x)(1﹣x)+x(x+2)=1﹣x2+x2+2x=1+2x,当x 时,原式=1 1+1=2.30.先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a 4.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a 4时,原式=4 4.31.先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y .【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y 时,原式=12﹣2 0.33.先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x 1.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x 1时,原式=( 1)2﹣4=﹣2 .。

中考复习整式

中考复习整式
2.如果甲球的半径是乙球的n倍,那么甲球的体
积是乙球的 n3倍.
地球、木星、太阳可以近似地看做是球体,木
星、太阳的半径分别约是地球的10倍和 102 倍,
它们的体积分别约是地球的_1_0_3_、(_1_0_2_)3__=_1_0_6倍.
计算下列各式: (2) (a - b)3 • (a - b)4
次数。 例如:-4x2y的系数为-4,次数为2。 x的指数是2,y
的指数是1,指数相加得3.
二、多项式
• (1)多项式的概念

几个单项式的和叫做多项式。在多项式中,
每个单项式叫做多项式的项,其中不含字母的项叫
做常数项.一个多项式有几项就叫做几项式。

例:在多项式2x-3中,2x和-3是他的项,其
中-3是常项数;在多项式-5x2 +2x+18中它的项分
= 314a
(2) 214a – 39a – 61a =214a – (39a + 61a) =214a – 100a =114a
六、整式的运算及其逆运算
• 1.整式的乘法:
• (1)同底数幂相乘,底数不变,指数相加.
• 即am·an= am+n
am+n = am·an (m.n都是正整数).
(2)幂的乘方,底数不变,指数相乘.
a + b – c = a + ( b – c)
符号均发生了变化
法则:添上“–
( )”, 括号里的各 项都改变符号.
a + b – c = a – ( – b +c )
试一试
例. 用简便方法计算:
(1)214a+47a+53a;(2)214a – 39a – 61a.

2023年中考数学考点总结+题型专训专题03 整式篇(原卷版)

2023年中考数学考点总结+题型专训专题03 整式篇(原卷版)

知识回顾微专题专题03 整式考点一:整式之代数式1. 代数式的定义:由数与字母通过“+,-,×,÷”以及乘方、开方等运算符号连接的式子叫做代数式。

2. 列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式。

3. 代数式求值:①单个字母带入求代数式的值。

②整体代入法求代数式的值。

(找已知式子与所求式子的倍数关系)1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100﹣x )元C .8(100﹣x )元D .(100﹣8x )元2.(2022•杭州)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .y x 1910=320B .xy 1910=320 C .|10x ﹣19y |=320 D .|19x ﹣10y |=3203.(2022•吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要 元.(用含m 的代数式表示)4.(2022•梧州)若x =1,则3x ﹣2= .5.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a ﹣b =2,求代数式6a ﹣2b ﹣1的值.”可以这样解:6a ﹣2b ﹣1=2(3a ﹣b )﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x =2是关于x 的一元一次方程ax +b =3的解,则代数式4a 2+4ab +b 2+4a +2b ﹣1的值是 .6.(2022•邵阳)已知x 2﹣3x +1=0,则3x 2﹣9x +5= .知识回顾微专题 知识回顾微专题7.(2022•郴州)若32=-b b a ,则ba = . 考点二:整式之单项式1. 单项式的定义:由数与字母的乘积组成的式子叫做单项式。

