最新3.1.1变化率问题汇总
3.1.1变化率问题课件人教新课标2

r(1)-r(0)≈ 0.62 (dm)
气球的平均膨胀率为:
r 1 r 0 0.62dm / L
1 0
类似地:
当空气容量V从1加2L时,半径增加了
r(2)-r(1) ≈ 0.16(dm) 气球的平均膨胀率为:
r 2 r 1 0.16dm / L
2 1
可以看出: 随着气球体积逐渐变大,它的
平均膨胀率逐渐变小.
问题1:气球膨胀率
很多人都吹过气球,回忆一下吹气球 的过程.
发现:
随着气球内空气容量的增加,气球的 半径增加的越来越慢.
从数学的角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之 间的函数关系是:
V (r) 4 r3 r(V ) 3 3V
3
4
当空气容量V从0增加1L时,半径增加了
平均变化率的几何意义就是两点间的斜率.
x2 x1
习惯上:用 x表示x2 -x1,即:x x2 x1
注意:x是一个整体符号,而不是 与x相乘。
可把x看作是相对于x1的一个增量, 可用x1 x代替x2;
“增量”:x x2 x1
令“增量” x x2 x1
f f x2 f x1
f f x2 f x1 f x1 x f x1
(1)运动员在这段时间里是静止的吗?
(2)你认为用平均速度描述运动员的运动状态 有什么问题吗?
平均速度不能反应他在这段时间里运动状态, 需要用瞬时速度描述运动状态.
探究活动
气球的平均膨胀率是一个特殊的情况, 我们把这一思路延伸到函数上,归纳一下得 出函数的平均变化率
r(V2 ) r(V1) f (x2 ) f (x1)
思 考 ?
当空气容量从V1增加到V2时,气球 的平均膨胀率是多少?
3.1.1变化率问题

极限(数学术语)编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。
此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。
极限思想编辑简介极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。
所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。
用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。
如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计极限思想的思维功能极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。
极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。
借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从“直线构成形”认识“曲线构成形”,从量变去认识质变,从近似认识精确。
【精品课件】3.1.1-2变化率问题与导数的概念

1 2
变化率 谁创立了导数 与导数
导数是在怎样的背景之下产生的 呢
背景
十七与十八世纪的数学家们常把自己的数学活动跟各种 不同自然领域(物理、化学、力学、技术)中的研究活动联 系起来,并由实际需要提出了许多数学问题。历史上,导数
概念产生于以下两个实际问题的研究。第一:求曲线的切线
问题,这是一个非常古老的问题,可以追溯到希腊著名的科 学家阿基米德(Archimedes,287-212B.C);第二:求非 均速运动的速度,它最早由开普勒(kepler:1571-1630),伽 利略(Galileo:1564—1642),牛顿(Newton:1642-1727)等 提出来.
y
f (x2)
f f ( x2 ) f ( x1 ) 表示函数f(x) 的图像上 x x2 x1 的两点( x1 , f ( x1 )), ( x2 , f ( x2 ))连线的斜率.
f (x1)
x2 – x1 x1 x2
y = f (x)
f (x 2) – f (x1)
4)物体从3s到3 ts的平均速度 v s(3 t ) s(3) 30 5t (m / s)
(3 t ) 3
平均速度 v 近似地刻画了在某一时间段内物体运动的快慢. 如何精确地刻画物体在某一时刻的速度呢?
