河北中考数学试题及答案Word版
2020年河北省中考数学真题及答案(word版)

2020年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分。
卷Ⅰ为选择题,卷Ⅱ为非选择题。
本试卷共120分,考试时间120分钟。
卷I(选择题,共42分)一、选择题(本大题有 16 个小题,共 42 分, 1-10 小题各 3 分, 11-16 小题各 2 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 .( 3 分)下列图形为正多边形的是()A .B .C .D .2 .(3 分)规定:(→ 2 )表示向右移动 2 记作 +2 ,则(← 3 )表示向左移动 3 记作()A . +3B .﹣ 3C .﹣D . +3 .( 3 分)如图,从点 C 观测点 D 的仰角是()A .∠ DAB B .∠ DCEC .∠ DCAD .∠ ADC4 .( 3 分)语句“ x 的与 x 的和不超过5 ”可以表示为()A .+ x ≤ 5B .+ x ≥ 5C .≤ 5D .+ x = 55 .( 3 分)如图,菱形 ABCD 中,∠ D = 150 °,则∠ 1 =()A . 30 °B . 25 °C . 20 °D . 15 °6 .( 3 分)小明总结了以下结论:① a ( b + c )= ab + ac ;② a ( b ﹣ c )= ab ﹣ ac ;③ ( b ﹣ c )÷ a = b ÷ a ﹣ c ÷ a (a ≠ 0 );④ a ÷( b + c )= a ÷ b + a ÷ c (a ≠ 0 )其中一定成立的个数是()A . 1B . 2C . 3D . 47 .( 3 分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A .◎代表∠ FECB . @ 代表同位角C .▲代表∠ EFCD .※代表 AB8 .( 3 分)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A . 5 × 10 ﹣ 4B . 5 × 10 ﹣ 5C . 2 × 10 ﹣ 4D . 2 × 10 ﹣ 59 .( 3 分)如图,在小正三角形组成的网格中,已有 6 个小正三角形涂黑,还需涂黑 n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则 n 的最小值为()A . 10B . 6C . 3D . 210 .( 3 分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A .B .C .D .11 .( 2 分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:① 从扇形图中分析出最受学生欢迎的种类② 去图书馆收集学生借阅图书的记录③ 绘制扇形图来表示各个种类所占的百分比④ 整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A .② → ③ → ① → ④B .③ → ④ → ① → ②C .① → ② 一④ → ③D .② →④ → ③ → ①12 .( 2 分)如图,函数 y =的图象所在坐标系的原点是()A .点 MB .点 NC .点 PD .点 Q13 .( 2 分)如图,若 x 为正整数,则表示﹣的值的点落在()A .段①B .段②C .段③D .段④14 .( 2 分)图 2 是图 1 中长方体的三视图,若用 S 表示面积, S 主= x 2 +2 x , S 左= x 2 + x ,则 S 俯=()A . x 2 +3 x +2B . x 2 +2C . x 2 +2 x +1D . 2 x 2 +3 x15 .( 2 分)小刚在解关于 x 的方程 ax 2 + bx + c = 0 (a ≠ 0 )时,只抄对了 a = 1 ,b = 4 ,解出其中一个根是 x =﹣ 1 .他核对时发现所抄的c 比原方程的 c 值小 2 .则原方程的根的情况是()A .不存在实数根B .有两个不相等的实数根C .有一个根是 x =﹣ 1D .有两个相等的实数根16 .( 2 分)对于题目:“如图 1 ,平面上,正方形内有一长为 12 、宽为 6 的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数 n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数 n .甲:如图 2 ,思路是当 x 为矩形对角线长时就可移转过去;结果取 n = 13 .乙:如图 3 ,思路是当 x 为矩形外接圆直径长时就可移转过去;结果取 n = 14 .丙:如图 4 ,思路是当 x 为矩形的长与宽之和的倍时就可移转过去;结果取 n = 13 .下列正确的是()A .甲的思路错,他的 n 值对B .乙的思路和他的 n 值都对C .甲和丙的 n 值都对D .甲、乙的思路都错,而丙的思路对卷二(非选择题,共78分)二、填空题(本大题有 3 个小题,共 11 分, 17 小题 3 分: 18 ~ 19 小题各有 2 个空,每空 2 分,把答案写在题中横线上)17 .( 3 分)若 7 ﹣ 2 × 7 ﹣ 1 × 7 0 = 7 p ,则 p 的值为.18 .( 4 分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即 4+3 = 7则( 1 )用含 x 的式子表示 m =;( 2 )当 y =﹣ 2 时, n 的值为.19 .( 4 分)勘测队按实际需要构建了平面直角坐标系,并标示了 A , B , C 三地的坐标,数据如图(单位: km ).笔直铁路经过 A , B 两地.( 1 ) A , B 间的距离为 km ;( 2 )计划修一条从 C 到铁路 AB 的最短公路 l ,并在 l 上建一个维修站 D ,使 D 到 A , C 的距离相等,则 C , D 间的距离为 km .三、解答题(本大题有 7 个小题,共 67 分 . 解答应写出文字说明、证明过程或演算步骤)20 .( 8 分)有个填写运算符号的游戏:在“ 1 □ 2 □ 6 □ 9 ”中的每个□内,填入 + ,﹣,×,÷中的某一个(可重复使用),然后计算结果.( 1 )计算: 1+2 ﹣ 6 ﹣ 9 ;( 2 )若 1 ÷ 2 × 6 □ 9 =﹣ 6 ,请推算□内的符号;( 3 )在“ 1 □ 2 □ 6 ﹣9 ”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21 .( 9 分)已知:整式 A =( n 2 ﹣ 1 ) 2 + ( 2 n ) 2 ,整式 B > 0 .尝试化简整式 A .发现 A = B 2 ,求整式 B .联想由上可知, B 2 =( n 2 ﹣ 1 ) 2 + ( 2 n ) 2 ,当 n > 1 时, n 2 ﹣ 1 , 2 n , B为直角三角形的三边长,如图.填写下表中 B 的值:直角三角形三边n 2 ﹣ 1 2 n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22 .( 9 分)某球室有三种品牌的 4 个乒乓球,价格是 7 , 8 , 9 (单位:元)三种.从中随机拿出一个球,已知 P (一次拿到 8 元球)=.( 1 )求这 4 个球价格的众数;( 2 )若甲组已拿走一个 7 元球训练,乙组准备从剩余 3 个球中随机拿一个训练.① 所剩的 3 个球价格的中位数与原来 4 个球价格的中位数是否相同?并简要说明理由;② 乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到 8 元球的概率.又拿先拿23 .( 9 分)如图,△ ABC 和△ ADE 中, AB = AD = 6 , BC = DE ,∠ B =∠ D = 30 °,边 AD 与边 BC 交于点 P (不与点 B , C 重合),点 B , E 在 AD 异侧, I 为△ APC 的内心.( 1 )求证:∠ BAD =∠ CAE ;( 2 )设 AP = x ,请用含 x 的式子表示 PD ,并求 PD 的最大值;( 3 )当 AB ⊥ AC 时,∠ AIC 的取值范围为 m °<∠ AIC < n °,分别直接写出 m , n 的值.24 .( 10 分)长为 300 m 的春游队伍,以 v ( m / s )的速度向东行进,如图 1 和图 2 ,当队伍排尾行进到位置 O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为 2 v ( m / s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置 O 开始行进的时间为 t ( s ),排头与 O 的距离为 S 头( m ).( 1 )当 v = 2 时,解答:① 求 S 头与 t 的函数关系式(不写 t 的取值范围);② 当甲赶到排头位置时,求 S 的值;在甲从排头返回到排尾过程中,设甲与位置 O 的距离为 S 甲( m ),求 S 甲与 t 的函数关系式(不写 t 的取值范围)( 2 )设甲这次往返队伍的总时间为 T ( s ),求 T 与 v 的函数关系式(不写 v 的取值范围),并写出队伍在此过程中行进的路程.25 .