第3课《整式》精讲ppt课件

第3课《整式》精讲ppt课件

4.(2016•岳阳)下列运算结果正确的是( B ) A.a2+a3=a5 B.(a2)3=a6 C.a2•a3=a6 D.3a﹣2a=1 5.(2016•哈尔滨)下列运算正确的是( C ) A.a2•a3=a6 B.(a2)3=a5 C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+1 6.(2016•深圳)下列运算正确的是( B ) A.8a﹣a=8 B.(﹣a)4=a4 C.a3•a2=a6 D.(a﹣b)2=a2﹣b2
学习资料ppt
13
【变式5】(2014•广东)把x3﹣9x分解因式,结 果正确的是( D ) A.x(x2﹣9) B.x(x﹣3)2 C.x(x+3)2 D.x(x+3)(x﹣3) 【变式6】(2016•广东)分解因式:m²﹣4= (m+2)(m﹣2) .
学习资料ppt
14
中考冲刺
一、选择题 1.(2016•福州)下列算式中,结果等于a6的是 ( D ) A.a4+a2 B.a2+a2+a2 C.a2•a3 D.a2•a2•a2 2.(2016•重庆)计算a3•a2正确的是( B ) A.a B.a5 C.a6 D.a9 3.(2016•昆明)下列运算正确的是( D ) A.(a﹣3)2=a2﹣9 B.a2•a4=a8 3 15 学习资料ppt 9 C. = ±3 D. - 8 =﹣2
单项式
系数 次数 概念
多项式
项 次数
整式 同类项
单项式与多项统称为整式. 所含字母相同并且相同字母的指数也相同的项叫做同类项.
学习资料ppt
3
知识点二
整式的运算
学习资料ppt
4

中考试题专题03整式、单项式、多项式和同类项-微研究之必考概念(解析版).docx

中考试题专题03整式、单项式、多项式和同类项-微研究之必考概念(解析版).docx

学易初中数学微精品团队:整式、单项式、多项式和同类项的概念下列各式是单项式的是( ) A .x m B . 2n m + C .π2 D .3a+6b在下列代数式中,次数为3的单项式是( ) A .xy 2B .x 3+y 3C .x 3yD .3xy1、(2013•佛山)多项式1+2xy-3xy 2的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .2,32、(2013•德宏州)-4a 2b 的次数是( )A .3B .2C .4D .-43、(2013•岳阳)单项式-5x 2y 的系数是 。

4、(2013•济宁)如果整式x 2-n -5x+2是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .6与这三个概念经常同时用的还有“同类项”的概念,掌握同类项的概念,重点抓住“每一项中每一个字母的指数前后相等”。

(2013•凉山州)如果单项式31y xa +-与221x y b 是同类项,那么a 、b 的值分别为( ) A .a=2,b=3B .a=1,b=2C .a=1,b=3D .a=2,b=2(2013•苏州)计算2232x x +-的结果为( ) A .-52xB .52xC .-2xD .2x1、(2013•晋江市)计算:2a 2+3a 2=2、(2013•梧州)化简:a+a=( )A .2B .a 2C .2a 2D .2a3、(2013•丽水)化简-2a+3a 的结果是( )A .-aB .aC .5aD .-5a(2014中考模拟题 作者原创题目)1、(2014原创)下列说法正确的是( )A .0不是单项式B .y -的次数是0C .ab π3的系数是3D .21-x 是多项式 2、(2014原创)下列说法正确的是( )A .2a的系数是2 B .单项式c 的系数为1,次数为0 C .xy+x-1是二次三项式 D .222xyz 的次数是63、(2014原创)多项式5a 2-6ab+3ab-3a 2+6ab-5-2a 2-3ba 的值( ) A .只与b 有关 B .只与a 有关 C .与字母a ,b 都无关 D .与字母a ,b 都有关4、(2014原创)化简:=--x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考专题复习:第三讲整式【重点考点例析】考点一:代数式的相关概念。

例1 (xx•凉山州)如果单项式-x a+1y3与y b x2是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2思路分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b的值.解:根据题意得:,则a=1,b=3.故选C.点评:考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点。

对应训练1.(xx•苏州)计算-2x2+3x2的结果为()A.-5x2B.5x2C.-x2D.x21.D考点二:代数式求值例2 (xx•苏州)已知x-=3,则4-x2+x的值为()A.1 B.C.D.思路分析:所求式子后两项提取公因式变形后,将已知等式去分母变形后代入计算即可求出值.解:∵x-=3,即x2-3x=1,∴原式=4-(x2-3x)=4-=.故选D.点评:此题考查了代数式求值,将已知与所求式子进行适当的变形是解本题的关键,利用了整体代入的思想.例3 (xx•湘西州)下面是一个简单的数值运算程序,当输入x的值为3时,则输出的数值为.思路分析:输入x的值为3时,得出它的平方是9,再加(-2)是7,最后再除以7等于1.解:由题图可得代数式为:(x2-2)÷7.当x=3时,原式=(32-2)÷7=(9-2)÷7=7÷7=1故答案为:1.点评:此题考查了代数式求值,此类题要能正确表示出代数式,然后代值计算,解答本题的关键就是弄清楚题目给出的计算程序.对应训练2.(xx•盐城)若x2-2x=3,则代数式2x2-4x+3的值为.2.93.(xx•绥化)按如图所示的程序计算.若输入x的值为3,则输出的值为.3.-3考点三:单项式与多项式。