物体在某一时刻的速度称为瞬时速度。
即如何求物体在t=3s的瞬时速度呢?
t 0
10t0
定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
f ( x0 Δx) f ( x0 ) y lim lim x 0 x x 0 x 称为函数 y = f (x) 在 x = x0 处的导数, 记作 f ( x0 )
人教版-高中数学选修1-1-第三章 3.1.1 变化率问题

观察: 月 日到 日到4月 日与 日与4月 日到 日到4月 日的温度 观察:3月18日到 月18日与 月18日到 月20日的温度 变化,用曲线图表示为: 变化,用曲线图表示为:
T (℃) ℃ 30 20 10 A (1, 3.5)
2 0
C (34, 33.4) 18日 (注: 3月18日 为第一天) 为第一天) B (32, 18.6)
f (x2 ) f (x1) f (x1 + x) f (x1) = x2 x1 x
思考:
观察函数f(x)的图象
f(x2 ) f ( x1 ) 平均变化率 y x2 x1 f(x )
2
Y=f(x) x2-x1 f(x2)-f(x1)
B
表示什么?
f(x1)
A x x1 x2
直线AB的斜率
2.求函数的平均变化率的步骤 求函数的平均变化率的步骤: 求函数的平均变化率的步骤 (1)求函数的增量f=y=f(x2)-f(x1); 求函数的增量
(2)计算平均变化率 y f (x2 ) f (x1) 计算 = x x2 x1
�
O
练习: 练习
1.甲用 年时间挣到 万元 乙用 个月时间挣到 万 甲用5年时间挣到 万元, 乙用5个月时间挣到 个月时间挣到2万 甲用 年时间挣到10万元 如何比较和评价甲,乙两人的经营成果? 元, 如何比较和评价甲,乙两人的经营成果 2.已知函数 f (x) = 2 x +1, g (x) = – 2 x, 分别计算在 已知函数 的平均变化率. 下列区间上 f (x) 及 g (x) 的平均变化率 (1) [ –3 , –1] ; (2) [ 0 , 5 ] .
h(t) = 4.9t + 6.5t +10
人教A版高中数学选修1-1 第三章3.1.1 变化率问题教学课件 (共21张PPT)

们的意义。
lim f关’(键2)是求出: x0
ff
'
((22);它说xf)明'(6在f)第(22)(h)附近,原
度油下温x降度;大在约第以63(h0C)/附H的近速,
lim f ’(6)
f (6 原油x)温度f 大(6约) 以5 0C/H的
x0
x 速度上升。
课堂小结
1.通过本节课的学习你有哪些收获? 平均变化率、瞬时变化率(即导数) 体会了函数思想、逼近思想方法、概念形成 过程中的抽象概括
t0
t
思考
函数f (x)在x x0处的瞬时变化率怎样表 示?
lim f (x0 x) f (x0般地,函数y f (x)在x x0处的瞬时变化率是
lim y lim f (x0 x) f (x0 )
x x0
x0
x
我们称它为函数 y f (x)在x x0处的导数;
率。
解:y 5(2 x)2 6 (5 22 6) 20x 5x2
则平均变化率为:y 20 5x x
探 究
计算:运动员在 0 t 65
49
这段时间内的平均速度,
h(
65
)
并思考下面的问题:
h(0)
P73
v
49 65 0
0 (1)运动员在这段
时间里是静止的吗?
49
(2)你认为用平均速度描述运动员的运动状态有
t 0时,在2,2+t这段时间内
v
h(2
t)
h(2)
4.9t 2
13.1t
(2 t) 2
t
4.9t 13.1
瞬时速度
我们用 lim h(2 t) h(2) 13.1
21-22版:3.1.1 变化率问题~3.1.2 导数的概念(步步高)

学核心素养.
3 随堂演练
PART THREE
1.f(x)=2x+1在[1,2]内的平均变化率为
A.0
B.1
√C.2
D.3
解析 f(x)=2x+1 在[1,2]上的平均变化率为ΔΔxy=f22--1f1=2.
12345
2.如图,函数y=f(x)在A,B两点间的平均变化率是
√A.-1
B.1
C.2
D.-2
反思 感悟
求平均变化率的主要步骤 (1)先计算函数值的改变量Δy=f(x2)-f(x1). (2)再计算自变量的改变量Δx=x2-x1. (3)得平均变化率ΔΔyx=fxx22--fx1x1.
