控制理论在卫星姿态控制中的应用

控制理论在卫星姿态控制中的应用
控制理论在卫星姿态控制中的应用

自动控制原理实验-卫星三轴姿态控制系统

自动控制理论实验报告人: 赵振根 02020802班 2008300597

卫星三轴姿态飞轮控制系统设计 一:概述 1.1.坐标系选择与坐标变换 在讨论卫星姿态时,首先要选定空间坐标系,不规定参考坐标系就无从描述卫星的姿态,至少要建立两个坐标系,一个是空间参考坐标系,一个是固连在卫星本体的星体坐标系。在描述三轴稳定对地定向卫星的姿态运动时,一般以轨道坐标系为参考坐标系,还有星体坐标系。 (1) 轨道坐标系o o o O X Y Z -,原点位于卫星的质心O ,o O X 轴在轨 道平面上与o OZ 轴垂直,与轨道速度方向一致,o OZ 轴指向地心,o O Y 轴垂直于轨道平面并构成右手直角坐标系 (2) 星体坐标系b b b O X Y Z -,原点位于卫星的质心O ,b O X ,b O Y ,b OZ 固连在星体上,为卫星的三个惯性主轴。其中b O X 为滚动轴, b O Y

为俯仰轴, OZ为偏航轴。 b 1.2 飞轮控制系统在卫星三轴姿态控制中的应用与特点 长寿命,高精度的三轴姿态稳定卫星,在轨道上正常工作时,普遍采用角动量交换装置作为姿态控制系统的执行机构。 与喷气推力器三轴姿态稳定系统相比,飞轮三轴姿态稳定系统具有多方面的有点:(1)飞轮可以给出较为精确地连续变化的控制力矩,可以进行线性控制,而喷气推力器只能作为非线性开关控制,因此轮控系统的精度比喷气推力器的精度高一个数量级,而姿态误差速率也比喷气控制小。(2)飞轮所需要的能源是电能可以不断地通过太阳能电池在轨得到补充,因而适用于长寿命工作,喷气推力器需要消耗工质或燃料,在轨无法补充,因而寿命大大受限。(3)轮控系统特别适用于克服周期性扰动。(4)轮控系统能够避免热推力器对光学仪器的污染。 然而,轮控系统在具有以上优越性的同时,也存在两个主要问题,一是飞轮会发生速度饱和。当飞轮朝着一个方向加速或偏转以克服某一方面的非周期性扰动时,飞轮终究要达到其最大允许转速。二是由于转速部件的存在,特别是轴承寿命和可靠性受到限制。 1.3 飞轮姿态控制原理 从动力学角度看,卫星姿态运动时卫星角动量作用的结果,飞轮则是通过与卫星间的角动量的交换来实现姿态控制,要使卫星在轨道上保持三轴稳定并对地定向。卫星的角动量H应该不变,且方向与轨

先进陆地观测卫星的精确姿态和轨道控制系统

先进陆地观测卫星(ALOS)精度姿态和轨道控制 系统 日本,Tsukuba,日本的国家空间开发机构。 Takeshi Yoshizawa, Hiroki Hoshino,和Ken Maeda NEC东芝太空系统,日本横滨。 摘要 先进的陆地观测卫星(ALOS)是NASDA的高分辨率地球观测的旗舰。ALOS任务的特点是同时取得了250万的分辨率和全球的数据收集,它需要一套指向的要求,为观测到的图像提供精确的几何精度。在指向管理框架,旨在满足指向要求,态度和轨道控制系统(家)对自己严格的要求:态度稳定(3.9×10?4度p p),态度决定射门角度(上:3.0×10?4度),和定位精度(离线:1米)。为AOCS开发和实现了多种解决方案。这一挑战包括精密恒星跟踪器、高精度GPS 接收机、高性能机载计算机、基于星型传感器的姿态确定和控制、柔性结构的相位稳定和精密的协同控制。本文介绍了AOCS原型机的设计和测试结果,重点介绍了新方法的发展,使其具有了一定的精度。 1.介绍 在土地观察方面,继续努力争取更高的决议。随着空间分辨率的提高,观测图像几何精度的重要性越来越明显。这一趋势已经给今天的地球观测卫星的姿态和轨道控制系统的设计带来了影响。 国家空间发展的先进陆地观测卫星(ALOS)。 图1:先进的陆地观测卫星。 日本航空公司(NASDA)在2004年开始研发,是高分辨率地球观测的旗舰(图1)。主要致力于制图,ALOS的独特特点是同时实现了信心目标:全球数据收集,分辨率达250万。这种特性要求精确的地理定位和几何校正,而不需要地面控制点。为此,我们为ALOS开发 了一组指示性需求:指向稳定( -4 4.010 ?度p-p),定位精度(板载:-4 4.010 ?度,脱机: -4 2.010 ?度),定位精度(板载:200米,脱机:1m)。

