PID实验报告

合集下载

pid控制实验报告

pid控制实验报告

pid控制实验报告实验报告:PID控制一、实验目的通过本实验,我们的目的是深入了解PID(比例、积分、微分)控制算法,理解其在实际控制中的应用,掌握PID参数的调整方法。

二、实验原理PID控制是依据被控对象的误差(偏差)与时间的积分、微分关系来确定控制器输出的控制方式。

具体来说,PID控制器输出的控制量=Kp*(当前误差+上次误差*dt+所有误差的积分),其中Kp、Ki和Kd分别为比例系数、积分系数和微分系数。

它通过对偏差的补偿,使得被控对象能够在振荡绕过设定值、稳定达到设定值的过程中快速、准确定位设定值。

三、实验设备本实验采用的设备为PID控制器、液晶显示屏、电压控制电机和传感器。

四、实验步骤1. 首先,我们需要将系统设为手动调节状态,关闭控制器。

2. 然后,我们将传感器和记录仪建立起连接。

3. 将系统调整为自动控制状态,让控制器自行计算控制量、作出相应控制。

4. 调整PID控制器的Kp系数,以调整控制精度。

5. 调整PID控制器的Ki系数,以调整控制的灵敏度。

6. 调整PID控制器的Kd系数,以调整控制器的稳定性。

7. 最终完成调整后,我们可以用振荡器数据展示出来实验结果。

五、实验结果在完成调整后,我们得出的控制器输出的控制量稳定在理论值附近,在控制精度与控制的灵敏度达到较好平衡的情况下,控制器的稳定性得到了保证。

实验结果具有较好指导意义。

六、结论本实验通过掌握PID控制算法的实际应用方法,以及对参数的合理设置为基础,完成了对PID控制器各参数调整技巧的掌握,极大地丰富了实验基础技能。

同时,实验结果为之后的实际应用提供了参考,有着极其重要的现实意义。

数字PID算法研究实验报告

数字PID算法研究实验报告

实验二数字PID调节器算法的研究(实验报告)姓名:王国华学号: 201046820420 班级: 电气F1004实验指导老师: 孙红鸽成绩: _________一、实验目的1. 学习并熟悉常规的数字PID控制算法的原理;2. 学习并熟悉积分分离PID控制算法的原理;3. 掌握具有数字PID调节器控制系统的实验和调节器参数的整定方法。

二、实验步骤1.实验接线1.1按图4-1和图4-2连接一个二阶被控对象闭环控制系统的电路;1.2该电路的输出与数据采集卡的输入端AD1相连, 电路的输入与数据采集卡的输出端DA1相连;1.3待检查电路接线无误后, 打开实验平台的电源总开关, 并将锁零单元的锁零按钮处于“解锁”状态。

2.脚本程序运行2.1启动计算机, 在桌面双击图标“THBCC-1”, 运行实验软件;2.2顺序点击虚拟示波器界面上的“”按钮和工具栏上的“”按钮(脚本编程器);2.3在脚本编辑器窗口的文件菜单下点击“打开”按钮, 并在“计算机控制算法VBS\计算机控制技术基础算法\数字PID调器算法”文件夹下选中“位置式PID”脚本程序并打开, 阅读、理解该程序, 然后点击脚本编辑器窗口的调试菜单下“步长设置”, 将脚本算法的运行步长设为100ms;2.4点击脚本编辑器窗口的调试菜单下“启动”;用虚拟示波器观察图4-2输出端的响应曲线;2.5点击脚本编辑器的调试菜单下“停止”, 利用扩充响应曲线法(参考本实验附录4)整定PID控制器的P、I、D及系统采样时间Ts等参数, 然后再运行。

在整定过程中注意观察参数的变化对系统动态性能的影响;2.6 参考步骤2.4.2.4和2.5, 用同样的方法分别运行增量式PID和积分分离PID 脚本程序, 并整定PID控制器的P、I、D及系统采样时间Ts等参数, 然后观察参数的变化对系统动态性能的影响。

另外在积分分离PID程序运行过程中, 注意不同的分离阈值tem对系统动态性能的影响;2.7 实验结束后, 关闭脚本编辑器窗口, 退出实验软件。

《自动控制原理》自动控制PID实验报告

《自动控制原理》自动控制PID实验报告

《自动控制原理》自动控制PID实验报告课程名称自动控制原理实验类型:实验项目名称:自动控制PID一、实验目的和要求1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和频率域仿真的方法。