跟踪训练1 已知函数f(x)=x2+2x-5的图象上的一点A(-1,-6)及邻近一点
B(-1+Δx,-6+Δy),则
2 题型探究
PART TWO
一、函数的平均变化率
命题角度1 求函数的平均变化率 例1 求函数f(x)=x2在x=1,2,3附近的平均变化率,取Δx的值为 1,哪一点附
3 近的平均变化率最大?
解 在x=1附近的平均变化率为 k1=f1+ΔΔxx-f1=1+ΔΔxx2-1=2+Δx; 在x=2附近的平均变化率为 k2=f2+ΔΔxx-f2=2+ΔΔxx2-22=4+Δx; 在x=3附近的平均变化率为 k3=f3+ΔΔxx-f3=3+ΔΔxx2-32=6+Δx. 若 Δx=13,则 k1=2+31=37,k2=4+13=133,k3=6+13=139, 由于k1<k2<k3,故在x=3附近的平均变化率最大.
lim
Δt→0
ΔΔst=Δlitm→0
(2t0+1+Δt)=2t0+1,
则2t0+1=9,∴t0=4. 则物体在4 s时的瞬时速度为9 m/s.
高中数学第三章导数及其应用3.1.1变化率问题3.1.2导数的概念新人教A版选修

探究2:根据函数的瞬时变化率与在某点处导数的定 义,回答下列问题:
(1)瞬时变化率与平均变化率的关系是什么?它们的 物理意义分别是什么?
提示 瞬时变化率是平均变化率在Δx 无限趋近于 0 时,ΔΔxy无限趋近的值;瞬时变化率的物理意义是指物体运 动的瞬时速度,平均变化率的物理意义是指物体运动的平 均速度.
(2)瞬时变化率与函数在某点处导数的关系是什么? 提示 函数在某点处的瞬时变化率就是函数在此点 处的导数.
课堂探究案·核心素养提升
题型一 求函数的平均变化率
例1 求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的
平均变化率,并求当x0=2,Δx=0.1时平均变化率的 值.
【自主解答】 函数 y=f(x)=3x2+2 在区间[x0,x0
【答案】
1 (1)2
(2)见自主解答
●规律总结
1.求函数y=f(x)在点x0处的导数的三个步骤
2.瞬时变化率的几种变形形式
f(x0+Δx)-f(x0) Δx
2×12=5.
题型二 求函数在某点处的导数
例2 (1)函数 y= x在 x=1 处的导数为________.
(2)如果一个质点由定点 A 开始运动,在时间 t 的位 移函数为 y=f(t)=t3+3,
①当 t1=4,Δt=0.01 时,求Δy 和比值ΔΔyt; ②求 t1=4 时的导数.
【自主解答】 (1)Δy= 1+Δx-1, ΔΔxy= 1+ΔΔxx-1= 1+Δ1 x+1,
+
Δ
x]
上
的
平
均
变
化
率
为
f(x0+Δx)-f(x0) (x0+Δx)-x0
=
[3(x0+Δx)2+2]-(3x20+2) Δx
高二数学选修1、3-1-1变化率问题与导数的概念

3.1.1变化率问题与导数的概念一、选择题1.在函数变化率的定义中,自变量的增量Δx满足()A.Δx<0B.Δx>0C.Δx=0 D.Δx≠0[答案] D[解析]自变量的增量Δx可正、可负,但不可为0.2.函数在某一点的导数是()A.在该点的函数的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析]由导数定义可知,函数在某一点的导数,就是平均变化率的极限值.3.在x=1附近,取Δx=0.3,在四个函数①y=x②y=x2③y=x3④y=1x中,平均变化率最大的是()A.④B.③C.②D.①[答案] B[解析]①的平均变化率为1,②的平均变化率为2.3,③的平均变化率为3.99,④的平均变化率为-0.77.4.质点M的运动规律为s=4t+4t2,则质点M在t=t0时的速度为()A.4+4t0B.0C.8t0+4 D.4t0+4t20[答案] C[解析]Δs=s(t0+Δt)-s(t0)=4Δt2+4Δt+8t0Δt,ΔsΔt=4Δt+4+8t0,lim Δt→0ΔsΔt=limΔt→0(4Δt+4+8t0)=4+8t0.5.函数y=x+1x在x=1处的导数是()A.2 B.5 2C.1 D.0[答案] D[解析] Δy =(Δx +1)+1Δx +1-1-1=Δx +-Δx Δx +1, Δy Δx =1-1Δx +1, lim Δx →0 Δy Δx =lim Δx →0 ⎝⎛⎭⎫1-1Δx +1=1-1=0, ∴函数y =x +1x在x =1处的导数为0. 