例4 (xx•云南)下列运算,结果正确的是()A.m6÷m3=m2B.3mn2•m2n=3m3n3C.(m+n)2=m2+n2D.2mn+3mn=5m2n2思路分析:依据同底数的幂的除法、单项式的乘法以及完全平方公式,合并同类项法则即可判断.解:A、m6÷m3=m3,选项错误;B、正确;C、(m+n)2=m2+2mn+n2,选项错误;D、2mn+3mn=5mn,选项错误.故选B.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.对应训练4.(xx•沈阳)下面的计算一定正确的是()A.b3+b3=2b6B.(-3pq)2=-9p2q2C.5y3•3y5=15y8D.b9÷b3=b34.C考点四:幂的运算。

例5 (xx•株洲)下列计算正确的是()A.x+x=2x2B.x3•x2=x5C.(x2)3=x5D.(2x)2=2x2思路分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解:A、x+x=2x≠2x2,故本选项错误;B、x3•x2=x5,故本选项正确;C、(x2)3=x6≠x5,故本选项错误;D、(2x)2=4x2≠2x2,故本选项错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.对应训练5.(xx•张家界)下列运算正确的是()A.3a-2a=1 B.x8-x4=x2C. =-2 D.-(2x2y)3=-8x6y35.D考点五:完全平方公式与平方差公式例6 (1)(xx•郴州)已知a+b=4,a-b=3,则a2-b2= .(2)(xx•珠海)已知a、b满足a+b=3,ab=2,则a2+b2= .思路分析:(1)根据a2-b2=(a+b)(a-b),然后代入求解.(2)将a+b=3两边平方,利用完全平方公式化简,将ab的值代入计算,即可求出所求式子的值.解:(1)a2-b2=(a+b)(a-b)=4×3=12.故答案是:12.(2)将a+b=3两边平方得:(a+b)2=a2+2ab+b2=9,把ab=2代入得:a2+4+b2=9,则a2+b2=5.故答案为:5.点评:此题考查了平方差公式和完全平方公式,熟练掌握公式是解本题的关键.例7 (xx•张家港市二模)如图,从边长为(a+3)cm的正方形纸片中剪去一个边长为3cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为acm,则另一边长是()A.(2a+3)cm B.(2a+6)cm C.(2a+3)cm D.(a+6)cm思路分析:根据第一个图形中,从边长为(a+3)cm的正方形纸片中剪去一个边长为3cm的正方形,剩余部分的面积与第三个图形的面积相等,即可求解.解:解:根据第一个图:从边长为(a+3)cm的正方形纸片中剪去一个边长为3cm的正方形,剩余部分的面积是:(a+3)2-32,设拼成的矩形另一边长是b,则ab=(a+3)2-32,解得:b=a+6.故选D.点评:本题考查了图形的变化,正确理解:第一个图形中,从边长为(a+3)cm的正方形纸片中剪去一个边长为3cm的正方形,剩余部分的面积与第三个图形的面积相等,是解题的关键.对应训练6.(xx•徐州)当m+n=3时,式子m2+2mn+n2的值为.6.97.(xx•攀枝花模拟)如图(一),在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.(a+2b)(a-b)=a2+ab-2b27.A考点六:整式的运算例8(xx•株洲)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.思路分析:原式第一项利用平方差公式化简,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将x的值代入计算即可求出值.解:原式=x2-1-x2+3x=3x-1,当x=3时,原式=9-1=8.点评:此题考查了整式的混合运算-化简求值,涉及的知识有:平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.例9(xx•宁波)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b思路分析:表示出左上角与右下角部分的面积,求出之差,根据之差与BC无关即可求出a 与b的关系式.解:如图,左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE-PC=4b-a,∴阴影部分面积之差S=AE•AF-PC•CG=3bAE-aPC=3b(PC+4b-a)-aPC=(3b-a)PC+12b2-3ab,则3b-a=0,即a=3b.故选B点评:此题考查了整式的混合运算的应用,弄清题意是解本题的关键.对应训练8.(xx•扬州)先化简,再求值:(x+1)(2x-1)-(x-3)2,其中x=-2.8.解:原式=2x2-x+2x-1-x2+6x-9=x2+7x-10,当x=-2时,原式=4-14-10=-20.9.(xx•泰州)把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.无法确定9.C考点七:规律探索。