2、通过仿真实验研究并总结PID 控制规律及参数对系统特性影响的规律。

3、实验研究并总结PID 控制规律及参数对系统根轨迹、频率特性影响的规律,并总结系统特定性能指标下根据根轨迹图、频率响应图选择PID 控制规律和参数的规则。

二、实验内容和原理一)任务设计如图所示系统,进行实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数(Kp、Ki、Kd)不同取值时,控制系统根轨迹和阶跃响应的变化,总结pid 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。

具体实验容如下:1、比例(P)控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。

总结比例(P)控制的规律。

2、比例积分(PI)控制,设计参数Kp、Ki 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;3)被控对象两个极点的右侧(不进入右半平面)。

分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Ki 的变化情况。

总结比例积分(PI)控制的规律。

3、比例微分(PD)控制,设计参数Kp、Kd 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;66 3)被控对象两个极点的右侧(不进入右半平面)。

分别绘制三种情况下的根轨迹图,在根轨迹图上确定控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Kd 的变化情况。

PID仿真实验报告

PID仿真实验报告

PID仿真实验报告PID控制是一种经典的控制方法,被广泛应用于工业自动化控制系统中。

本次实验主要针对PID控制器的参数调整方法进行仿真研究。

实验目的:1.研究PID控制器的工作原理;2.了解PID参数调整的方法;3.通过仿真实验比较不同PID参数对系统控制性能的影响。

实验原理:PID控制器由比例(P)、积分(I)、微分(D)三个控制部分组成。

比例控制:输出与误差成比例,用来修正系统集成误差;积分控制:输出与误差的积分关系成比例,用来修正系统持续存在的静态误差;微分控制:输出与误差变化率成比例,用来修正系统的瞬态过程。

PID参数调整方法有很多种,常见的有经验法、Ziegler-Nichols法和优化算法等。

实验中我们使用经验法进行调整,根据系统特性来进行手动参数调整。

实验装置与步骤:实验装置:MATLAB/Simulink软件、PID控制器模型、被控对象模型。

实验步骤:1. 在Simulink中建立PID控制器模型和被控对象模型;2.设定PID控制器的初始参数;3.运行仿真模型,并记录系统的响应曲线;4.根据系统响应曲线,手动调整PID参数;5.重复第3步和第4步,直到系统的响应满足要求。

实验结果与分析:从图中可以看出,系统的响应曲线中存在较大的超调量和震荡,说明初始的PID参数对系统控制性能影响较大。

从图中可以看出,系统的响应曲线较为平稳,没有出现明显的超调和震荡。

说明手动调整后的PID参数能够使系统达到较好的控制效果。

总结与结论:通过本次实验,我们对PID控制器的参数调整方法进行了研究。

通过手动调整PID参数,我们能够改善系统的控制性能,提高系统的响应速度和稳定性。

这为工业自动化控制系统的设计和优化提供了参考。

需要注意的是,PID参数的调整是一个复杂的工作,需要结合具体的控制对象和要求进行综合考虑。

而且,不同的参数调整方法可能适用于不同的控制对象和场景。

因此,在实际应用中,需要根据具体情况选择合适的参数调整方法,并进行实验验证。

PID仿真实验报告

PID仿真实验报告

PID仿真实验报告PID控制算法是一种重要的控制算法,被广泛应用于工业控制系统中。

本文通过仿真实验的方式,对PID控制算法进行了验证和分析。

一、实验目的1.了解PID控制算法的基本原理和调节方法;2. 掌握MATLAB/Simulink软件的使用,进行PID控制实验仿真;3.验证PID控制算法的稳定性和性能。

二、实验内容本次实验选择一个常见的控制系统模型,以电感驱动的直流电机控制系统为例。

通过PID控制算法对该系统进行控制,观察系统的响应特性。

三、实验步骤1.搭建电感驱动的直流电机控制系统模型,包括电感、直流电机、PID控制器等组成部分;2.设置PID控制器的参数,包括比例增益Kp、积分时间Ti、微分时间Td等;3.进行仿真实验,输入适当的控制信号,观察系统的响应曲线;4.调节PID控制器的参数,尝试不同的调节方法,观察响应曲线的变化,寻找合适的参数。

四、实验结果与分析1.首先,设置PID控制器的参数为Kp=1,Ti=1,Td=0,进行仿真实验。

观察到系统的响应曲线,并记录与分析曲线的特点;2.其次,调整PID控制器的参数,如增大比例增益Kp,观察系统的响应曲线的变化;3.最后,调整积分时间Ti和微分时间Td,观察系统的响应曲线的变化。