6.函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,Δy =( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0) [答案] D[解析] Δy 看作相对于f (x 0)的“增量”,可用f (x 0+Δx )-f (x 0)代替.7.一个物体的运动方程是s =3+t 2,则物体在t =2时的瞬时速度为( )A .3B .4C .5D .7 [答案] B[解析] lim Δt →0 3+(2+Δt )2-3-22Δt=lim Δt →0 Δt 2+4Δt Δt=lim Δt →0 (Δt +4)=4. 8.f (x )在x =x 0处可导,则lim Δx →0f (x 0+Δx )-f (x 0)Δx ( ) A .与x 0,Δx 有关B .仅与x 0有关,而与Δx 无关C .仅与Δx 有关,而与x 0无关D .与x 0,Δx 均无关[答案] B[解析] 式子lim Δx →0 f (x 0+Δx )-f (x 0)Δx表示的意义是求f ′(x 0),即求f (x )在x 0处的导数,它仅与x 0有关,与Δx 无关.9.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A .f ′(x )=aB .f ′(x )=bC .f ′(x 0)=aD .f ′(x 0)=b [答案] C[解析]∵f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limΔx→0aΔx+b(Δx)2Δx=limΔx→0(a+bΔx)=a.∴f′(x0)=a.10.f(x)在x=a处可导,则limh→0f(a+3h)-f(a-h)2h等于()A.f′(a) B.12f′(a)C.4f′(a) D.2f′(a) [答案] D[解析]limh→0f(a+3h)-f(a-h)2h=limh→0f(a+3h)-f(a)+f(a)-f(a-h)2h=32limh→0f(a+3h)-f(a)3h+12limh→0f(a)-f(a-h)h=32f′(a)+12f′(a)=2f′(a).二、填空题11.f(x0)=0,f′(x0)=4,则limΔx→0f(x0+2Δx)-f(x0)Δx=________.[答案]8[解析]limΔx→0f(x0+2Δx)-f(x0)Δx=2limΔx→0f(x0+2Δx)-f(x0)2Δx=2f′(x0)=8.12.某物体做匀速运动,其运动方程是s=v t+b,则该物体在运动过程中其平均速度与任何时刻的瞬时速度关系是________.[答案]相等[解析]v0=limΔt→0ΔsΔt=limΔt→0s(t0+Δt)-s(t0)Δt=limΔt→0v(t0+Δt)-v t0Δt=limΔt→0v·ΔtΔt=v.13.设x0∈(a,b),y=f(x)在x0处可导是y=f(x)在(a,b)内可导的________条件.[答案]必要不充分[解析]y=f(x)在x0∈(a,b)处可导不一定在(a,b)的所有点处可导,反之,y=f(x)在(a,b)内可导,必然在(a,b)中的x0处可导.14.一球沿斜面自由滚下,其运动方程是S=t2(S的单位:m,t的单位:s),则小球在t =5时的瞬时速度为______.[答案] 10m/s[解析] v =S ′|t =5=lim Δx →0S (5+Δx )-S (5)Δxlim Δx →0 (10+Δx )=10(m/s). 三、解答题15.一物体作自由落体运动,已知s =s (t )=12gt 2. (1)计算t 从3秒到3.1秒、3.01秒,两段内的平均速度;(2)求t =3秒时的瞬时速度.[解析] (1)取一小段时间[3,3+Δt ],此时物体的位置改变量Δs =12g (3+Δt )2-12g ·32=12g (6+Δt )Δt ,相应的平均速度v =Δs Δt =g 2(6+Δt ) 当Δt =0.1时,即t 从3秒到3.1秒v =3.05g ;当Δt =0.01时,即t 从3秒到3.01秒v =3.005g .Δt 越小,v 就越接近时刻t 的速度.