( 10 分)如图 1 和 2 ,▱ ABCD 中, AB = 3 , BC = 15 ,tan ∠ DAB =.点 P 为 AB 延长线上一点,过点 A 作⊙ O 切 CP 于点 P ,设 BP = x .( 1 )如图 1 , x 为何值时,圆心 O 落在 AP 上?若此时⊙ O 交 AD 于点 E ,直接指出 PE 与 BC 的位置关系;( 2 )当 x = 4 时,如图 2 ,⊙ O 与 AC 交于点 Q ,求∠ CAP 的度数,并通过计算比较弦AP 与劣弧长度的大小;( 3 )当⊙ O 与线段 AD 只有一个公共点时,直接写出 x 的取值范围.26 .( 12 分)如图,若 b 是正数,直线 l : y = b 与 y 轴交于点 A ;直线 a : y = x ﹣ b 与 y 轴交于点 B ;抛物线 L : y =﹣ x 2 + bx 的顶点为 C ,且 L 与 x 轴右交点为 D .( 1 )若 AB = 8 ,求 b 的值,并求此时 L 的对称轴与 a 的交点坐标;( 2 )当点 C 在 l 下方时,求点 C 与 l 距离的最大值;( 3 )设x 0 ≠ 0 ,点( x 0 , y 1 ),( x 0 , y 2 ),( x 0 , y 3 )分别在 l , a 和 L 上,且 y 3 是 y 1 , y 2 的平均数,求点( x 0 , 0 )与点 D 间的距离;( 4 )在 L 和 a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出 b = 2019 和 b = 2019.5 时“美点”的个数.2019 年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有 16 个小题,共 42 分, 1-10 小题各 3 分, 11-16 小题各 2 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 .【解答】解:正五边形五个角相等,五条边都相等,故选: D .2 .【解答】解:“正”和“负”相对,所以,如果(→ 2 )表示向右移动 2 记作 +2 ,则(←3 )表示向左移动 3 记作﹣ 3 .故选: B .3 .【解答】解:∵从点 C 观测点 D 的视线是 CD ,水平线是 CE ,∴从点 C 观测点 D 的仰角是∠ DCE ,故选: B .4 .【解答】解:“ x 的与 x 的和不超过5 ”用不等式表示为x + x ≤ 5 .故选: A .5 .【解答】解:∵四边形 ABCD 是菱形,∠ D = 150 °,∴ AB ∥ CD ,∠ BAD =2 ∠ 1 ,∴∠ BAD + ∠ D = 180 °,∴∠ BAD = 180 °﹣ 150 °= 30 °,∴∠ 1 = 15 °;故选: D .6 .【解答】解:① a ( b + c )= ab + ac ,正确;② a ( b ﹣ c )= ab ﹣ ac ,正确;③ ( b ﹣ c )÷ a = b ÷ a ﹣ c ÷ a (a ≠ 0 ),正确;④ a ÷( b + c )= a ÷ b + a ÷ c (a ≠ 0 ),错误,无法分解计算.故选: C .7 .【解答】证明:延长 BE 交 CD 于点 F ,则∠ BEC =∠ EFC + ∠ C (三角形的外角等于与它不相邻两个内角之和).又∠ BEC =∠ B + ∠ C ,得∠ B =∠ EFC .故AB ∥ CD (内错角相等,两直线平行).故选: C .8 .【解答】解:= 0.00002 = 2 × 10 ﹣ 5 .故选: D .9 .【解答】解:如图所示, n 的最小值为 3 ,故选: C .10 .【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到 C 选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选: C .11 .【解答】解:由题意可得,正确统计步骤的顺序是:② 去图书馆收集学生借阅图书的记录→ ④ 整理借阅图书记录并绘制频数分布表→ ③ 绘制扇形图来表示各个种类所占的百分比→ ① 从扇形图中分析出最受学生欢迎的种类,故选: D .12 .【解答】解:由已知可知函数 y =关于 y 轴对称,所以点 M 是原点;故选: A .13 .【解答】解∵ ﹣=﹣= 1 ﹣=又∵ x 为正整数,∴ ≤ x < 1故表示﹣的值的点落在②故选: B .14 .【解答】解:∵ S 主= x 2 +2 x = x ( x +2 ), S 左= x 2 + x = x ( x +1 ),∴俯视图的长为 x +2 ,宽为 x +1 ,则俯视图的面积 S 俯=( x +2 )( x +1 )= x 2 +3 x +2 ,故选: A .15 .【解答】解:∵小刚在解关于 x 的方程 ax 2 + bx + c = 0 (a ≠ 0 )时,只抄对了 a = 1 , b = 4 ,解出其中一个根是 x =﹣ 1 ,∴(﹣ 1 ) 2 ﹣ 4+ c = 0 ,解得: c = 3 ,故原方程中 c = 5 ,则 b 2 ﹣ 4 ac = 16 ﹣ 4 × 1 × 5 =﹣ 4 < 0 ,则原方程的根的情况是不存在实数根.故选: A .16 .【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为 n = 14 ;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选: B .二、填空题(本大题有 3 个小题,共 11 分, 17 小题 3 分: 18 ~ 19 小题各有 2个空,每空 2 分,把答案写在题中横线上)17 .【解答】解:∵ 7 ﹣ 2 × 7 ﹣ 1 × 7 0 = 7 p ,∴﹣ 2 ﹣ 1+0 = p ,解得: p =﹣ 3 .故答案为:﹣ 3 .18 .【解答】解:( 1 )根据约定的方法可得:m = x +2 x = 3 x ;故答案为: 3 x ;( 2 )根据约定的方法即可求出 nx +2 x +2 x +3 = m + n = y .当 y =﹣ 2 时, 5 x +3 =﹣ 2 .解得 x =﹣ 1 .∴ n = 2 x +3 =﹣ 2+3 = 1 .故答案为: 1 .19 .【解答】解:( 1 )由 A 、 B 两点的纵坐标相同可知:AB ∥ x 轴,∴ AB = 12 ﹣(﹣ 8 ) 20 ;( 2 )过点 C 作 l ⊥ AB 于点 E ,连接 AC ,作 AC 的垂直平分线交直线 l 于点 D ,由( 1 )可知: CE = 1 ﹣(﹣ 17 )= 18 ,AE = 12 ,设 CD = x ,∴ AD = CD = x ,由勾股定理可知: x 2 =( 18 ﹣ x ) 2 +12 2 ,∴解得: x = 13 ,∴ CD = 13 ,故答案为:( 1 ) 20 ;( 2 ) 13 ;三、解答题(本大题有 7 个小题,共 67 分 . 解答应写出文字说明、证明过程或演算步骤)20 .【解答】解:( 1 ) 1+2 ﹣ 6 ﹣ 9= 3 ﹣ 6 ﹣ 9=﹣ 3 ﹣ 9=﹣ 12 ;( 2 )∵ 1 ÷ 2 × 6 □ 9 =﹣ 6 ,∴ 1 × × 6 □ 9 =﹣ 6 ,∴ 3 □ 9 =﹣ 6 ,∴□内的符号是“﹣”;( 3 )这个最小数是﹣ 20 ,理由:∵在“ 1 □ 2 □ 6 ﹣9 ”的□内填入符号后,使计算所得数最小,∴ 1 □ 2 □ 6 的结果是负数即可,∴ 1 □ 2 □ 6 的最小值是 1 ﹣ 2 × 6 =﹣ 11 ,∴ 1 □ 2 □ 6 ﹣ 9 的最小值是﹣ 11 ﹣ 9 =﹣ 20 ,∴这个最小数是﹣ 20 .21 .【解答】解: A =( n 2 ﹣ 1 ) 2 + ( 2 n ) 2 = n 4 ﹣ 2 n 2 +1+4 n 2 = n 4 +2 n 2 +1 =( n 2 +1 ) 2 ,∵ A = B 2 , B > 0 ,∴ B = n 2 +1 ,当 2 n = 8 时, n = 4 ,∴ n 2 +1 = 4 2 +1 = 15 ;当 n 2 ﹣ 1 = 35 时, n 2 +1 = 37 .故答案为: 15 ; 3722 .【解答】解:( 1 )∵ P (一次拿到 8 元球)=,∴ 8 元球的个数为 4 × = 2 (个),按照从小到大的顺序排列为 7 , 8 , 8 , 9 ,∴这 4 个球价格的众数为 8 元;( 2 )① 所剩的 3 个球价格的中位数与原来 4 个球价格的中位数相同;理由如下:原来 4 个球的价格按照从小到大的顺序排列为 7 , 8 , 8 , 9 ,∴原来 4 个球价格的中位数为= 8 (元),所剩的 3 个球价格为 8 , 8 , 9 ,∴所剩的 3 个球价格的中位数为 8 元,∴所剩的 3 个球价格的中位数与原来 4 个球价格的中位数相同;② 列表如图所示:共有 9 个等可能的结果,乙组两次都拿到 8 元球的结果有 4 个,∴乙组两次都拿到 8 元球的概率为.23 .【解答】解:( 1 )在△ ABC 和△ ADE 中,(如图 1 )∴△ ABC ≌△ ADE ( SAS )∴∠ BAC =∠ DAE即∠ BAD + ∠ DAC =∠ DAC + ∠ CAE∴∠ BAD =∠ CAE .( 2 )∵ AD = 6 , AP = x ,∴ PD = 6 ﹣ x当 AD ⊥ BC 时, AP =AB = 3 最小,即 PD = 6 ﹣ 3 = 3 为 PD 的最大值.