柠檬酸钠还原法制备金纳米粒子

合集下载

基础实验:金纳米粒子的制备及其光学性质

基础实验:金纳米粒子的制备及其光学性质

58Univ. Chem. 2019, 34 (1), 58−63收稿:2018-06-22;录用:2018-06-26;网络发表:2018-07-09*通讯作者,Email: ylzhao@基金资助:国家自然科学基金(21606021);北京师范大学青年教师基金(2014NT07);北京师范大学化学国家级实验教学示范中心教改项目;北京师范大学教改项目(15-06-20);北京市教育委员会共建项目;北京师范大学本科教学实验室建设项目•化学实验• doi: 10.3866/PKU.DXHX201806030 基础实验:金纳米粒子的制备及其光学性质南彩云,张宇,李玉峰,赵云岺*北京师范大学化学学院,北京师范大学化学国家级实验教学示范中心,北京 100875摘要:围绕金纳米粒子前沿内容,设计了一个简易的本科生基础实验,利用柠檬酸钠还原氯金酸法制备分散性好的金纳米粒子溶液,讨论了其尺寸与颜色的关系,探究了不同电解质和非电解质对金纳米粒子团聚及其颜色的影响,初步了解金纳米粒子的光学特性和探针效应基本原理。

关键词:金纳米粒子;光学性质;尺寸;基础实验中图分类号:G64;O6Preparation of Gold Nanoparticles and Their Optical PropertiesNAN Caiyun, ZHANG Yu, LI Yufeng, ZHAO Yunling *Experimental Chemistry Center of Beijing Normal University, College of Chemistry, Beijing Normal University,Beijing 100875, P. R. China.Abstract: This paper designed a facile comprehensive experiment based on the frontier research topic of gold nanoparticles. The well-dispersed gold suspensions were synthesized by the reduction of chloroauric acid with sodium citrate and their size-dependent optical properties were discussed. Moreover, the gold nanoparticles were explored as primary electrolyte sensors because the addition of electrolytes induced aggregation of the nanoparticles and caused color changes.Key Words: Gold nanoparticle; Optical property; Size; Fundamental experiment金单质通常称为“黄金”,常用作货币或用来装饰,然而金还会通过一种人们并不熟悉的形式“金纳米粒子”发挥更大的作用。

胶体金(纳米金Gold Nanoparticles)的制备步骤和注意事项

胶体金(纳米金Gold Nanoparticles)的制备步骤和注意事项

胶体金(纳米金Gold Nanoparticles)的详细制备步骤和注意事项胶体金的制备一般采用还原法,常用的还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。

下面介绍最常用的制备方法及注意事项。

1、玻璃容器的清洁:玻璃表面少量的污染会干扰胶体金颗粒的生成,一切玻璃容器应绝对清洁,用前经过酸洗、硅化。

硅化过程一般是将玻璃容器浸泡于5%二氯二甲硅烷的氯仿溶液中1分钟,室温干燥后蒸馏水冲洗,再干燥备用。

专用的清洁器皿以第一次生成的胶体金稳定其表面,弃去后以双蒸馏水淋洗,可代替硅化处理。

2、试剂、水质和环境:氯金酸极易吸潮,对金属有强烈的腐蚀性,不能使用金属药匙,避免接触天平称盘。

其1%水溶液在4℃可稳定数月不变。

实验用水一般用双蒸馏水。

实验室中的尘粒要尽量减少,否则实验的结果将缺乏重复性。

金颗粒容易吸附于电极上使之堵塞,故不能用pH电极测定金溶液的pH值。

为了使溶液pH值不发生改变,应选用缓冲容量足够大的缓冲系统,一般采用柠檬酸磷酸盐(pH3~5.8)、Tris-HCL (pH5.8~8.3)和硼酸氢氧化钠(pH8.5~10.3)等缓冲系统。

但应注意不应使缓冲液浓度过高而使金溶胶自凝。

3、柠檬酸三钠还原法制备金溶胶:取0.01%氯金酸水溶液100ml 加热至沸,搅动下准确加入1%柠檬酸三钠水溶液0.7ml,金黄色的氯金酸水溶液在2分钟内变为紫红色,继续煮沸15分钟,冷却后以蒸馏水恢复到原体积,如此制备的金溶胶其可见光区最高吸收峰在535nm,A1cm/535=1.12。

金溶胶的光散射性与溶胶颗粒的大小密切相关,一旦颗粒大小发生变化,光散射也随之发生变异,产生肉眼可见的显著的颜色变化,这就是金溶胶用于免疫沉淀或称免疫凝集试验的基础。