(2)v =lim Δt →0 Δs Δt=lim Δt →0 g 2(6+Δt )=3g =29.4m/s. 16.若f ′(x )=A ,求lim h →0f (x +h )-f (x -2h )h . [解析] 原式=lim h →0 f (x +h )-f (x )+f (x )-f (x -2h )h=lim h →0 f (x +h )-f (x )h +lim h →02·f (x -2h )-f (x )-2h=A +2A =3A .17.求函数y =x 在x =1处的导数.[解析] 解法一:(导数定义法)Δy =1+Δx -1,Δy Δx =1+Δx -1Δx =11+Δx +1, 所以lim Δx →0 11+Δx +1=12, 即y ′|x =1=12. 解法二:(导函数的函数值法)Δy =x +Δx -x ,Δy Δx =x +Δx -x Δx =1x +Δx +x. 所以y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx +x =12x, 故y ′|x =1=12. 18.路灯距地面8m ,一个身高1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影C 沿某直线离开路灯,(1)求身影的长度y 与人距路灯的距离x 之间的关系式;(2)求人离开路灯第10秒时身影的瞬时变化率.[解析] (1)如图所示,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m.由于CD ∥BE ,则AB AC =BE CD, 即y y +x =1.68,所以y =14x . (2)∵84m/min =1.4m/s ,而x =1.4t .∴y =14x =14×1.4t =720t , t ∈[0,+∞).Δy =720(10+Δt )-720×10=720Δt , ∴y ′|t =10=lim Δt →0 Δy Δt =720即人离开路灯第10秒时身影的瞬时变化率为720.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1变化率问题
3.1.1变化率问题
一.设计思想:(1)用已知探究未知的思考方法(2)用逼近的思想考虑问题的
思考方法.
二.教学目标
1.理解平均变化率的概念;
2.了解平均变化率的几何意义;
3.会求函数在某点处附近的平均变化率
4. 感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现
实世界的过程,体会数学的博大精深以及学习数学的意义。
三.教学重点
1.通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变
化率的实际意义和数学意义;
2.掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方
法;
四.教学难点:平均变化率的概念.
五.教学准备
1.认真阅读教材、教参,寻找有关资料;
2.向有经验的同事请教;
3.从成绩好的学生那里了解他们预习的情况和困惑的地方.
六.教学过程
一.创设情景
(1)让学生阅读章引言,并思考章引言写了几层意思?
(2)学生先阅读,思考,老师再提示;①以简洁的话语指明函数和微积分的关系,微积分的研究对象就是函数,正是对函数的深入研究导致了微积分的产生;②从数学史的角度,概括地介绍与微积分创立密切相关的四类问题以及做出巨大贡献的科学家;③概述本章的主要内容,以及导数工具的作用和价值.让学生对这章书先有一个大概认识,从而使学生学习有了方向,能更好地进行以下学习.
二.新课讲授
(一)问题提出
问题1气球膨胀率问题:
老师准备了两个气球,请两位同学出来吹,请观看同学谈谈看见的情景;再请吹气球同学谈谈吹气球过程的感受,开始与结束感受是否有区别?
我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是«Skip Record If...»
如果将半径r表示为体积V的函数,那么«Skip Record If...»
分析: «Skip Record If...»,
⑴当V从0增加到1时,气球半径增加了«Skip Record If...»