( 3 )如图 2 ,设∠ BAP =α ,则∠ APC =α +30 °,∵ AB ⊥ AC∴∠ BAC = 90 °,∠ PCA = 60 °,∠ PAC = 90 °﹣α ,∵ I 为△ APC 的内心∴ AI 、 CI 分别平分∠ PAC ,∠ PCA ,∴∠ IAC =∠ PAC ,∠ ICA =∠ PCA∴∠ AIC = 180 °﹣(∠ IAC + ∠ ICA )= 180 °﹣(∠ PAC + ∠ PCA )= 180 °﹣( 90 °﹣α +60 °)=α +105 °∵ 0 <α < 90 °,∴ 105 °<α +105 °< 150 °,即 105 °<∠ AIC < 150 °,∴ m = 105 , n = 150 .24 .【解答】解:( 1 )① 排尾从位置 O 开始行进的时间为 t ( s ),则排头也离开原排头 t ( s ),∴ S 头= 2 t +300② 甲从排尾赶到排头的时间为 300 ÷( 2 v ﹣ v )= 300 ÷ v = 300 ÷ 2 = 150 s ,此时 S 头= 2 t +300 = 600 m甲返回时间为:( t ﹣ 150 ) s∴ S 甲= S 头﹣ S 甲回= 2 × 150+300 ﹣ 4 ( t ﹣ 150 )=﹣ 4 t +1200 ;因此, S 头与 t 的函数关系式为 S 头= 2 t +300 ,当甲赶到排头位置时,求 S 的值为 600 m ,在甲从排头返回到排尾过程中, S 甲与 t 的函数关系式为 S 甲=﹣4 t +1200 .( 2 ) T = t 追及 + t 返回=+ =,在甲这次往返队伍的过程中队伍行进的路程为: v ×( T ﹣ 150 )= v ×(﹣﹣ 150 )= 400 ﹣ 150 v ;因此 T 与 v 的函数关系式为: T =,此时队伍在此过程中行进的路程为( 400 ﹣ 150 v ) m .25 .【解答】解:( 1 )如图 1 , AP 经过圆心 O ,∵ CP 与⊙ O 相切于 P ,∴∠ APC = 90 °,∵ ▱ ABCD ,∴ AD ∥ BC ,∴∠ PBC =∠ DAB∴ =tan ∠ PBC =tan ∠ DAB =,设 CP = 4 k , BP = 3 k ,由 CP 2 + BP 2 =BC 2 ,得( 4 k ) 2 + ( 3 k ) 2 = 15 2 ,解得 k 1 =﹣ 3 (舍去), k 2 = 3 ,∴ x = BP = 3 × 3 = 9 ,故当 x = 9 时,圆心 O 落在 AP 上;∵ AP 是⊙ O 的直径,∴∠ AEP = 90 °,∴ PE ⊥ AD ,∵ ▱ ABCD ,∴ BC ∥ AD∴ PE ⊥ BC( 2 )如图 2 ,过点 C 作 CG ⊥ AP 于 G ,∵ ▱ ABCD ,∴ BC ∥ AD ,∴∠ CBG =∠ DAB∴ =tan ∠ CBG =tan ∠ DAB =,设 CG = 4 m , BG = 3 m ,由勾股定理得:( 4 m ) 2 + ( 3 m ) 2 = 15 2 ,解得 m = 3 ,∴ CG = 4 × 3 = 12 , BG = 3 × 3 = 9 , PG = BG ﹣ BP = 9 ﹣ 4 = 5 , AP = AB+ BP = 3+4 = 7 ,∴ AG = AB + BG = 3+9 = 12∴ tan ∠ CAP === 1 ,∴∠ CAP = 45 °;连接 OP , OQ ,过点 O 作 OH ⊥ AP 于 H ,则∠ POQ =2 ∠ CAP = 2 × 45 °= 90 °,PH =AP =,在 Rt △ CPG 中,== 13 ,∵ CP 是⊙ O 的切线,∴∠ OPC =∠ OHP = 90 °,∠ OPH + ∠ CPG = 90 °,∠ PCG + ∠ CPG = 90 °∴∠ OPH =∠ PCG∴△ OPH ∽△ PCG∴ ,即 PH × CP = CG × OP ,× 13 = 12 OP ,∴ OP =∴劣弧长度==,∵ <2 π < 7∴弦 AP 的长度>劣弧长度.( 3 )如图 3 ,⊙ O 与线段 AD 只有一个公共点,即圆心 O 位于直线 AB 下方,且∠ OAD ≥ 90 °,当∠ OAD = 90 °,∠ CPM =∠ DAB 时,此时 BP 取得最小值,过点 C 作 CM ⊥ AB 于 M ,∵∠ DAB =∠ CBP ,∴∠ CPM =∠ CBP∴ CB = CP ,∵ CM ⊥ AB∴ BP = 2 BM = 2 × 9 = 18 ,∴ x ≥ 1826 .【解答】解:( 1 )当 x = 0 吋, y = x ﹣ b =﹣ b ,∴ B ( 0 ,﹣ b ),∵ AB = 8 ,而 A ( 0 , b ),∴ b ﹣(﹣ b )= 8 ,∴ b = 4 .∴ L : y =﹣ x 2 +4 x ,∴ L 的对称轴 x = 2 ,当 x = 2 吋, y = x ﹣ 4 =﹣ 2 ,∴ L 的对称轴与 a 的交点为( 2 ,﹣ 2 );( 2 ) y =﹣( x ﹣) 2 + ,∴ L 的顶点 C ()∵点 C 在 l 下方,∴ C 与 l 的距离 b ﹣=﹣( b ﹣ 2 )2 +1 ≤ 1 ,∴点 C 与 1 距离的最大值为 1 ;( 3 )由題意得,即 y 1 + y 2 = 2 y 3 ,得 b + x 0 ﹣ b = 2 (﹣ x 0 2 + bx 0 )解得 x 0 = 0 或 x 0 = b ﹣.但 x 0 #0 ,取 x 0 = b ﹣,对于 L ,当 y = 0 吋, 0 =﹣ x 2 + bx ,即 0 =﹣ x ( x ﹣ b ),解得 x 1 = 0 , x 2 = b ,∵ b > 0 ,∴右交点 D ( b , 0 ).∴点( x 0 , 0 )与点 D 间的距离 b ﹣( b ﹣)=( 4 )① 当 b = 2019 时,抛物线解析式 L : y =﹣ x 2 +2019 x 直线解析式 a : y = x ﹣ 2019联立上述两个解析式可得: x 1 =﹣ 1 , x 2 = 2019 ,∴可知每一个整数 x 的值都对应的一个整数 y 值,且﹣ 1 和 2019 之间(包括﹣ 1和﹣ 2019 )共有 2021 个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有 2021 个整数点∴总计 4042 个点,∵这两段图象交点有 2 个点重复重复,∴美点”的个数: 4042 ﹣ 2 = 4040 (个);② 当 b = 2019.5 时,抛物线解析式 L : y =﹣ x 2 +2019.5 x ,直线解析式 a : y = x ﹣ 2019.5 ,联立上述两个解析式可得: x 1 =﹣ 1 , x 2 = 2019.5 ,∴当 x 取整数时,在一次函数 y = x ﹣ 2019.5 上, y 取不到整数值,因此在该图象上“美点”为 0 ,在二次函数 y = x +2019.5 x 图象上,当 x 为偶数时,函数值 y 可取整数,可知﹣ 1 到 2019.5 之间有 1009 个偶数,并且在﹣ 1 和 2019.5 之间还有整数 0 ,验证后可知 0 也符合条件,因此“美点”共有 1010 个.故 b = 2019 时“美点”的个数为 4040 个, b = 2019.5 时“美点”的个数为 1010 个.。
2020年部编人教版河北省中考数学试题及答案(Word精析版)

2020年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B。
2. 截至2020年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.0.423×107B.4.23×106C.42.3×105D.423×104答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=4.23×106 3.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。
4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D。
x-4=5.若x=1,则||A.3B.-3C.5D.-5答案:A解析:当x=1时,|x-4|=|1-4|=3。
河北中考数学试题及答案doc

河北中考数学试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3/4答案:B2. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角是多少度?A. 60°B. 90°C. 120°D. 150°答案:A3. 将下列哪个数列按从小到大的顺序排列?A. 3, 2, 1B. 1, 2, 3C. 3, 1, 2D. 2, 3, 1答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 圆D. 所有选项答案:D6. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 以下哪个表达式的结果是一个正数?A. -2 + 3B. 2 - 5C. -3 × 2D. 1 ÷ (-1)答案:A8. 一个圆的半径是5厘米,那么这个圆的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B9. 一个数的立方是-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B10. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-4,这个数是________。
