信号与系统常用公式

合集下载

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统-公式

信号与系统-公式

r 2

C1k C0
k
j
Z域 尺度变换
z ak f k F , a z a a
k m f k z
f k k m
1,2 a jb
e j
k C cos k D sin k 或A k cos k , 其中Ae
z
1

km
Pm k Pm 1k
m r m
m 1

m 1
Pk P0 1
k Pm k Pm 1k
Pa
k
k

Pk P0 1
时域积分
f
1
t F 0
F j j
不等于特征根时 等于特征单根时
t
尺度变换
f at
1 a
F j
a
F j
1,2 j
C cos t D sin t 或A cos t , 其中Ae
j
C jD
时移特性
f t t0 e
jt0
r 重共轭复根
r 1 r 2 Ar 1t cos t r 1 Ar 2t cos t r 2
t A0t r 2 cos t 0 e
频移特性
f t e
j0 t
F j 0
微分方程 激励 f t
微分方程 特征根 单实根
不同特征根所对应的齐次解 齐次解
yh t
对称性
傅里叶变换的性质
时域f t F j 频域 F jt 2 f

信号与系统中的常见公式

信号与系统中的常见公式

信号与系统中的常见公式
1.傅里叶变换的公式:
记X(ω)为一个时域信号x(t)的傅里叶变换,那么傅里叶变换的公式为:
X(ω) = ∫x(t)e^{-jωt}dt
其中,ω表示变换后的信号的频率变量,j=√-1
2.回路分析公式:
对电路进行回路分析时,基本公式可以表达为:
V=IR
即电压V等于电流I乘以电阻R。

3.滤波器的公式:
滤波器在信号处理中起着重要作用,其核心公式是:
H(s)=A(s)B(s)
其中,H(s)表示滤波器的传输函数,A(s)为滤波器的输入函数,B(s)为滤波器的输出函数。

4.模拟到数字的公式:
模拟到数字转换是信号处理中的重要组成部分,将模拟信号转换为数字信号需要用到的公式为:
y[n] = ∫ x(t)p(t-nT)dt
其中,x(t)是原始模拟信号,y[n]是转换得到的数字信号,T为采样周期,p(t)为采样函数。

5.传输函数的公式:
信号系统中的传输函数是衡量系统性能的重要指标,传输函数的表达式为:
H(s)=X(s)Y(s)
其中。

(完整版),信号与系统-公式总结,推荐文档

(完整版),信号与系统-公式总结,推荐文档

an (s p1)(s p2 )(s pn ) (s p1) (s p2 )
(s pn )
k i (s pi )F (s) |s pi
(i 1, 2,n)
变变变变变变变变变变
et ut 1
s α
z变变变变变变变
z
z
a
a n u( n) anu(n
1)
za za
⑵留数法
留数法是将拉普拉斯反变换的积分运算转换为求被积函数各极点上留数的运算,即
an
1
, a 1
n0
1 a
第二章 傅立叶变换
1 正变换: F () f (t)e jtdt
2 傅立叶变换的性质 性质 ※时移
※时频展缩
※※频移
逆变换: f (t) 1 F ()e jtd
2
时域
f (t t0 )
f (at) a 0 f (at b) a 0
f (t)e j0t
信号
名称
f (t)
波形图
F () F () e j()
频谱图
※※ 矩形
脉冲 E[u(t ) u(t )]
E
Sa(
)
2
冲激
脉冲
E (t)
E
※※
直流
E
函数
2 E ()
※ 冲激 序列
T 1 (t )
1 1 ( )
1
2 T1
第三章 拉普拉斯变换
1 定义
双边拉普拉斯变换 F (s) f (t)estdt
z
z i0 z pi
根据收敛域给出反变换
N
A: if z R ,则 f (n) 为因果序列(右边序列),即 f (n) Ai pinu(n) i 1

信号与系统的公式汇总分类

信号与系统的公式汇总分类



s→∞

z→∞
z→∞
帕 斯
∫ ∫ E = ∞ | f (t) |2dt = 1 ∞ | F ( jω) |2 dω
−∞
2π −∞


f (∞) = lim sF (s), s = 0 在收敛域
s→0

f (∞) = lim(z −1)F (z) (右边信号) 斯



z→1




∑ ∫ ∞ | f (k) |2 = 1 | F (e jθ ) |2 dθ
域 f (k + 1) ↔ zF (z) − zf (0)



f ′′(t) ↔ s 2 F (s) − sy(0− ) − y′(0− )

f (k + 2) ↔ z2F (z) − z2 f (0) − zf (1)


分 f ′(t) f (n) (t) ↔ jωF( jω) ( jω)n F ( jω)
1 n! s 2 s n+1
1
1
s +α (s +α)2
kε (k) akε (k)
z (z −1) 2
z z−a
(k + 1)akε (k) kak −1ε (k)
cos(βt)ε (t) sin(βt)ε (t) cosh(βt)ε (t) sinh(βt)ε (t) e−αt cos(βt)ε (t) e−αt sin(βt)ε (t)
s s2 +β 2
β s2 +β 2
s s2 −β 2
β s2 −β 2
s+α (s +α)2 + β 2