气球的平均膨胀率为«Skip Record If...»
⑵当V从1增加到2时,气球半径增加了«Skip Record If...»
气球的平均膨胀率为«Skip Record If...»
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少? «Skip
Record If...»
问题2 高台跳水问题:
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t (单位:s)存在怎样的函数关系?
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.
)如何计算运动员的平均速度?并分别计算0≤t≤0.5,1≤t≤2,1.8≤t≤2,2≤t≤2.2,时间段里的平均速度.
思考计算:«Skip Record If...»和«Skip Record If...»的平均速度«Skip Record If...»
在«Skip Record If...»这段时间里,«Skip Record If...»;
在«Skip Record If...»这段时间里,«Skip Record If...»
探究:计算运动员在«Skip Record If...»这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,«Skip Record If...»,
所以«Skip Record If...»,
虽然运动员在«Skip Record If...»这段时间里的平均速度为«Skip Record If...»,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.
(1)让学生亲自计算和思考,展开讨论;
(2)老师慢慢引导学生说出自己的发现,并初步修正到最终的结论上.
(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态;
(二)平均变化率概念:
引出函数平均变化率的概念.找出求函数平均变化率的步骤.
1.上述问题中的变化率可用式子«Skip Record If...»表示, 称为函数f(x)从x1到x2的平均变化率
2.若设«Skip Record If...», «Skip Record If...» (这里«Skip Record If...»看作是对于x1的一个“增量”可用x1+«Skip Record If...»代替x2,同样«Skip Record If...»)
3.则平均变化率为«Skip Record If...»«Skip Record If...»
思考:观察函数f(x)的图象Array平均变化率«Skip Record If...»«Skip Record
If...»表示什么?
(1)师生一起讨论、分析,得出结果;
(2)计算平均变化率的步骤:①求自变量的增量Δx=x2-x1;②求函数的增量Δf=f(x2)-f(x1);③求平均变化率«Skip Record If...».
注意:①Δx是一个整体符号,而不是Δ与x相乘;②x2= x1+Δx;③Δf=Δy=y2-y1;
三.典例分析
例1.已知函数f(x)=«Skip Record If...»的图象上的一点«Skip Record If...»及临近一点«Skip Record If...»,则«Skip Record
If...».
解:«Skip Record If...»,
∴«Skip Record If...»
例2.求«Skip Record If...»在«Skip Record If...»附近的平均变化率。
解:«Skip Record If...»,所以«Skip Record If...»
«Skip Record If...»
所以«Skip Record If...»在«Skip Record If...»附近的平均变化率为
«Skip Record If...»
四.课堂练习
1.质点运动规律为«Skip Record If...»,则在时间«Skip Record If...»中相应的平均速度为.
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.
3.过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.
五.回顾总结
让学生进行课堂小结.
(1)随着气球内空气容量的增加,气球的半径增加得越来越慢,即随着气球体积的增大,比值气球膨胀率越来越小;
(2)平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态;
(3)函数的平均变化率的概念;
(4)求函数的平均变化率的步骤;
(5)课后思考问题:需要寻找一个量,能更精细地刻画运动员的运动状态,那么该量应如何定义?
(6)思考问题方法:从实际生活到数学语言,数学概念.
六.补充实例
例1在经营某商品中,甲挣到10万元,乙挣到2万元,如何比较和评价甲,乙两人的经营成果?
变式:在经营某商品中,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲,乙两人的经营成果?
例2情境:现有南京市某年3月和4月某天日最高气温记载.
观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:
七.布置作业
①看书,复习今天内容;②思考问题:如何能更精细地刻画运动员的运动状态?需要增加什么量?③做书A1;④预习下节内容. 八.教学反思
用1节课完成变化率的讲授。
导数确实是个很重要的工具,所以与导数概念教学有关的平均变化率问题讲授显得很重要.
温度T (时间t。