微小卫星课后答案

《宇航技术的发展与微小卫星》课程期末考试作业要求 简答题: 1.飞行器在自由空间与惯性空间(在轨)的运动与控制有什 么不同? 在自由空间中,力改变方向后,速度改变且沿此方向运动; 在惯性空间中,外力使卫星速度改变后,不会按照切线方向,而是沿曲线进入另一个轨道。 2.卫星的轨道根据所在轨道高度不一样一般分为哪几种,对 地遥感卫星一般选取什么轨道? 按轨道高度分类:低地球轨道、中地球轨道、高地球轨道。 对地遥感卫星一般为低地球轨道的太阳同步轨道。 3.卫星主要有哪些功能系统组成,为了适应空间环境,一般 要做哪些地面试验? 功能系统:位置与姿态控制系统、天线系统、转发器系统、遥测指令系统、电源系统、温控系统、入轨和推进系统。 地面试验:电磁兼容性试验,振动试验,声试验,旋转平衡试验,磁试验,热真空试验,热平衡试验,热循环试验,粒子辐照试验,紫外辐照试验。 4.为什么微小卫星是卫星技术发展的重要方向,它有哪些特 点? (1)与大卫星相比,功能较单一,也因此易引发航天装 备思路的改革;

(2)是各国航天装备体系建设的重要方向之一; (3)与其它种类的卫星相比,微小卫星是未来攻防的主 要手段; (4)微小卫星的发展是微纳米技术发展的重要牵引,也是微纳米 技术发展的重要方向。 特点:体积小,质量轻,新技术含量高、研制周期短、研制经费低,且可以进一步组网,以分布式的星座形成“虚拟大卫星”。5.目前我国已开发通讯、遥感、定位导航、科学试验系列的 卫星,这些卫星的应用对国民经济繁荣与国家安全有那些影响,试举例说明,并对其未来发展趋势进行展望。 中国返回式遥感卫星拍摄的数万米地物照片和其它卫星获得的地物信息,为国家进行国土规划和宏观经济决策提供了重要依据;中国已建成能接收各类(光电型、雷达型)资源卫星数据的遥感卫星地面站,利用该站发布的数据,各部委和各省市在资源调查、环境监测、国土整治和规划、土地利用和普查、农作物估产、地质勘探、重大灾害评估等方面做了大量有成效的工作;气象卫星,为中国的天气预报工作提供了大量的实时云图,尤其是气象卫星系统的业务运行,大大提高了灾害性天气预报的准确率,每年减少经济损失几十亿元;卫星导航定位在我国的应用迅速发展,毫无疑问,智能交通是一个大规模的潜在市场,卫星导航技术已经广泛应用在测绘的各个方面,GPS的应用必

姿态动力学作业

基于脉宽调制器的喷气姿态控制系统

一.题目 1) 建立三轴稳定对地定向航天器的姿态动力学和姿态运动学模型 2) 设计基于PD+脉宽调制器形式的喷气姿态控制系统 3) 完成数学仿真 具体要求: (1)建立对地定向刚体航天器的三轴稳定姿态动力学和姿态运动学模型。 2222 2 2 512kg m ,308kg m ,620kg m 16kg m ,12kg m ,14kg m x y z xy xz yz I I I I I I =?=?=?=?=?=? 设航天器在圆轨道上运行,轨道角速度00.0011rad/s ω= 要求姿态动力学动力学采用欧拉方程,姿态运动学模型采用zyx 顺序欧拉角的姿态运动学方程; (2)假设姿态推力器的数学模型为理想的继电器特性; 姿态推力器的标称推力为4N(设计情况B),在各轴上的力臂分别为1m 、1.25m 和1.5m 。 (3)设计PD+脉宽调制器形式的数字式喷气控制器,要求姿态角控制精度优于 0.5deg 。 设计情况B :控制周期为250ms ,控制系统的调整时间低于10s ,阻尼比为07。 (4)在设计控制器参数时,要考虑采样-保持环节对控制性能的影响。(建议 将采样-保持环节等效为s 域的传递函数,按连续控制系统的方法进行设计)。 (5)对上述设计结果进行数学仿真。比较在有/无最小脉宽限制两种情况下控 制精度和燃料消耗的情况。设推力器的最小脉冲宽度为30ms 。 (6)设卫星在三轴方向受到常值的气动干扰力矩,分别为 0.01Nm,0.005Nm,0.02Nm dx dy dz T T T === 重新设计控制器,以满足控制精度的要求。并给出数学仿真结果

空间飞行器动力学与控制

Nanjing University of Aeronautics and Astronautics Spacecraft Dynamics and Control Teacher:Han-qing Zhang College of Astronautics