金溶胶颗粒的直径和制备时加入的柠檬酸三钠量是密切相关的,保持其他条件恒定,仅改变加入的柠檬酸三钠量,可制得不同颜色的金溶胶,也就是不同粒径的金溶胶,见附表。

附表100 ml 氯金酸中柠檬酸三钠的加入量对金溶胶粒径的影响1%柠檬酸三钠ml 0.30 0.45 0.70 1.00 1.50 2.00金溶胶颜色蓝灰紫灰紫红红橙红橙吸收峰(nm) 220 240 535 525 522 518径粒(nm) 147 97.5 71.5 41 24.5 154、柠檬酸三钠-鞣酸混合还原剂:用此混合还原剂可以得到比较满意的金溶胶,操作方法如下:取4ml1%柠檬酸三钠(Na3C6H5O7.2H2O),加入0~5ml1%鞣酸,0~5ml 25mmo/L K2CO2(体积与鞣酸加入量相等),以双蒸馏水补至溶液最终体积为20ml,加热至60℃取1ml1%的HAuCl4,加于79ml双蒸馏水中,水浴加热至60℃,然后迅速将上述柠檬酸-鞣酸溶液加入,于此温度下保持一定时间,待溶液颜色变成深红色(约需0.5~1小时)后,将溶液加热至沸腾,保持沸腾5分钟即可。