通过实验结果与分析,可以得到以下结论:1.PID控制算法能够有效地控制系统,并实现稳定的控制;2.比例增益Kp对系统的超调量有较大的影响,增大Kp可以减小超调量,但也会增加系统的稳定时间;3.积分时间Ti对系统的稳态误差有较大的影响,增大Ti可以减小稳态误差,但也会增加系统的超调量;4.微分时间Td对系统的响应速度有较大的影响,增大Td可以增加系统的响应速度,但可能会引起系统的振荡。

五、实验总结通过本次实验,我深入理解了PID控制算法的原理和调节方法。

同时,通过对实验结果的分析,我也了解了PID控制算法的稳定性和性能。

在实际工程应用中,需要根据具体的控制对象,合理选择PID控制器的参数,并进行调节优化,以获得理想的控制效果。

pid控制实验报告

pid控制实验报告

pid控制实验报告PID控制实验报告引言PID控制是一种常用的控制算法,广泛应用于工业自动化系统中。

本实验旨在通过实际的PID控制实验,验证PID控制算法的效果和优势,并对PID控制的原理、参数调节方法等进行探讨和分析。

一、实验目的本次实验的目的是通过一个简单的温度控制系统,使用PID控制算法来实现温度的稳定控制。

通过实验,验证PID控制算法的有效性和优越性,掌握PID控制的基本原理和参数调节方法。

二、实验设备和原理本实验所用的设备为一个温度控制系统,包括一个温度传感器、一个加热器和一个控制器。

温度传感器用于实时检测环境温度,加热器用于调节环境温度,控制器用于实现PID控制算法。

PID控制算法是基于误差的反馈控制算法,其主要原理是通过不断地调整控制器的输出信号,使得系统的实际输出与期望输出之间的误差最小化。

PID控制算法由比例控制、积分控制和微分控制三部分组成。

比例控制通过比例系数调整控制器的输出信号与误差的线性关系;积分控制通过积分系数调整控制器的输出信号与误差的积分关系;微分控制通过微分系数调整控制器的输出信号与误差的微分关系。

通过合理调节这三个系数,可以实现对系统的精确控制。

三、实验步骤1. 搭建温度控制系统:将温度传感器、加热器和控制器连接在一起,确保信号传输的正常。

2. 设置期望温度:根据实验要求,设置一个期望的温度作为控制目标。

3. 调节PID参数:根据实验的具体要求和系统的特性,调节PID控制器的比例系数、积分系数和微分系数,使得系统的响应速度和稳定性达到最佳状态。

4. 开始实验:启动温度控制系统,观察实际温度与期望温度的变化情况,记录实验数据。

5. 数据分析:根据实验数据,分析PID控制算法的效果和优势,总结实验结果。

四、实验结果与讨论通过实验,我们得到了一系列的实验数据。

根据这些数据,我们可以进行进一步的分析和讨论。

首先,我们观察到在PID控制下,温度的稳定性得到了显著的提高。

PID自动控制系统参数整定实验报告

PID自动控制系统参数整定实验报告

T13. PID自动控制系统参数整定(化工仪表与自动化,指导教师:卢红梅)实验一:一阶单容上水箱对象特性测试实验实验二:上水箱液位PID整定实验一、实验目的1)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2)、分析分别用P、PI和PID调节时的过程图形曲线。

3)、定性地研究P、PI和PID调节器的参数对系统性能的影响。

4)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

5)、分析分别用P、PI和PID调节时的过程图形曲线。

6)、定性地研究P、PI和PID调节器的参数对系统性能的影响。

二、实验设备THKJ100-1型过程控制实验装置配置:上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

型参数为串联釜数N三、实验原理实验一原理:阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过控制器或其他操作器,手动改变对象的输入信号(阶跃信号)。

同时,记录对象的输出数据或阶跃响应曲线,然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

实验二原理:图13.1单回路上水箱液位控制系统图13.1为单回路上水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