Spacecraft Dynamics and Control Text book: Spacecraft Dynamics and Control:A Practical Engineering Approach https://www.360docs.net/doc/1113682049.html,/s/1o6BF32U (1) Wertz, J. R. Spacecraft Orbit and Attitude Systems, Springer. 2001 (2) 刘墩.空间飞行器动力学,哈尔滨工业大学出版社,2003. (3) 章仁为.卫星轨道姿态动力学与控制,北京航空航天大学出版社,2006. (4) 基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002。 2014年4月22日星期二Spacecraft Dynamics and Control

Spacecraft Dynamics and Control 1. Introduction Space technology is relatively young compared to other modern technologies, such as aircraft technology. In only forty years this novel domain has achieved a tremendous level of complexity and sophistication. The reason for this is simply explained: most satellites, once in space, must rely heavily on the quality of their onboard instrumentation and on the design ingenuity of the scientists and engineers. 2014年4月22日星期二Spacecraft Dynamics and Control

小卫星立体成像姿态控制半物理仿真

第39卷第9期 光电工程V ol.39, No.9 2012年9月Opto-Electronic Engineering Sept, 2012 文章编号:1003-501X(2012)09-0012-06 小卫星立体成像姿态控制半物理仿真 徐开1,金光1,张刘1,孙志远1,2 ( 1. 中国科学院长春光学精密机械与物理研究所,长春 130033; 2. 中国科学院研究生院,北京 100049 ) 摘要:随着小卫星功能需求不断提升,小卫星同轨立体成像技术成为学者研究的焦点。针对某小卫星单线阵CCD 相机同轨立体成像期间的姿态控制半物理仿真展开研究。分析得出小卫星同轨立体成像过程中的姿态运行规律,对同轨立体成像的姿态控制算法进行设计,利用相似原理和姿态运行规律设计半物理仿真环境。基于高精度单轴气浮转台和星上部件建立小卫星立体成像姿态控制半物理仿真平台。利用该平台进行了同轨立体成像相关的姿态控制半物理实验。实验结果表明该小卫星立体成像过程中俯仰轴机动52°,用时67 s完成,且达到三轴稳定状态。 姿态控制指向精度优于0.05°,稳定度优于0.005 °/s。表明设计的小卫星姿控方案可以完成单线阵CCD的同轨立体成像。 关键词:立体成像;大角度机动;相似原理;半物理仿真 中图分类号:V448.2 文献标志码:A doi:10.3969/j.issn.1003-501X.2012.09.003 Semi-physics Simulation of Small Satellite Attitude Control in Stereo Imaging XU Kai1,JIN Guang1,ZHANG Liu1,SUN Zhi-yuan1,2 ( 1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China ) Abstract: Along with the constantly promoting demand of the function of small satellite, stereo imaging of small satellite is one of hot subjects in aerospace field study recently. The study aimed at attitude control during stereo imaging in the same orbit of small satellites with single linear CCD camera. Through analysis and investigation, the operational rule of stereo imaging in the same orbit of small satellite was found out. Meanwhile, the algorithm of stereo imaging in the same orbit attitude control and semi-physical simulation system has been designed by using the similar principles and attitude operation rule of small satellite. Based on single-axis air-bearing platform and satellite components, semi-physical simulation platform of small satellite attitude control has been built. Finally, semi-physical simulation of small satellite attitude control system has been conducted at the stereo imaging. The results of the simulation indicate that small satellite pitch axis was maneuvered 52° within 75 s and three-axis reached a steady state. The pointing accuracy was 0.05° and attitude stability was 0.005°/s. It is demonstrated that the attitude control strategy can accomplish stereo imaging in the same orbit of single linear CCD optical load small satellite. Key words: stereo imaging; large angle maneuvered; similar principles; semi-physical simulation 0 引 言 航天领域对立体图像信息的需求越来越迫切,现阶段用于目标定位和立体测图的高分辨率卫星遥感影 收稿日期:2011-08-30;收到修改稿日期:2012-05-21 基金项目:吉林省自然科学青年基金(201201010);国家自然科学青年基金(61008046)资助项目 作者简介:徐开(1982-),男(满族),吉林长春人。助理研究员,博士,主要研究工作是航天器控制。E-mail: xukai118@https://www.360docs.net/doc/1113682049.html,。 https://www.360docs.net/doc/1113682049.html,

自动控制原理实验-卫星三轴姿态控制系统

自动控制理论实验 报告人: 赵振根 02020802班 2008300597

卫星三轴姿态飞轮控制系统设计 一:概述 1.1.坐标系选择与坐标变换 在讨论卫星姿态时,首先要选定空间坐标系,不规定参考坐标系就无从描述卫星的姿态,至少要建立两个坐标系,一个是空间参考坐标系,一个是固连在卫星本体的星体坐标系。在描述三轴稳定对地定向卫星的姿态运动时,一般以轨道坐标系为参考坐标系,还有星体坐标系。 (1) 轨道坐标系o o o O X Y Z -,原点位于卫星的质心O ,o O X 轴在轨 道平面上与o OZ 轴垂直,与轨道速度方向一致,o OZ 轴指向地心,o O Y 轴垂直于轨道平面并构成右手直角坐标系 (2) 星体坐标系b b b O X Y Z -,原点位于卫星的质心O ,b O X ,b O Y ,b OZ 固连在星体上,为卫星的三个惯性主轴。其中b O X 为滚动轴, b O Y