答案:412. 如果一个数的绝对值是7,那么这个数可能是________或________。
答案:7或-713. 一个等腰三角形的底角是45°,那么顶角是________度。
答案:9014. 一个数的平方根是2,那么这个数是________。
答案:415. 一个圆的直径是10厘米,那么这个圆的半径是________厘米。
答案:516. 一个数的立方根是-2,那么这个数是________。
2023年河北中考数学真题+答案详解

2023年河北中考数学真题+答案详解(真题部分)一、选择题1. 代数式-7x 的意义可以是( )A. 7−与x 的和B. 7−与x 的差C. 7−与x 的积D. 7−与x 的商 2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的( )A. 南偏西70︒方向B. 南偏东20︒方向C. 北偏西20︒方向D. 北偏东70︒方向3. 化简233y x x ⎛⎫ ⎪⎝⎭的结果是( ) A. 6xy B. 5xy C. 25x y D. 26x y4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D. 5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 56. 若k 为任意整数,则22(23)4k k +−的值总能( )A. 被2整除B. 被3整除C. 被5整除D. 被7整除7. 若27a b ==,2214a b=( ) A. 2 B. 4 C. 7 D. 28. 综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程. (1)作BD 的垂直平分线交BD 于点O ; (2)连接AO ,在AO 的延长线上截取OC AO =; (3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A. 两组对边分别平行B. 两组对边分别相等C. 对角线互相平分D. 一组对边平行且相等 9. 如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b <B. a b =C. a b >D. a ,b 大小无法比较 10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是( )A. 12119.4610109.4610⨯−=⨯B. 12129.46100.46910⨯−=⨯C. 129.4610⨯是一个12位数D. 129.4610⨯是一个13位数11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S =( )A. 43B. 83C. 12D. 1612. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个13. 在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=( )A. 30︒B. n ︒C. n ︒或180n ︒−︒D. 30︒或150︒ 14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.15. 如图,直线12l l ∥,菱形ABCD 和等边EFG 1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=( )A. 42︒B. 43︒C. 44︒D. 45︒16. 已知二次函数22y x m x =−+和22y x m =−(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )A. 2B. 2mC. 4D. 22m二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB有交点,写出一个符合在条件的k 的数值:_________.18. 根据下表中的数据,写出a 的值为_______.b 的值为_______. x结果代数式 2 n31x +7 b 21x x + a 119. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区 脱靶 一次计分(分) 3 1 2−在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =−+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =−+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小.25. 在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定直线上.设这条直线为3l ,在图中直接画出3l 的图象; (3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.26. 如图1和图2,平面上,四边形ABCD 中,8,211,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).的2023年河北中考数学真题+答案详解(答案详解)一、选择题1. 代数式-7x的意义可以是()A. 7−与x的和B. 7−与x的差C. 7−与x的积D. 7−与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.−的意义可以是7−与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A. 南偏西70︒方向B. 南偏东20︒方向C. 北偏西20︒方向D. 北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3. 化简233y x x ⎛⎫ ⎪⎝⎭的结果是( )A. 6xyB. 5xyC. 25x yD. 26x y【答案】A 【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭, 故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D.【答案】B 【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张, ∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃, 故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 5【答案】B 【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解. 【详解】解:在ACD 中,2AD CD ==, ∴2222AC −<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去; 若3AC AB ==时,ABC 为等腰三角形, 故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题. 6. 若k 为任意整数,则22(23)4k k +−的值总能( ) A. 被2整除 B. 被3整除C. 被5整除D. 被7整除【答案】B 【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式. 【详解】解:22(23)4k k +−(232)(232)k k k k =+++− 3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +−的值总能被3整除, 故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b −=−+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7. 若27a b ==,2214a b=( ) A. 2 B. 4 C.7 D.2【答案】A 【解析】 【分析】把27a b ==,【详解】解:∵27a b ==,()()2222142141424277ab ⨯⨯====, 故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8. 综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程. (1)作BD 的垂直平分线交BD 于点O ; (2)连接AO ,在AO 的延长线上截取OC AO =;(3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是( ) A. 两组对边分别平行 B. 两组对边分别相等 C. 对角线互相平分 D. 一组对边平行且相等【答案】C 【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断. 