例10 ((xx•山西)一组按规律排列的式子:,…,则第n个式子是.思路分析:观察分子、分母的变化规律,总结出一般规律即可.解:a2,a4,a6,a8…,分子可表示为:a2n,1,3,5,7,…分母可表示为2n-1,则第n个式子为:.故答案为:.点评:本题考查了单项式的知识,属于基础题,关键是观察分子、分母的变化规律.例11 (xx•淄博)如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第xx个格子中的整数是.-4 a b c 6 b -2 …思路分析:根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用xx除以3,根据余数的情况确定与第几个数相同即可得解.解:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,所以,数据从左到右依次为-4、6、b、-4、6、b,第9个数与第三个数相同,即b=-2,所以,每3个数“-4、6、-2”为一个循环组依次循环,∵xx÷3=671,∴第xx个格子中的整数与第3个格子中的数相同,为-2.故答案为:-2.点评:此题主要考查了数字变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.例12 (xx•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到xx个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505思路分析:根据正方形的个数变化得出第n次得到xx个正方形,则4n+1=xx,求出即可.解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到xx个正方形,则4n+1=xx,解得:n=503.故选:B.点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.对应训练10.(xx•淮安)观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第xx个单项式是.10.4025x211.(xx•玉林)一列数a1,a2,a3,…,其中a1=,(n为不小于2的整数),则a100=()A.B.2 C.-1 D.-211.A12.(xx•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()A.8 B.9 C.16 D.1712.C【聚焦山东中考】1.(xx•济宁)如果整式x n-2-5x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.61.C2.(xx•东营)下列运算正确的是()A.a3-a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a32.C3.(xx•烟台)下列各运算中,正确的是()A.3a+2a=5a2B.(-3a3)2=9a6C.a4÷a2=a3D.(a+2)2=a2+4 3.B4.(xx•日照)下列计算正确的是()A.(-2a)2=2a2B.a6÷a3=a2C.-2(a-1)=2-2a D.a•a2=a24.C5.(xx•威海)若m-n=-1,则(m-n)2-2m+2n的值是()A.3 B.2 C.1 D.-15.A6.(xx•威海)下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6+x3=x2D.(x2)4=x86.D7.(xx•泰安)下列运算正确的是()A.3x3-5x3=-2x B.6x3÷2x-2=3xC.(x3)2=x6D.-3(2x-4)=-6x-127.C8.(xx•临沂)下列运算正确的是()A.x2+x3=x5B.(x-2)2=x2-4 C.2x2•x3=2x5D.(x3)4=x78.C9.(xx•聊城)把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长()A.102cm B.104cm C.106cm D.108cm9.A10.(xx•日照)如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()A.M=mn B.M=n(m+1)C.M=mn+1 D.M=m(n+1)10.D11.(xx•日照)已知m2-m=6,则1-2m2+2m= .11.-1112.(xx•滨州)观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…请猜测,第n个算式(n为正整数)应表示为.12.100n(n-1)+2513.(xx•潍坊)当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)13.n2+4n【备考真题过关】一、选择题1.(xx•丽水)化简-2a+3a的结果是()A.-a B.a C.5a D.-5a1.B2.(xx•徐州)下列各式的运算结果为x6的是()A.x9÷x3B.(x3)3C.x2•x3D.x3+x32.A3.