为俯仰轴, OZ为偏航轴。 b 1.2 飞轮控制系统在卫星三轴姿态控制中的应用与特点 长寿命,高精度的三轴姿态稳定卫星,在轨道上正常工作时,普遍采用角动量交换装置作为姿态控制系统的执行机构。 与喷气推力器三轴姿态稳定系统相比,飞轮三轴姿态稳定系统具有多方面的有点:(1)飞轮可以给出较为精确地连续变化的控制力矩,可以进行线性控制,而喷气推力器只能作为非线性开关控制,因此轮控系统的精度比喷气推力器的精度高一个数量级,而姿态误差速率也比喷气控制小。(2)飞轮所需要的能源是电能可以不断地通过太阳能电池在轨得到补充,因而适用于长寿命工作,喷气推力器需要消耗工质或燃料,在轨无法补充,因而寿命大大受限。(3)轮控系统特别适用于克服周期性扰动。(4)轮控系统能够避免热推力器对光学仪器的污染。 然而,轮控系统在具有以上优越性的同时,也存在两个主要问题,一是飞轮会发生速度饱和。当飞轮朝着一个方向加速或偏转以克服某一方面的非周期性扰动时,飞轮终究要达到其最大允许转速。二是由于转速部件的存在,特别是轴承寿命和可靠性受到限制。 1.3 飞轮姿态控制原理 从动力学角度看,卫星姿态运动时卫星角动量作用的结果,飞轮则是通过与卫星间的角动量的交换来实现姿态控制,要使卫星在轨道上保持三轴稳定并对地定向。卫星的角动量H应该不变,且方向与轨

航天器的姿态与轨道最优控制

航天器的姿态与轨道最优控制 董丽娜唐晓华吴朝俊司渭滨(第八小组) (西安交通大学电气工程学院,陕西省,西安市 710049) 【摘要】从航天器的轨道运动学方程出发, 运用线性离散系统最优控制理论, 提出了一种用于航天器轨道维持与轨道机动的最优控制方法, 建立了相关的最优控制模型并给出了求解该模型的算法。仿真计算结果表明, 本文提出的最优控制方法是正确和可行的。 【关键词】航天器轨道保持轨道机动最佳控制 Optimal Control of Spacecraft State and Orbit Dong LiNa,Tang XiaoHua,Wu ChaoJun,Si WeiBin (EE School of Xi’an Jiaotong university,Xi’an, Shannxi province, 710049)【Abstract】This paper provides a new optimal control method for orbital maintenance and maneuver ,which begins with the kinetics equation of spacecraft and is based on the linear discrete optimal control theory , establishes the relative optimal control model and gives its solution. The simulation results show that the given optimal control method in this paper is correct and feasible. 【Key word】Spacecraft ,Orbital keeping ,Orbital maneuver ,Optimal control 1 引言 一般地,常见的航天器有:运载火箭、人造卫星、载人飞船、宇宙飞船、空间站等。宇宙飞船也称太空飞船,它和航天飞机都是往返于地球和在轨道上运行的航天器(如空间站) 。

姿态控制与轨道控制系统

姿态控制与轨道控制系统 姿态控制 概述 姿态是指卫星相对于空间某参考系的方位或指向,卫星姿态控制是获取并保持卫星在太空定向(即卫星相对于某个参考坐标系的姿态)的技术,包括姿态稳定和姿态控制两个方面。前者要求将卫星上安装的有效载荷对空间的特定目标定向、跟踪或扫描,这种克服内外干扰力矩使卫星姿态保持对某参考方位定向;后者是把卫星从一种姿态转变为另一种姿态的再定向过程。其硬件系统包括敏感器、控制器和执行机构三个部分 卫星姿态控制可以分为被动和主动控制两大类,以及介于两者之间的半被动和半主动控制 被动控制利用卫星本事动力学特性(如角动量、惯性矩),或卫星与环境相互作用产生的外力矩作为控制力矩源。 主动控制利用星上能源(电能或推进剂工质),依靠直接或间接敏感到的姿态信息,按一定的控制律操纵控制力矩器实现姿态控制。任务分析 本卫星旨在对于钓鱼岛及其附近海域的侦查探测,并将信息汇总传送回地面接收站,三颗卫星先要共同工作,后期又分开观测,对于整体的姿态控制和分开后各个个体的控制都有很高的要求。考虑到卫