超小金纳米粒子及其合成方法

超小金纳米粒子及其合成方法

超小金纳米粒子及其合成方法
超小金纳米粒子是指直径通常小于3纳米的金纳米颗粒,具有独特的光学、电子、催化和生物活性等性质。

超小金纳米粒子(AuNPs)在纳米科技领域有着举足轻重的地位。

由于它们的尺寸极小,甚至小于2纳米,这让它们拥有了与宏观尺度金材料截然不同的性质。

这些纳米粒子在生物医学领域中尤其受到关注,因为它们可以作为传感器的信号放大剂或标记物,提高检测生物分子、细胞、病毒等的灵敏度和选择性。

关于超小金纳米粒子的合成方法,主要有硫锚定方法、两亲性嵌段聚合物包裹法、柠檬酸钠还原法和晶体种子生长法等。

具体如下:
1. 硫锚定方法:通过Pt与碳基体中S原子之间的强烈化学相互作用来抑制纳米颗粒的烧结,从而在高温下形成平均尺寸小于5 nm的原子有序的纳米颗粒。

2. 两亲性嵌段聚合物包裹法:这种方法涉及使用两亲性嵌段聚合物作为外层包裹材料,金粒子位于中心。

这种合成方法可以有效地控制纳米粒子的大小和稳定性。

3. 柠檬酸钠还原法:这是一种经典的合成金纳米粒子的方法,通过使用柠檬酸钠作为还原剂和稳定剂,可以在水溶液中制备不同粒径的纳米金。

不过,这种方法通常用于制备粒径在100 nm以下的球状纳米金,对于更小的金纳米粒子则有一定的局限性。

4. 晶体种子生长法:通过使用较小的金胶体颗粒作为种子,可以控制合成出具有特定形状、尺寸、组成和结构的金纳米粒子。

这种方法允许人们对金纳米粒子的生长进行精确的控制。

总的来说,超小金纳米粒子因其独特的物理化学性质而在多个领域展现出广泛的应用潜力,而合成这些纳米粒子的方法也在不断地发展和完善,以满足不同应用的需求。

一种金纳米颗粒的制备方法

一种金纳米颗粒的制备方法

一种金纳米颗粒的制备方法
一种制备金纳米颗粒的方法是通过还原金盐(例如氯金酸)来实现。

步骤如下:
1. 在室温下,将金盐(例如氯金酸)溶解在水中,形成金离子溶液。

2. 向金离子溶液中加入还原剂(例如柠檬酸或氢氯酸),并搅拌混合。

3. 在搅拌混合过程中,金离子将逐渐被还原成金原子,并形成金纳米颗粒。

4. 继续搅拌混合一段时间,直到金纳米颗粒的大小和形状达到所需的目标。

5. 将制备好的金纳米颗粒用水洗涤和离心,去除任何未反应的物质和杂质。

6. 最后,将金纳米颗粒干燥保存。

需要注意的是,制备金纳米颗粒的条件和方法会影响颗粒的大小、形状和分散度等性质。

因此,制备金纳米颗粒需要根据具体情况进行优化和调整。

1/ 1。

柠檬酸钠还原法制备纳米金 最小

柠檬酸钠还原法制备纳米金 最小

柠檬酸钠还原法制备纳米金最小柠檬酸钠还原法是一种简单有效的制备纳米金的方法,其原理是利用柠檬酸钠作为还原剂将金离子还原为金颗粒。

本文将一步一步回答有关柠檬酸钠还原法制备纳米金的问题。

第一步:制备柠檬酸钠溶液柠檬酸钠(Na3C6H5O7)是一种白色结晶固体,可在化学试剂商店购买。

首先,将适量的柠檬酸钠加入无水蒸馏水中,搅拌至完全溶解,得到柠檬酸钠溶液。

溶液的浓度可以根据需要进行调整。

第二步:制备金盐溶液金盐溶液是指含有金离子的溶液,常用的金盐有氯金酸(HAuCl4)、三氯化金(AuCl3)等。

可以通过购买金盐或自行合成金盐,这里以氯金酸为例进行介绍。

首先,将适量的氯金酸加入无水蒸馏水中,并将溶液搅拌至金盐完全溶解。

溶液的浓度可以根据需要进行调整。

第三步:还原制备纳米金将制备好的柠檬酸钠溶液缓慢滴加到金盐溶液中,同时用磁力搅拌使两种溶液充分混合。

在滴加柠檬酸钠溶液的同时,可以观察到溶液的颜色由无色逐渐变为红色或橙色,这是金颗粒在形成的过程中发生的现象。

当滴加完柠檬酸钠溶液后,继续搅拌一段时间,使溶液充分反应。

在反应过程中,溶液会逐渐变得更加浑浊,这是由于纳米金颗粒的形成。

第四步:纳米金颗粒的分离经过一定时间的反应后,纳米金颗粒已经形成。

为了将纳米金颗粒从溶液中分离出来,可以采用离心机进行离心分离。

将反应溶液转移到离心管中,设置适当的离心条件,使纳米金颗粒沉淀到离心管的底部。

然后,将上清液轻轻倾倒掉,收集沉淀物即可得到纳米金颗粒。

第五步:纳米金颗粒的表征分离得到的纳米金颗粒可以通过多种分析方法进行表征,如透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外可见吸收光谱等。

通过这些分析方法,可以得到纳米金颗粒的晶体结构、形貌、大小分布等信息。

最后,根据纳米金颗粒的制备需要,可以对实验条件进行优化,如柠檬酸钠与金盐的摩尔比、反应时间、反应温度等。

通过调整这些条件,可以控制纳米金颗粒的形成速率和尺寸,实现对纳米金颗粒的精确控制。

柠檬酸钠还原法制备金纳米粒子

柠檬酸钠还原法制备金纳米粒子

柠檬酸钠还原法制备金纳米粒子实验一、试剂和材料1) 柠檬酸钠(Na3C6H507•2H2O,AR) 天津市化学试剂三厂2) 氯金酸溶液(HAu Cl4•4 H2O),用王水(硝酸:盐酸=1:3(浓溶液的体积比)配制)溶解99.99%纯金制备。

3) 所用水均为超纯水(电阻值大于15 MΩ)4) 所用玻璃仪器均经王水洗液充分浸泡处理,使用前用超纯水洗净并烘干。

5)仪器圆底瓶(50 mL)、冷凝管(含2 条橡皮管)、漏斗、滴管、刻度吸量管(10 mL)、量筒(50 mL)、安全吸球、磁搅拌子、电磁加热搅拌器、烧杯、计时器、试管(1 支)、样品瓶(25 mL)等.实验方法(一)小粒径金纳米粒子(约15 nm)的制备1. 取5 mL 浓硝酸与15 mL 浓盐酸混合于100 mL 烧杯中配制王水。