【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =, 可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分, 故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理. 9. 如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b <B. a b =C. a b >D. a ,b 大小无法比较【答案】A 【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +−=−,根据123PP P 的三边关系即可得解. 【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即1223345566778148PP P P P P P P P P P P P P P P ======= ∴12233467PP P P P P P P ===,464556781178P P P P P P P P P P PP =+=+= ∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+, ∴()()34466737131737b a P P P P P P P P PP PP P P ++−++=+−()()12172337131737PP PP P P P P PP PP P P =+++−++122313PP P P PP =−+在123PP P 中有122313PP P P PP >+ ∴1223130b a PP P P PP −=+>− 故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是( )A. 12119.4610109.4610⨯−=⨯B. 12129.46100.46910⨯−=⨯C. 129.4610⨯是一个12位数D. 129.4610⨯是一个13位数【答案】D 【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答. 【详解】解:A. 12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意; B. 12129.46100.46910⨯−≠⨯,故该选项错误,不符合题意; C. 129.4610⨯是一个13位数,故该选项错误,不符合题意; D. 129.4610⨯是一个13位数,正确,符合题意. 故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABCS=( )A. 43B. 83C. 12D. 16【答案】B 【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解. 【详解】解:∵16AMEF S =正方形, ∴164AM ==,∵Rt ABC △中,点M 是斜边BC 的中点, ∴28BC AM ==, ∴22224438AC BC AB =−=−=∴114438322ABCSAB AC =⨯⨯=⨯⨯= 故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个, 故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13. 在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=( )A. 30︒B. n ︒C. n ︒或180n ︒−︒D. 30︒或150︒【答案】C 【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢, ∵306B B AB A B '''∠=∠=︒==,, ∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==, ∴()Rt Rt HL ACD A C D '''≌△△, ∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒−∠=︒−︒; 综上,C '∠的值为n ︒或180n ︒−︒. 故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.【答案】D 【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发, 设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++, ∵两个人机器人速度相同, ∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C , 故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15. 如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=( )A. 42︒B. 43︒C. 44︒D. 45︒【答案】C 【解析】【分析】如图,由平角的定义求得18034ADB ADE ???,由外角定理求得,16AHDADBα???,根据平行性质,得16GIFAHD???,进而求得44EGFGIFβ???.【详解】如图,∵146ADE ∠=︒ ∴18034ADB ADE ????∵ADB AHD α???∴503416AHD ADBα??????∵12l l ∥∴16GIF AHD??∵EGF GIF β?? ∴601644EGFGIFβ?????故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16. 已知二次函数22y x m x =−+和22y x m =−(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( ) A. 2 B. 2m C. 4D. 22m【答案】A 【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可. 【详解】解:令0y =,则220x m x −+=和220x m −=, 解得0x =或2x m =或x m =−或x m =, 不妨设0m >,∵()0m ,和()0m −,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =−的对称轴为0x =,抛物线22y x m x =−+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2, 故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)ky k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k <<均可) 【解析】【分析】先分别求得反比例函数(0)ky k x=≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)ky k x=≠图像过(3,3)A 时,339k =⨯=; 当反比例函数(0)ky k x=≠图像过(3,1)B 时,313k =⨯=; ∴k 的取值范围为39k << ∴k 可以取4.故答案为4(答案不唯一,满足39k <<均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键. 18. 根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7 b 21x x+ a1【答案】 ①. 52②. 2− 【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==, 当x n =时,211x x +=,即211n n+=, 解得1n =−,经检验,1n =−是分式方程的解, ∴()3112b =⨯−+=−, 故答案为:52;2− 【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中 (1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】 ①. 30 ②. 23【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒−︒=︒,故答案为:30;(2)取中间正六边形的中心为O ,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,3DE PE == 由图1知223AG BF PE === 由正六边形的结构特征知:12332OM =⨯=, ()1312BC BF CH =−=−,333tan 33BC AB BAC ∴===∠ 231BD AB ∴=−=,又1212DE =⨯=,3BE BD DE ∴=+= 23ON OM BE ∴=+=故答案为:3【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置 A 区 B 区 脱靶一次计分(分)312−在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分; (2)6k =. 