星形状与对地观测要求,对其采用对地定向三轴稳定的设计方案,以质心轨道坐标系作为其参考坐标系。为保证空间方位和姿态确定的精度要求,使用多传感器的设计,并通过飞轮三轴姿态控制辅助以喷气推力姿态稳定的手段加速姿态修正速度。 姿态控制原理 姿态控制:指对航天器绕质心施加力矩,以保持或按需要改变其在空间的定向的技术。包括姿态稳定和姿态机动。 姿态稳定:指使姿态保持在指定方向。 姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。 航天器姿态控制类型包括: 主动控制:星上有主动控制力矩产生机构。主动姿态控制首先需要获得航天器当前的姿态。 被动控制:利用环境力矩产生控制力矩。 姿态获得包括两个过程: 姿态测量:利用姿态敏感器获取含有姿态信息的物理量。 姿态确定:对姿态测量得到的物理量进行数据处理,获得姿态数据。 姿态控制系统包括姿态敏感器和执行机构。 姿态敏感器:测量星体相对于某一基准方位的姿态信息。 姿态敏感器分类(按照基准方位分类): (1)以地球为基准方位:红外地平仪、地球反照敏感器

SimuLink卫星姿态控制_运动学模块的建立

四元数姿态运动学方程:(见《基于星敏感器角速度估计的陀螺故障诊断》) ()b b b b b b o o o ob o ib o io 11C 22 ? =?=?-Q Q w Q w w 其中b o Q 表示星体坐标系b 相对于轨道坐标系o 的姿态四元数在体坐标系b 中的投影(在星 体坐标系中轨道坐标系o 转到与星体坐标系b 重合(与后面的姿态坐标转换矩阵对应)所 需的姿态四元数);?表示四元数乘法;b ob w 表示星体坐标系b 相对于轨道坐标系o 的角速度在b 坐标系中的投影;b ib w 表示体坐标系b 相对于惯性坐标系i 的角速度在b 坐标系中的投影,由动力学模块给出;b o C 表示o 系到b 系的坐标转换矩阵,由四元数Q 计算得到;o io w 表示轨道坐标系o 相对于惯性坐标系i 的角速度在o 坐标系中的投影,该角速度在轨道坐标系中表示简单,该值在m 文件中给出。 利用运动学方程画运动学模块图如下: 建立四元数转姿态矩阵模块: 用mask 修改模块封面。

依照下面的转换公式,使用Fcn 模块和Create3*3 Matrix 模块建立四元数转换模块如下: 2222103212031302b T 22222 o 01203203123012222130223013012q q q q 2(q q q q )2(q q q q )C (q )2(q q q q ) q q q q 2(q q q q )2(q q q q )2(q q q q ) q q q q ?? +--+-?? =+-=-+--+?? ??+-+--? ? qq E q 建立四元数求解模块: 使用Subsystem 模块建立Quaternion Solve Model ,并create mask 如下:

卫星姿态

卫星姿态 卫星姿态是指卫星星体在轨道上运行所处的空间指向状态。直角坐标系的原点置于星体上,指向地面的Z轴反映偏航方向,Y轴反映俯仰方向,X轴反映滚动方向,通常采用三轴稳定、自旋稳定、重力梯度稳定等方式保持姿态的稳定。根据对卫星的不同工作要求,卫星姿态的控制方法也是不同的。按是否采用专门的控制力矩装置和姿态测量装置,可把卫星的姿态控制分为被动姿态控制和主动姿态控制两类。被动姿态控制是利用卫星本身的动力特性和环境力矩来实现姿态稳定的方法,有自旋稳定、重力梯度稳定等;主动姿态控制主要是三轴稳定姿态控制方式。 定义:卫星星体所处的空间位置状态 稳定方式:自旋/重力梯度/三轴稳定 分类:被动姿态控制,主动姿态控制 定义 卫星姿态是指卫星星体在轨道上运行所处的空间指向状态。将直角坐标系的原点置于星体上,指向地面的Z轴反映偏航方向,Y轴反映俯仰方向,X轴反映滚动方向。星体在高空中沿局部地球铅垂方向和轨道矢量方向运行,不时地产生对三轴的偏移。姿态控制是通过姿态控制分系统(ACS)来实现,使用地平扫描仪可感应俯仰和滚动轴的姿态误差,使用速度陀螺仪和罗盘可感应偏航轴的姿态误差。 姿态控制方式 姿态的稳定通常采用以下几种方式:①三轴稳定。依靠姿态控制分系统使卫星偏航轴方向始终保持与当地铅垂线方向一致,以保对地观测传感始终对准地面;②自旋稳定。卫星自转轴对空间某点取向固定,使其姿态保持稳定;③重力梯度稳定。在地球重力场作用下,转动物体的转轴逐渐达到平衡状态,与重力梯度方向一致,即同当地垂直线方向一致,以保持卫星姿态的稳定。 根据对卫星的不同工作要求,卫星姿态的控制方法也是不同的。按是否采用专门的控制力矩装置和姿态测量装置,可把卫星的姿态控制分为被动姿态控制和主动姿态控制两类。 被动姿态控制: 被动姿态控制是利用自然环境力矩或物理力矩源,如自旋、重力梯度、地磁场或气动力矩等以及他们之间的组合来控制航天器的姿态。这种系统不需要电源,因而也不需要姿态敏感器和控制逻辑线路。主要类型有自旋稳定和环境力矩稳定等。适用于中等指向精度的飞行任务。一般试验性小卫星采用这种控制方式。 [2] 1、自旋稳定方式 有的卫星要求其一个轴始终指向空间固定方向,通过卫星本体围绕这个轴转动来保持稳定,这种姿态稳定方式就叫自旋稳定。它的原理是利用卫星绕自旋轴