(xx•连云港)计算a2•a4的结果是()A.a6B.a8C.2a6D.2a83.A4.(xx•重庆)计算3x3÷x2的结果是()A.2x2B.3x2C.3x D.34.D5.(xx•遵义)计算(-ab2)3的结果是()A.-a3b6B.-a3b5C.-a3b5D.-a3b65.D6.(xx•佛山)多项式1+2xy-3xy2的次数及最高次项的系数分别是()A.3,-3 B.2,-3 C.5,-3 D.2,36.A7.(xx•遂宁)下列计算错误的是()A.-|-2|=-2 B.(a2)3=a5C.2x2+3x2=5x2D. =27.B8.(xx•盘锦)下列计算正确的是()A.3mn-3n=m B.(2m)3=6m3C.m8÷m4=m2D.3m2•m=3m38.D9.(xx•达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样9.B10.(xx•黄冈)矩形AB=a,AD=b,AE=BF=CG=DH=c,则图中阴影部分面积是()A.bc-ab+ac+b2B.a2+ab+bc-acC.ab-bc-ac+c2D.b2-bc+a2-ab10.C11.(xx•保康)如图,边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是()A.2 B.a+4 C.2a+2 D.2a+412.C13.(xx•新华区一模)定义运算a⊕b=a(1-b),下面给出了这种运算的四个结论:①2⊕(-2)=6;②若a+b=0,则(a⊕a)+(b⊕b)=2ab;③a⊕b=b⊕a;④若a⊕b=0,则a=0或b=1.其中结论正确的有()A.①②B.①②③C.②③④D.①②④13.D二、填空题14.(xx•晋江市)计算:2a2+3a2= .14.5a215.(xx•天津)计算a•a6的结果等于.15.a716.(xx•上海模拟)计算:6x2y3÷2x3y3= .16.17.(xx•同安区一模)“比a的2倍大的数”用代数式表示是.17.18.(xx•义乌市)计算:3a•a2+a3= .18.4a319.(xx•铁岭)某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为元(结果用含m的代数式表示)19.0.945m20.(xx•贵港)若ab=-1,a+b=2,则式子(a-1)(b-1)= .20.-221.(xx•沈阳)如果x=1时,代数式2ax3+3bx+4的值是5,那么x=-1时,代数式2ax3+3bx+4的值是.21.322.(xx•苏州)按照如图所示的操作步骤,若输入x的值为2,则输出的值为.22.2021.(xx•泰州)若m=2n+1,则m2-4mn+4n2的值是.21.122.(xx•晋江市)若a+b=5,ab=6,则a-b= .22.±123.((xx•永州)定义为二阶行列式.规定它的运算法则为=ad-bc.那么当x=1时,二阶行列式的值为.23.024.(xx•雅安)已知一组数2,4,8,16,32,…,按此规律,则第n个数是.24.2n25.(xx•云南)下面是按一定规律排列的一列数:,…那么第n个数是.25.26.(xx•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.26.5127.(xx•青岛)要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面是现成的.其他三个面必须用三刀切3次才能切出来.那么,要把一个正方体分割成27个小正方体,至少需用刀切次;分割成64个小正方体,至少需要用刀切次.27.6,9三、解答题28.(xx•宜昌)化简:(a-b)2+a(2b-a)28.解:原式=a2-2ab+b2+2ab-a2=b2.29.(xx•宁波)先化简,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.29.解:原式=1-a2+a2-4a+4=-4a+5,当a=-3时,原式=12+5=17.30.(xx•三明)先化简,再求值:(a+2)(a-2)+4(a+1)-4a,其中a=-1.30.解:原式=a2-4+4a+4-4a=a2,当a=-1时,原式=(-1)2=2-2+1=3-2.31.(xx•邵阳)先化简,再求值:(a-b)2+a(2b-a),其中a=-,b=3.31.解:原式=a2-2ab+b2+2ab-a2=b2,当b=3时,原式=9.32.(xx•娄底)先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=.32.解:原式=x2-y2-2x2+4y2=-x2+3y2,当x=-1,y=时,原式=-1+1=0.33.(xx•义乌市)如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形,(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1和S2;(2)请写出上述过程所揭示的乘法公式.33.解:(1)∵大正方形的边长为a,小正方形的边长为b,∴S1=a2-b2,S2=(2a+2b)(a-b)=(a+b)(a-b);(2)根据题意得:(a+b)(a-b)=a2-b2。

相关文档
最新文档