【解析】【分析】(1)根据题意列式计算即可求解; (2)根据题意列一元一次方程即可求解.解:由题意得()4321426⨯+⨯+⨯−=(分), 答:珍珍第一局的得分为6分; 【小问2详解】解:由题意得()()3311032613k k +⨯+−−⨯−=+, 解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值; (2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析 【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=; 【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a −=++−+=−+=−∵1a >,∴()21210S S a −=−>, ∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可; (2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解. 【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分; ∴客户所评分数的中位数为:343.52+=(分) 由统计图可知,客户所评分数的平均数为:11233645553.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分, ∴该部门不需要整改. 【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档, ∴监督人员抽取的问卷所评分数为5分, ∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分, 即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =−+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188nC y x x c =−+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =−,1c =; (2)符合条件的n 的整数值为4和5. 【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171,,,求得n 的取值范围,即可求解. 【小问1详解】解:∵抛物线21:(3)2C y a x =−+,∴1C 的最高点坐标为()32,, ∵点(6,1)A 在抛物线21:(3)2C y a x =−+上, ∴21(63)2a =−+,解得:19a =−, ∴抛物线1C 的解析式为21(3)29y x =−−+,令0x =,则21(03)219c =−−+=; 【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171,,, 当经过()51,时,211551188n=−⨯+⨯++, 解得175n =; 当经过()71,时,211771188n=−⨯+⨯++,解得417n =; ∴174157n ≤≤ ∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥. 计算:在图1中,已知48cm MN =,作OC MN ⊥于点C . (1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小. 【答案】(1)7cm ;(2)11cm 2;(3)3cm 3EF =,25π=cm 6EQ ,EF EQ >. 【解析】【分析】(1)连接OM ,利用垂径定理计算即可;。
2020-2021年河北省中考数学试题及答案(Word版)

2021年河北省中考数学试卷及答案2021年河北省中考数学试卷及答案(1——34页)2020年河北省中考数学试卷及答案(35——45页)一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( )A .aB .bC .cD .d2.(3分)不一定相等的一组是( )A .a +b 与b +aB .3a 与a +a +aC .a 3与a •a •aD .3(a +b )与3a +b3.(3分)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A .>B .<C .≥D .=4.(3分)与√32−22−12结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣15.(3分)能与﹣(34−65)相加得0的是( )A .−34−65B .65+34C .−65+34D .−34+656.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A .A 代B .B 代C .C 代D .B 代7.(3分)如图1,▱ABCD 中,AD >AB ,∠ABC 为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =( )A .1cmB .2cmC .3cmD .4cm 9.(3分)若√33取1.442,计算√33−3√33−98√33的结果是( )A .﹣100B .﹣144.2C .144.2D .﹣0.0144210.(3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,S △AFO =8,S △CDO =2,则S 正六边形ABCDEF 的值是( )A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A .蓝B .粉C .黄D .红 15.(2分)由(1+c 2+c −12)值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( )A .当c =﹣2时,A =12B .当c =0时,A ≠12C .当c <﹣2时,A >12D .当c <0时,A <12 16.(2分)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作: ①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O 上只有唯一的点P ,使得S 扇形FOM =S 扇形AOB .对于结论Ⅰ和Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C .Ⅰ不对Ⅱ对D .Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为 ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 块.18.(4分)如图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且∠A ,∠B ,∠E 保持不变.为了舒适,需调整∠D 的大小,使∠EFD =110°,则图中∠D 应 (填“增加”或“减少”) 度.19.(4分)用绘图软件绘制双曲线m :y =60x 与动直线l :y =a ,且交于一点,图1为a =8时的视窗情形.(1)当a =15时,l 与m 的交点坐标为 ;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心. 例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k=.三、解答题(本大题有7个小题,共66分。
河北省2022年中考数学试卷含答案解析(Word版)

河北省2022年中考数学试卷含答案解析〔Word版〕2022年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两局部;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I〔选择题,共42分〕一、选择题〔本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1.计算:-〔-1〕=〔〕 A.±1B.-2C.-1D.1答案: D解析:利用“负负得正〞的口诀,就可以解题。
知识点:有理数的运算 2.计算正确的选项是〔〕 A.(-5)0=0B.x2+x3=x5·a-1=2a答案: D解析:除0以外的任何数的0次幂都等于1,故A项错误;x2+x3的结果不是指数相加,故B项错误;(ab2)3的结果是括号里的指数和外面的指数都相乘,结果是a3b6,故C项错误;2a2·a-1的结果是2不变,指数相加,正好是2a。
知识点:x0=0(x≠0〕;〔ambn〕p=ampbnp;aman=am+n3.以下图形中,既是轴对称图形,又是中心对称图形的是〔〕A B C D答案: A解析:先根据轴对称图形,排除C、D两项,再根据中心对称,排除B项。
知识点:轴对称,是指在平面内沿一条直线折叠,直线两旁的局部能够完全重合的图形;中心对称,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形。