卫星姿轨控系统设计与分析平台软件方案及实现

74 空间电子技术 SPACE ELECTRONIC TECHNOLOGY2016年第2期卫星姿轨控系统设计与分析平台软件 方案及实现① 刘其睿1 ’2,王新民1 ’2,刘洁 1 ’2,张俊玲1 ’2 (1.北京控制工程研究所,北京100190;.空间智能控制技术重点实验室,北京100190) 摘要:随着卫星控制系统工程技术的不断发展,对设计与分析工作的数字化平台化需求日益迫切。文章提出 一种基于Matlab/Simulink开发工具的卫星姿轨控系统设计与分析平台软件方案,采用由软件运行界面框架和软件 功能模块相结合的软件总体架构,实现卫星姿轨控系统总体方案设计与仿真验证一体化的设计环境。软件实现结 果表明该方案的有效性和可行性,有助于卫星姿轨控系统的快速设计与分析。 关键词:姿轨控系统;设计与分析平台;应用软件 D O I:10. 3969/j.issn. 1674-7135.2016.02.014 Scheme and Implementation of Satellite AOCS Design and Analysis Platform Application Software LIU Qi-rui1'2,W A N G Xin-min12 ,LIU Jie12 ,Z H A N G Jun-ling12 (1. Beijing Institute of Control Engineering,Beijing 100190,China; 2. Key Laboratory 〇f Aerospace Intelligent Control Technology,Beijing 100190,China) Abstract:The development of s atellite control engineering makes urgent demands of digital platform for design and a-nalysis of A0CS( Attitude and Orbit Control System). In this paper a scheme based on Matlab/Sim Satellite AOCS Design and Analysis Platform Application Software. The software architecture,which is helpful to integrative design environment f or scheme design and simulation verification of satellite AOCS subsystem is composed of user interfacc frame and functional m odule. The result of software implementation verifies the validity and availability of software scheme,which benefits rapid satellite AOCS design and analysis. Key words:AOCS;Design and analysis platform;Application software 〇引言 在卫星控制系统开发过程中,设计人员经过多 年实践积累了丰富的知识和经验[1’2]。但由于各专 业的设计人员通常采用自己熟悉的开发工具进行开 发,没有形成统一的接口形式和约定,使得这些经验 难以继承。因此迫切需要建立一个数字化设计平 台,使相关专业的设计人员能够拓展自己的研究领 域,在更高层次上提高设计效率[3]。卫星姿轨控系 统设计与分析平台能够集总体方案设计与仿真验证为一体,获得较好的可读性、继承性和可扩充性,保 证卫星姿轨控系统开发过程的快速性,降低系统开 发的成本。 1软件设计方案 卫星姿轨控系统设计与分析平台软件具有如下功 能:对卫星进行姿轨控方案设计和仿真验证;对姿轨 控分系统的主要技术指标进行仿真验证和评估。 11开发工具选择 ①收稿日期:2015-12-17;修回日期:2016-02-10。 作者简介:刘其睿(1981—),硕士,工程师。主要研究方向为航天器制导、导航与控制

低轨卫星组网设计

1概述 卫星星座是指由多颗卫星按照一定规则和形状构成的可提供一定覆盖性能的卫星网络,是多颗卫星进行协同工作的基本形式。卫星星座结构会影响网络覆盖区域、网络时延和系统成本等。传统的同步轨道卫星轨道高、链路损耗大,对地面终端的EIRP和接收天线的G/T值要求过高,难以实现手持机与卫星直接进行通信;而低轨卫星由于链路损耗小,降低了对用户终端EIRP和G/T值的要求,可支持地面小型终端与卫星的直接通信,有利于信息的实时传输。现代通信的发展要求卫星通信系统应具有全球通信能力。低轨卫星实现全球覆盖所需的卫星数目较多(Iridium系统66颗星),系统实现成本很高,对于我国这样的发展中国家要在短期内构建全球性低轨卫星通信系统,无论是在经济上还是在技术上都存在较大困难。因此,在预期星座的整体构型下,通过设计和筛选,合理部署少数卫星以满足当前任务和需求,并在今后发展中通过不断发射新卫星进行补网,最终实现星座的预期覆盖和通信能力,是我国卫星通信发展的一条可行之路。 2星座参数设计 2.1轨道设计 椭圆轨道多用于区域性覆盖,但轨道倾斜角必须为63.4°(为了避免拱点漂移),这对中低纬度地区的覆盖十分不利,而圆轨道的倾斜角可在0°~90°。之间任意选择。考虑我国所处纬度范围为北纬4°~54°之间,星座设计宜应采用倾斜圆轨道。轨道高度选择主要是系统所需卫星数目与地面终端EIRP和G/T 值的折衷。同时,轨道高度的选择还需考虑地球大气层和范·阿伦带两个因素的