因此,当一个单回路系统组成好以后,如何整定好控制器参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

PID控制电机实验报告

PID控制电机实验报告

PID控制电机实验报告【摘要】本实验通过PID控制电机,对系统进行控制,实现系统的速度调节和位置调节。

首先通过对系统的建模和参数辨识,得到了系统的数学模型和参数,并根据模型设计了合适的PID控制器。

然后通过实验验证了设计的控制器的有效性,实现了对电机速度和位置的调节。

实验结果表明,PID控制器对于系统的速度调节和位置调节具有良好的性能,能够实现较好的控制效果。

【关键词】PID控制;电机;速度调节;位置调节一、实验目的1.通过PID控制器实现对电机的速度调节和位置调节;2.验证PID控制器的有效性和性能。

二、实验原理PID控制器是一种经典的控制策略,由比例(P)、积分(I)和微分(D)三个部分组成。

PID控制器的数学表达式为输出信号u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*de(t)/dt,其中e(t)为控制偏差,Kp、Ki和Kd分别为比例、积分和微分系数。

在电机控制中,可以将电机看作一个被控对象,输入电机的电压u(t)通过电机的转矩转化为输出角速度ω(t)。

通过对电机的数学建模,可以得到电机的传递函数为G(s)=k/(Ts+1),其中k为系统增益,T为系统时间常数。

根据系统传递函数的性质,可以得到电机系统的速度和位置闭环模型为Kv(s)=1/(Ts+1)和Kp(s)=Ks/(Ts+1),分别对应于速度和位置的调节。

三、实验装置1.PC机;2.PID控制器板卡;3.直流电机;4.电压放大电路;5.角度传感器。

四、实验步骤1.建立电机的数学模型,并利用实验数据辨识系统的参数;2.根据模型设计PID控制器的参数;3.连接实验装置,将PC机与PID控制器板卡连接,通过板卡控制电机的电压,实现速度和位置调节;4.设置不同的目标速度和目标位置,进行实验并记录实验数据;5.分析实验数据,评价控制器的性能和有效性。

五、实验结果与分析通过实验得到了电机系统的数学模型为G(s)=2/(s+1)和Ks=10/(s+1),并根据模型参数设计了PID控制器的参数为Kp=1,Ki=0.01和Kd=0.5、实验中设置了不同的目标速度和目标位置,通过对比实际速度和位置与目标值的差异,评价了控制器的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验题目:PID控制实验
学生姓名:学号:
区队:日期:
学科名称现代控制系统实验
实验目的 1.理解一阶倒立摆的工作机理及其数学模型的建立及简化的方法;掌握使用Matlab/Simulink软件对控制系统的建模方法;
2.通过对一阶倒立摆控制系统的设计,理解和掌握闭环PID控制系统的设
计方法;
3.掌握闭环PID控制器参数整定的方法;理解和掌握控制系统设计中稳定
性、快速性的权衡以及不断通过仿真实验优化控制系统的方法。

实验设备倒立摆实验箱、MATLAB6.5
实验原理PID控制原理分析:
由前面的讨论已知实际系统的物理模型:
Kp=30,Ki=0,Kd=0.5
60
122
.6
)
(
2-
=
s
s
G
对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。

系统控制结构框图如图3-37,图中KD(s)是控制器传递函数,G(s)是被控对象传递函数。

图1 PID控制结构框图
其中s
K
s
K
K
s
KD
D
I
P
+
+
=)(
此次实验只考虑控制摆杆的角度,小车的位置是不受控的,即摆杆角度的单闭环控制,立起摆杆后,会发现小车向一个方向运动直到碰到限位信号。

那么要使倒立摆稳定在固定位置,还需要增加对电机位置的闭环控制,这就形成了摆杆角度和电机位置的双闭环控制。

立摆后表现为电机在固定位置左右移动控制摆杆不倒。

实验步骤:
1、使用MATLAB/Simulink 仿真软件建立以下控制模型:
图2 PID 控制模块组成
2、按照PID 参数整定方法调整PID 参数,设计PID 控制器。

3、在倒立摆教学实验软件中进行PID 控制器的仿真验证。

实验结果: 1、PID 参数整定:
设置PID 控制器参数,令Kp=1,Ki=0,Kd=0,仿真得到以下图形:
012345678910
00.5
1
1.5
2
2.53
3.5
4
4.5
x 1030时间t/s 摆杆角度Kp=1,Ki=0,Kd=0
从图中看出,曲线发散,控制系统不稳定。

令Kp=20,Ki=0,Kd=0,仿真得到以下图形:
0246810
00.5
1
1.5
22.533.5
4
时间t/s 摆杆角度
Kp=20,Ki=0,Kd=0
令Kp=30,Ki=0,Kd=0.5
令Kp=30,Ki=0,Kd=0.5令Kp=30,Ki=0,Kd=1
- - .
令Kp=30,Ki=0,Kd=0.5,仿真得到以下图形:。

相关文档
最新文档