第 1 页共 1 页4.以下运算结果为x-1的是〔〕1A.1?xx2?1xx2?2x?1x?11??B. C. D.xx?1xx?1x?1x-1 x2-1 答案:B解析:挨个算就可以了,A项结果为—— , B项的结果为x-1,C项的结果为——x D项的结果为x+1。
x 知识点:〔x+1〕〔x-1〕=x2-1;(x+1)2=x2+2x+1,(x-1)2=x2-2x+1。
≠0,b0;丁:丙:|a|a2+c2,那么关于x的方程ax2+bx+c=0根的情况是〔〕A.有两个相等的实数根 B.有两个不相等的实数根 C.无实数根D.有一根为0[来源学科网]答案:B解析:由〔a-c〕2>a2+c2得出-2ac>0,因此△=b2-4ac>0,所以两根,应选B项。
2024年河北省中考数学试卷(Word版含解析)

2024年河北省中考数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A.B.C.D.2.下列运算正确的是()A.a7﹣a3=a4B.3a2•2a2=6a2C.(﹣2a)3=﹣8a3D.a4÷a4=a3.如图,AD与BC交于点O,△ABO和△CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A.AD⊥BC B.AC⊥PQ C.△ABO≌△CDO D.AC∥BD4.下列数中,能使不等式5x﹣1<6成立的x的值为()A.1B.2C.3D.45.观察图中尺规作图的痕迹,可得线段BD一定是△ABC的()A.角平分线B.高线C.中位线D.中线6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A.B.C.D.7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍8.若a,b是正整数,且满足=,则a与b的关系正确的是()A.a+3=8b B.3a=8b C.a+3=b8D.3a=8+b9.淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则a=()A.1B.﹣1C.+1D.1或+110.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,△ABC中,AB=AC,AE平分△ABC的外角∠CAN,点M是AC的中点,连接BM并延长交AE于点D,连接CD.求证:四边形ABCD是平行四边形.证明:∵AB=AC,∴∠ABC=∠3.∵∠CAN=∠ABC+∠3,∠CAN=∠1+∠2,∠1=∠2,∴①______.又∵∠4=∠5,MA=MC,∴△MAD≌△MCB(②______).∴MD=MB.∴四边形ABCD是平行四边形.若以上解答过程正确,①,②应分别为()A.∠1=∠3,AAS B.∠1=∠3,ASA C.∠2=∠3,AAS D.∠2=∠3,ASA11.直线l与正六边形ABCDEF的边AB,EF分别相交于点M,N,如图所示,则α+β=()A.115°B.120°C.135°D.144°12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D13.已知A为整式,若计算﹣的结果为,则A=()A.x B.y C.x+y D.x﹣y14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120°时,扇面面积为S,该折扇张开的角度为n°时,扇面面积为S n,若m=,则m与n关系的图象大致是()A.B.C.D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“■”表示5C.运算结果小于6000D.运算结果可以表示为4100a+102516.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P(2,1)按上述规则连续平移3次后,到达点P3(2,2),其平移过程如下:.若“和点”Q按上述规则连续平移16次后,到达点Q16(﹣1,9),则点Q的坐标为()A.(6,1)或(7,1)B.(15,﹣7)或(8,0)C.(6,0)或(8,0)D.(5,1)或(7,1)二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.18.已知a,b,n均为正整数.(1)若n<<n+1,则n=;(2)若n﹣1<<n,n<<n+1,则满足条件的a的个数总比b的个数少个.19.如图,△ABC的面积为2,AD为BC边上的中线,点A,C1,C2,C3是线段CC4的五等分点,点A,D1,D2是线段DD3的四等分点,点A是线段BB1的中点.(1)△AC1D1的面积为;(2)△B1C4D3的面积为.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为﹣4,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A,B,C三点所对应的数的和,并求的值;(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.21.甲、乙、丙三张卡片正面分别写有a+b,2a+b,a﹣b,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当a=1,b=﹣2时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.a+b2a+b a﹣b第一次和第二次a+b2a+2b2a2a+ba﹣b2a22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离BQ=4m,仰角为α;淇淇向前走了3m后到达点D,透过点P恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ的距离AB=CD=1.6m,点P到BQ 的距离PQ=2.6m,AC的延长线交PQ于点E.(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;(2)求CP的长及sin∠APC的值.23.情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24.某公司为提高员工的专业能力,定期对员工进行技能测试.考虑多种因素影响,需将测试的原始成绩x(分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0≤x<p时,y=;当p≤x≤150时,y=+80.(其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p及p以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若p=100,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值;(3)下表是该公司100名员工某次测试的原始成绩统计表:95100105110115120125130135140145150原始成绩(分)人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知⊙O的半径为3,弦MN=2.△ABC中,∠ABC=90°,AB=3,BC=3.在平面上,先将△ABC和⊙O按图1位置摆放(点B与点N重合,点A在⊙O上,点C在⊙O内),随后移动△ABC,使点B在弦MN上移动,点A始终在⊙O上随之移动.设BN=x.(1)当点B与点N重合时,求劣弧的长;(2)当OA∥MN时,如图2,求点B到OA的距离,并求此时x的值;(3)设点O到BC的距离为d.①当点A在劣弧上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.26.如图,抛物线C1:y=ax2﹣2x过点(4,0),顶点为Q.抛物线C2:y=﹣(x﹣t)2+t2﹣2(其中t为常数,且t>2),顶点为P.(1)直接写出a的值和点Q的坐标.(2)嘉嘉说:无论t为何值,将C1的顶点Q向左平移2个单位长度后一定落在C2上.淇淇说:无论t为何值,C2总经过一个定点.请选择其中一人的说法进行说理.(3)当t=4时,①求直线PQ的解析式;②作直线l∥PQ,当l与C2的交点到x轴的距离恰为6时,求l与x轴交点的横坐标.(4)设C1与C2的交点A,B的横坐标分别为x A,x B,且x A<x B,点M在C1上,横坐标为m(2≤m≤x B).点N在C2上,横坐标为n(x A≤n≤t),若点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,直接用含t和m的式子表示n.。
河北省2021年中考数学试题真题(Word版,含答案与解析)

B.当 时,
C.当 时,
D.当 时,
【答案】C
【考点】分式的值,分式的加减法
【解析】【解答】解: ,
当 时, , 无意义,故A不符合题意;
当 时, , ,故B不符合题意;
当 时, , ,故C符合题意;
当 时, , ;当 时, , ,故D不符合题意的值判断 的正负,从而判断A与 的大小.
【答案】D
【考点】同底数幂的乘法,去括号法则及应用,有理数的加法,合并同类项法则及应用
【解析】【解答】解:A. = ,A不符合题意;
B. ,B不符合题意;
C. ,C不符合题意;
D. ,D符合题意,
故答案为:D.