影响,通常认为LEO 卫星的可用轨道高度为700~2 000 km 。 2.2卫星周期设计 为了便于卫星轨道控制,通常选择使用回归轨道,即卫星运行周期与地球自转周期成整数比。卫 星运行周期与地球自转周期关系如下式所示: n k Ts =Te (1) 式中,k 、n 为整数,Ts 为卫星运行周期,Te 为地球自转周期,且Te=86 164 s 。根据开普勒定理,可得卫星周期Ts(单位s)与轨道高度h 关系如下: ()μπ3 Re 2h T s += (2) 式中,地球半径Re=6 378.137 km ,开普勒常数 23s m 98.398601K =μ。取k=2,n=25,可得卫星周期 Ts=6893 s ,轨道高度h=1450 km 。 2.3星座相位关系设计 星座相位关系的确定是指确定卫星在星群中的位置,它包括轨道倾角、轨道平面的布置、同一平面 内卫星的位置和相邻轨道卫星的相对位置关系。通常,为了使卫星具有最大的均匀覆盖特性,同一轨道 平面内的卫星应均匀分布,即相邻卫星的相位差应 满足360/m ,m 为该轨道平面内的卫星数量。对于不同轨道平面内卫星,相对相位角的不同会使星座 的覆盖特性相差甚远。 根据立体几何的关系,推导出两个星下点(卫星与 地心连线和地面的交点)之间的距离d 的公式如下: ()()[]2cos sin 2sin 2sin cos sin 2arccos 212212122θθθθθ?+---=e R d

卫星轨道种类

简单的说:所有的地球卫星都是靠万有引力(或者可以叫做重力)充当向心力,所以,万有引力指向地心,而向心力的“心”也是地心,一句话:所有的地球卫星都是围绕地心做圆周运动的(无论是极地卫星、同步卫星还是一般卫星)。 下面有一篇文章对卫星有比较详细的论述,你看看。 人造地球卫星原理2008-06-10 下午08:24“人造卫星”就是我们人类“人工制造的卫星”。科学家用火箭把它发射到预定的轨道,使它环绕着地球或其他行星运转,以便进行探测或科学研究。围绕哪一颗行星运转的人造卫星,我们就叫它哪一颗行星的人造卫星,比如最常用于观测、通讯等方面的人造地球卫星。 地球对周围的物体有引力的作用,因而抛出的物体要落回地面。但是,抛出的初速度越大,物体就会飞得越远。牛顿在思考万有引力定律时就曾设想过,从高山上用不同的水平速度抛出物体,速度一次比一次大,落地点也就一次比一次离山脚远。如果没有空气阻力,当速度足够大时,物体就永远不会落到地面上来,它将围绕地球旋转,成为一颗绕地球运动的人造地球卫星,简称人造卫星。 人造卫星是发射数量最多,用途最广,发展最快的航天器。1957年10月4日苏联发射了世界上第一颗人造卫星。之后,美国、法国、日本也相继发射了人造卫星。中国于1970年4月24日发射了东方红1号人造卫星,截止1992年底中国共成功发射33颗不同类型的人造卫星。 人造卫星一般由专用系统和保障系统组成。专用系统是指与卫星所执行的任务直接有关的系统,也称为有效载荷。应用卫星的专用系统按卫星的各种用途包括:通信转发器,遥感器,导航设备等。科学卫星的专用系统则是各种空间物理探测、天文探测等仪器。技术试验卫星的专用系统则是各种新原理、新技术、新方案、新仪器设备和新材料的试验设备。保障系统是指保障卫星和专用系统在空间正常工作的系统,也称为服务系统。主要有结构系统、电源系统、热控制系统、姿态控制和轨道控制系统、无线电测控系统等。对于返回卫星,则还有返回着陆系统。 人造卫星的运动轨道取决于卫星的任务要求,区分为低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道,大椭圆轨道和极轨道。人造卫星绕地球飞行的速度快,低轨道和中高轨道卫星一天可绕地球飞行几圈到十几圈,不受领土、领空和地理条件限制,视野广阔。能迅速与地面进行信息交换、包括地面信息的转发,也可获取地球的大量遥感信息,一张地球资源卫星图片所遥感的面积可达几万平方千米。