将所需使用的圆底瓶、吸量管、磁搅拌子、样品瓶等以王水浸润约1 分钟,再将王水倒入回收烧杯中,以大量去离子水将器皿冲洗干净,最后以超纯水淋洗2 次,而后倒置滴干。

注1:反应器具需以王水(HNO3/HCl = 1/3 (v/v))浸洗器皿内壁,王水必须完全冲洗干净,以免残余王水影响后续制备反应。

注2:王水因具强腐蚀性及刺激臭味,使用时需穿戴乳胶手套并在通风橱中清洗。

王水用后回收作为最后清洗器具使用。

2. 使用已洗净后的量筒量取1 mM 的四氯金酸溶液45 mL 至100mL 圆底瓶中,加入1 个磁搅拌子。

3. 如图2-1架设回流加热装置:以铁夹固定圆底瓶于铁支架上,再将圆底瓶置于电磁搅拌器上,调整至适当位置使搅拌子能顺利搅拌。

4. 装接冷凝管于圆底瓶的上方使磨砂口接合紧密,以铁夹固定冷凝管;连接冷凝管的橡皮管,让冷却水自下端流入、上方排出。

注:橡皮管需先沾水以便利装接,装接的深度应足够以免脱落。

冷凝管充满水后,将冷却水水量调小,以节省用水。

5. 开启电磁加热搅拌器之加热及搅拌调控钮让溶液均匀搅拌及加热至溶液沸腾。

6. 保持四氯金酸溶液在剧烈沸腾与均匀搅拌的状态下,使用10mL 刻度吸量管量取5.4 mL 之38.8 mM 柠檬酸钠溶液,自冷凝管上端快速加入,观察记录瓶中溶液颜色之变化及时间。

纳米金的制备

纳米金的制备

氯金酸(HAuC14)是主要还原材料,常用还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。

根据还原剂类型以及还原作用的强弱,可以制备0.8nm~150nm不等的胶体金。

最常用的制备方法为柠檬酸盐还原法。

具体操作方法如下:(1)将HAuC14先配制成0.01%水溶液,取100mL加热至沸。

(2)搅动下准确加入一定量的1%柠檬酸三钠(Na3C6H5O7·2H2O)水溶液.(3)继续加热煮沸15min.此时可观察到淡黄色的氯金酸水溶液在柠檬酸钠加入后很快变灰色,续而转成黑色,随后逐渐稳定成红色.全过程约2~3min。

(4)冷却至室温后用蒸馏水恢复至原体积。

用此法可制备16~147nm粒径的胶体金。

金颗粒的大小取决于制备时加入的柠檬酸三钠的量.表19—1 四种粒径胶体金的制备及特性胶体金粒径/ nm 1%柠檬酸三钠加入量/mL 胶体金特性呈色λmax/nm16 2.00 橙色51824。

5 1.50 橙红52241 1.00 红色52571.5 0。

70 紫色535*还原100mL 0.01%HAuC14所需量2.注意事项● 氯金酸易潮解,应干燥、避光保存。

● 氯金酸对金属有强烈的腐蚀性,因此在配制氯金酸水溶液时,不应使用金属药匙称量氯金酸.● 用于制备胶体金的蒸馏水应是双蒸馏水或三蒸馏水,或者是高质量的去离子水。

● 是以制备胶体金的玻璃容器必须是绝对清洁的,用前应先经酸洗并用蒸馏水冲净。

最好是经硅化处理的,硅化方法可用5%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥备用.● 胶体金的鉴定和保存:胶体金的制备并不难,但要制好高质量的胶体金却也并非易事。

因此对每次制好的胶体金应加以检定,主要检查指标有颗粒大小,粒径的均一程度及有无凝集颗粒等.肉眼观察是最基本也是最简单和方便的检定方法,但需要一定的经验。

良好的胶体金应该是清亮透明的,若制备的胶体金混浊或液体表面有漂浮物,提示此次制备的胶体金有较多的凝集颗粒.在日光下仔细观察比较胶体金的颜色,可以粗略估计制得的金颗粒的大小。

柠檬酸钠还原法提取纳米金的改良与优化

柠檬酸钠还原法提取纳米金的改良与优化

甘肃科技Gansu Science and Technology第36卷第1期2020年1月Vol.36 No.1Jan. 2020柠檬酸钠还原法提取纳米金的改良与优化金寿瑞,王东敏△,马婧,张兰兰,班雨婷(西北民族大学医学院,甘肃兰州730030)摘要:本研究旨在改良与优化柠檬酸钠还原法制备纳米金技术,通过优化制备过程得到粒径更为均匀、分散性更 好且无细胞毒性的纳米金凝胶。

纳米金凝胶制备过程中①比较电炉和水浴锅两种加热方式对纳米金粒径的影响;②比较PVP 、单宁酸、柠檬酸钠三种保护剂对纳米金分散程度影响;③比较不同剂量柠檬酸钠对纳米金粒径的影 响。

采用目测法、紫外-分光光度计、透射电镜对所制备的纳米金进行外观、粒径及分散程度等的特征鉴定并分析上 述方法差异。

采用电炉加热制备出的纳米金相对水浴锅加热制备出的纳米金颜色深,浓度大,粒径小;用单宁酸做 保护剂制备出的纳米金比用PVP 、柠檬酸钠做保护剂制备出的粒径均一、单分散性好、稳定性佳;柠檬酸钠剂量在3~4 mL 范围内时,制出的纳米金粒径均在18±2nm 之间,且不受该剂量范围柠檬酸钠用量的影响。