【分析】A、根据加法的交换律进行判断即可;
B、利用合并同类项计算a+a+a=3a,然后判断即可;
【解析】【解答】解:∵∠A+∠B=50°+60°=110°,
∴∠ACB=180°-110°=70°,
故答案为:B.
【分析】解题关键:依据定理证明的一般步骤进行分析解答。
14.(2021·河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()
A.蓝 B.粉 C.黄 D.红
【答案】D
【考点】扇形统计图,条形统计图
∴
∵ 是P关于直线m的对称点,
∴直线m是 的垂直平分线,
∴
当 不在同一条直线上时,
即
当 在同一条直线上时,
故答案为:B
【分析】由对称得OP1=OP=OP2=2.8。再根据三角形三边的关系可得结果。三角形两边之和大于第三边,两边之差小于第三边。解题关键:熟练掌握对称性和三角形三边的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图32010年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算3×(-2) 的结果是A .5B .-5C .6D .-62.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70°C .80°D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为 A .6 B .9 C .12D .155.把不等式2x -< 4的解集表示在数轴上,正确的是6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么这条圆弧所在圆的圆心是 A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a -B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是ABCD图2ABC40°120°图1A B D2CA .48)12(5=-+x xB .48)12(5=-+x xC .48)5(12=-+x xD .48)12(5=-+x x9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 A .7B .8C .9D .1011.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2) C .(3,3)D .(4,3)12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子 向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成 一次变换.若骰子的初始位置为图6-1所示的状态,那么按 上述规则连续完成10次变换后,骰子朝上一面的点数是图5图4图6-1图6-2ABCD图9BA .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.-的相反数是 .14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A 对应的数为1-,则点B 所对应的数为 .15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .16.已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 . 17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α, 则圆锥的底面积是 平方米(结果保留π).18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”).三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解方程:1211+=-x x .图10-1图10-2图7图820.(本小题满分8分)如图11-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2的程序移动.(1)请在图11-1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).21.(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角等于 °.(2)请你将图12-2的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?图11-2甲校成绩统计表D图11-1乙校成绩扇形统计图图12-1乙校成绩条形统计图22.(本小题满分9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标; (2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; (3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.23.(本小题满分10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2 是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以 左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP为半径的⊙O 上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O 作OH ⊥l 于点H ,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q 与点O 间的最小距离是 分米;点Q 与点O 间的最大距离是 分米;l图14-1图15-2AD O BC 21MN 图15-1AD B MN12 图15-3AD O BC 21MNO 点Q 在l 上滑到最左端的位置与滑到最右端位置间 的距离是 分米.(2)如图14-3,小明同学说:“当点Q 滑动到点H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗? 为什么?(3)①小丽同学发现:“当点P 运动到OH 上时,点P 到l的距离最小.”事实上,还存在着点P 到l 距离最大 的位置,此时,点P 到l 的距离是 分米; ②当OP 绕点O 左右摆动时,所扫过的区域为扇形, 求这个扇形面积最大时圆心角的度数.24.(本小题满分10分)在图15-1至图15-3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ; (3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD的值.25.(本小题满分12分)如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返l图14-3回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止.设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积.(3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.26.(本小题满分12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售. 若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001x +150, 成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).PQ 图16(备用图)若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为 常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w 内 = 元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24(,)24b ac b a a--.2010年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.5 14.5 15.4116.1 17.36 π 18. = 三、解答题19.解:)1(21-=+x x , 3=x . 经检验知,3=x 是原方程的解.20.解:(1)如图1;【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】(2)∵90π346π180⨯⨯=,∴点P 经过的路径总长为6 π.21.解:(1)144;(2)如图2;)甲校的平均分为8.3分,中位数为7分;由于两校平均分相等,乙校成绩的中位数大于甲 校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.(4)因为选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.22.解:(1)设直线DE 的解析式为b kx y +=,∵点D ,E 的坐标为(0,3)、(6,0),∴ ⎩⎨⎧+==.60,3b k b解得 ⎪⎩⎪⎨⎧=-=.3,21b k ∴ 321+-=x y .∵ 点M 在AB 边上,B (4,2),而四边形OABC 是矩形, ∴ 点M 的纵坐标为2.又 ∵ 点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2). (2)∵xm y =(x >0)经过点M (2,2),∴ 4=m .∴x y 4=.又 ∵ 点N 在BC 边上,B (4,2),∴点N 的横坐标为4. ∵ 点N 在直线321+-=x y 上, ∴ 1=y .∴ N (4,1).∵ 当4=x 时,y =4x = 1,∴点N 在函数 xy 4= 的图象上. (3)4≤ m ≤8.D图1乙校成绩条形统计图分数 图223.解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32+ 22,即OQ 2≠PQ 2+ OP 2, ∴OP 与PQ 不垂直.∴PQ 与⊙O 不相切. (3)① 3;②由①知,在⊙O 上存在点P ,P '到l 的距离为3,此时,OP 将不能再向下转动,如图3.OP 在绕点O 左右摆动过程中所扫过的最大扇形就是P 'OP .连结P 'P ,交OH 于点D .∵PQ ,P 'Q '均与l 垂直,且PQ =P '3Q '=,∴四边形PQ Q 'P '是矩形.∴OH ⊥P P ',PD =P 'D . 由OP = 2,OD = OH -HD = 1,得∠DOP = 60°.∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为120°.24.解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE , ∴△AOC ≌ △BOE .∴AC = BE .又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBOAC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD=.25.解:(1)y = 2t ;(2)当BP = 1时,有两种情形:图4A D OB C21 MNE FA O BC1D 2图5M NEl图3①如图6,若点P 从点M 向点B 运动,有 MB = BC 21= 4,MP = MQ = 3, ∴PQ = 6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM .∵AB = 33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面 积为39.②若点P 从点B 向点M 运动,由题意得 5=t .PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,QE 与AD 或AD 的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则 HP = 33,AH = 1.在Rt △HPF 中,∠HPF = 30°,∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2, ∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD的重叠部分就是梯形FPCG ,其面积为3227.(3)能.4≤t ≤5.26.解:(1)140 57500;(2)w 内 = x (y -20)- 62500 = 1001-x 2+130 x 62500-, w 外 = 1001-x 2+(150a -)x . (3)当x = )1001(2130-⨯-= 6500时,w 内最大;分由题意得 2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-, 解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30.(4)当x = 5000时,w 内 = 337500, w 外 =5000500000a -+.若w 内 < w 外,则a <32.5;若w 内 = w 外,则a = 32.5;若w 内 > w 外,则a >32.5.所以,当10≤ a <32.5时,选择在国外销售;图7 图6当a = 32.5时,在国外和国内销售都一样;当32.5< a ≤40时,选择在国内销售.。