航天器的控制系统

航天器的控制系统 航天学院 151220205 李欢 一、关于控制的基础知识 系统是能够在一起协同工作并产生输出的所有部分的集合。系统具有输入(进入系统的东西)、输出(从系统中发出的东西)和把输入变成输出的处理过程。对于航天器的任务而言,任务的成败取决于各种子系统的输出,因而我们最关心控制系统。最简单的控制系统是一种开环式的,输入生成输出,但不能动态调整输入来控制输出。而闭环控制系统,也叫反馈控制系统,能很好地保证得到想要的输出。因为它能感知输出(得到的),将它与想要的输出(想得到的)进行比较,并根据需要调整输入。 所有控制系统必须实现的四个基本任务: 1.理解系统的行为——装置是如何对包括环境输入在内的输入产生反应来生成输出的,这也被称为装置模型; 2、观察系统的当前状态——利用传感器; 3、决定做什么——控制器的作用; 4、执行——利用执行器。 姿态确定就是根据姿态测量元件提供的测量信息(含有噪声)求出姿态角和角速度,其精度与测量元件的精度、安装方式和信息处理的方法有关。姿态确定航天器在空间的指向方位,同时,发射航天器需要控制它们的姿态以进入正确的轨道。通常用角度来定义航天器的姿态,用以飞行器为中心的本体坐标系的旋转角度来描述姿态,常以滚动角、俯仰角和偏航角给出。 为了观察系统姿态,并将这些观察结果转换成控制器能处理的信号,航天器都有一个内置姿态传感器系统。它利用两个参照点来确定航天器在三维空间里的姿态。 执行特定飞行使命的航天器需按特定的轨迹运动,为满足这个要求常需对轨道进行控制。这种控制包括利用航天器的推进系统产生的反作用推力的主动控制及利用客观存在的外力(如地球引力、气动力、太阳辐射压力及其他行星的引力等)的被动控制。对航天器的质心施加外力,以改变其运动轨迹的技术,实现航天器轨道控制的装置的组合称为航天器轨道控制系统。 航天器的轨道一般由主动飞行段和自由飞行段组成。主动飞行段是航天器变轨发动机的点火段,变轨发动机熄火后是自由飞行段。航天器在脱离运载火箭后便进入自由飞行段。如果要改变它的轨道,就要插入主动飞行段。

卫星对空间目标悬停的轨道动力学与控制方法研究_林来兴

卫星对空间目标悬停的轨道动力学 与控制方法研究 林来兴 黎康 (北京控制工程研究所,北京100080) 摘要 首先,给出了卫星悬停的轨道动力学模型,然后提出了悬停轨道的一种“持续 式”的开路轨道控制策略,即通过在一段时间对轨道实施连续有限推力控制,使得在这段 时间内卫星运行在新的悬停轨道上,而非开普勒轨道。最后,以地球静止轨道卫星为目标 星,研究了悬停轨道的实施途径,并进行了数学仿真。仿真结果表明,在一段时间内对空 间目标实施轨道悬停是可行的。 关键词 悬停轨道 轨道动力学 轨道控制 卫星 1 引言 当前空间技术的发展正在从空间利用提升为空间操作(或空间控制)。空间操作主要是指拦截撞击、交会对接、在轨监视或维修以及空间攻防技术等。在空间操作方面, 有时需要追踪星在较长的图1 悬停轨道示意图一段时间内保持在目标星同轨道面内沿径向的正 下方,这样追踪星仿佛“悬停”在目标星的下 方[1-2]。以目标星运行在圆轨道为例(见图1),追 踪星与目标星都运行在共面的圆轨道上,要求追 踪星与目标星的轨道相位与轨道角速度均相同, 但追踪星的轨道高度却低于目标星。这种悬停轨 道动力学及控制问题在文献中至今还较少见到。 对于追踪星这样的悬停轨道,按照通常在地 球引力场中的开普勒轨道设计其轨道根数显然是 无法实现的[3-4]。为此,本文首先研究了悬停轨 道的轨道动力学模型,然后给出了悬停轨道的一 种“持续式”的开路轨道控制策略,即通过在一段时间对轨道实施连续有限推力控制,使得在这段时间内卫星运行在新的轨道运行形式,即非开普勒轨道。最后以地球静止轨道卫星为目标星,研究了悬停轨道的实施途径,并进行了仿真验证。 2 轨道动力学模型 为描述卫星空间位置,定义地心轨道坐标系O xy z ,坐标系原点O 在地球球心,x 轴在轨道面内指向升交点,z 轴指向轨道正法向,y 轴与x 轴、z 轴构成右手直角坐标系。在此直角坐标系中,卫星轨道动力学方程为[3-4] 收稿日期:2007-07-20。收修改稿日期:2007-09-27 9 2008年2月第 1 期 中国空间科学技术CHIN ESE SPACE SCIENC E A ND TEC HNOLOG Y

相关文档
最新文档