在经典柠檬酸钠还原法制备纳米金实验中,选用电炉加热,1%单宁酸作为保护剂,还原剂1%柠檬酸钠计量控制在3~4 mL 范围内。

此种条件下制备出的纳米金粒径均在18±2nm 之间、且分散性好、稳定性佳、无细胞毒性。

关键词:纳米金;柠檬酸钠还原法;改良;评价中图分类号:0614.123 :TB383近年来,纳米材料在基础医学和生物医学工程领域取得了令人瞩目的成绩巴也因其独特的理化特性受到了医疗界的青睐叫纳米金是一种直径在1~100nm 之间的金属材料,其不仅具有钠纳米材料的基本属性,还具有抗氧化性及杀菌、灭菌、抗腐 蚀、促进新陈代谢等生物活性。

纳米金的性质主要取决于金颗粒的大小及其表面特性叫纳米金的毒性与纳米金粒径关系密切,Anna 等人[4]的研究显示: 10~20nm 范围内的纳米金对人体细胞无明显细胞 毒性,因此,制备大小均匀、粒径可控的纳米金尤为重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柠檬酸钠还原法制备金纳米粒子实验
一、试剂和材料
1) 柠檬酸钠(Na3C6H507•2H2O,AR) 天津市化学试剂三厂
2) 氯金酸溶液(HAu Cl4•4 H2O),用王水(硝酸:盐酸=1:3(浓溶液的体积比)配制)溶解99.99%纯金制备。

3) 所用水均为超纯水(电阻值大于15 MΩ)
4) 所用玻璃仪器均经王水洗液充分浸泡处理,使用前用超纯水洗净并烘干。

5)仪器圆底瓶(50 mL)、冷凝管(含2 条橡皮管)、漏斗、滴管、刻度吸量管(10 mL)、量筒(50 mL)、安全吸球、磁搅拌子、电磁加热搅拌器、烧杯、计时器、试管(1 支)、样品瓶(25 mL)等.
实验方法
(一)小粒径金纳米粒子(约15 nm)的制备
1. 取5 mL 浓硝酸与15 mL 浓盐酸混合于100 mL 烧杯中配制王水。

将所需使用的圆底瓶、吸量管、磁搅拌子、样品瓶等以王水浸润约1 分钟,再将王水倒入回收烧杯中,以大量去离子水将器皿冲洗干净,最后以超纯水淋洗2 次,而后倒置滴干。

注1:反应器具需以王水(HNO3/HCl = 1/3 (v/v))浸洗器皿内壁,王水必须完全冲洗干净,以免残余王水影响后续制备反应。

注2:王水因具强腐蚀性及刺激臭味,使用时需穿戴乳胶手套并在通
风橱中清洗。

王水用后回收作为最后清洗器具使用。

2. 使用已洗净后的量筒量取1 mM 的四氯金酸溶液45 mL 至100mL 圆底瓶中,加入1 个磁搅拌子。

3. 如图2-1架设回流加热装置:以铁夹固定圆底瓶于铁支架上,再将圆底瓶置于电磁搅拌器上,调整至适当位置使搅拌子能顺利搅拌。

4. 装接冷凝管于圆底瓶的上方使磨砂口接合紧密,以铁夹固定冷凝管;连接冷凝管的橡皮管,让冷却水自下端流入、上方排出。

注:橡皮管需先沾水以便利装接,装接的深度应足够以免脱落。

冷凝管充满水后,将冷却水水量调小,以节省用水。

5. 开启电磁加热搅拌器之加热及搅拌调控钮让溶液均匀搅拌及加热至溶液沸腾。

6. 保持四氯金酸溶液在剧烈沸腾与均匀搅拌的状态下,使用10mL 刻度吸量管量取5.4 mL 之38.8 mM 柠檬酸钠溶液,自冷凝管上端快速加入,观察记录瓶中溶液颜色之变化及时间。

持续搅拌加热至溶液沸腾10 分钟后,关闭加热电源停止加热,再继续搅拌冷却15 分钟。

观察记录溶液的颜色变化。

注意:加入柠檬酸钠溶液时,四氯金酸溶液需保持均匀搅拌,以使反应物充分混合。

7. 卸除装置,并将试样溶液移转于干净的100 mL 样品瓶中存放。

8. 完成制备实验后,反应容器以步骤1 回收的王水浸润清洗干净。

相关文档
最新文档