信号与系统公式大全

信号与系统公式大全

信号与系统公式大全1.傅里叶变换公式:F(ω) = ∫f(t)e^(-jωt)dtf(t)=∫F(ω)e^(jωt)dω2.傅里叶级数公式:f(t) = a_0/2 + ∑[a_n*cos(nωt) + b_n*sin(nωt)] a_n = (2/T)∫[f(t)*cos(nωt)]dtb_n = (2/T)∫[f(t)*sin(nωt)]dt3.傅里叶变换与傅里叶级数之间的关系:F(ω)=2π∑[a_n*δ(ω-nω_0)+b_n*δ(ω+nω_0)]a_n=f(nT)/Tb_n=04.系统均方根误差公式:E = √(∫[y(t)-x(t)]^2dt)5.窄带系统的频率响应公式:H(ω)=,H(0),*e^(jφ)φ=∠H(ω)-∠H(0)6.线性时不变系统的冲激响应公式:h(t)=L^{-1}[H(ω)]7.卷积公式:y(t)=h(t)*x(t)=∫h(τ)x(t-τ)dτ8.卷积定理:F_y(ω)=H(ω)F_x(ω)9.线性时不变系统的输入-输出关系公式:y(t)=x(t)*h(t)10.系统频率响应的幅度与相位关系:H(ω)=,H(ω),*e^(j∠H(ω))11.奇谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*sin(kωt)]dt12.偶谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*cos(kωt)]dt13.系统频率响应的单位脉冲响应关系:H(ω) = ∫h(t)e^(-jωt)dt以上是信号与系统中的一些重要公式,这些公式是理解和分析信号与系统的基础。

在学习时,我们可以通过掌握这些公式,理解它们的意义和用途,以便更好地应用在实际问题中。

同时,信号与系统还涉及到很多其他的公式和定理,如采样定理、拉普拉斯变换、Z变换等,这些内容超过1200字无法一一列举。

如果对这些公式有更进一步的了解,推荐阅读相关的教材和参考资料,以便更好地理解信号与系统的知识。

信号与系统概念公式总结

信号与系统概念公式总结

信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f j i dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

《信号与线性系统分析》重要公式汇总

《信号与线性系统分析》重要公式汇总

《信号与线性系统分析》重要公式汇总信号与线性系统分析是电子信息工程及相关学科中的重要课程,对于学习者来说,熟悉和掌握相关公式是非常重要的。

下面是《信号与线性系统分析》中一些重要的公式汇总。

一、信号的基本概念与性质:1.单位冲激函数:δ(t)2.单位阶跃函数:u(t)3.奇偶性质:f(-t)=-f(t),f(t)是偶函数;f(-t)=f(t),f(t)是奇函数4.时域的线性性质:y(t)=a1f1(t)+a2f2(t)5.周期函数的性质:f(t+T)=f(t),T为周期6. 时域尺度变换:y(at) = f(bt)7.时域平移变换:y(t-t0)=f(t)8.频域的线性性质:y(t)=a1f1(t)+a2f2(t)9. 延迟性质:F(s) = e^(-st0)F(s)10. 尺度变换:F(as) = (1/a)F(s/a)11.卷积定理:F[f*g]=F[f]×F[g]12.等式性质:F[e^(-at)f(t)] = F[s + a]二、线性时不变系统与系统概念:1.连续时间系统输出的表达:y(t)=∫[h(t-τ)x(τ)]dτ2.离散时间系统输出的表达:y[n]=∑[h[n-k]x[k]],k取值范围∈(-∞,+∞)3.时不变系统输出与输入的傅里叶变换关系:Y(s)=H(s)X(s)4.线性系统的性质:系统的输出是输入的线性组合;系统对信号的平移不敏感;系统对信号幅度的线性变化三、连续时间系统的传递函数与频率响应:1.传递函数的定义:H(s)=Y(s)/X(s)2.传递函数与输出信号的拉氏变换关系:Y(s)=H(s)X(s)3.传递函数与等效电路:H(s)=Y(s)/X(s)=R(s)/S(s)4.系统的无穷大增益:,H(jω),→∞5.零极点:分子多项式中令H(s)=0的根和分母多项式中令H(s)=∞的根6.频率响应:H(jω)=,H(jω),e^(jθ),θ为相位四、离散时间系统的传递函数与频率响应:1.离散时间线性时不变系统的传递函数:H(z)=Y(z)/X(z)2.离散时间线性时不变系统的单位脉冲响应:h[n]=Z[x[n]]3.离散时间线性时不变系统的输出:y[n]=∑[h[n-k]x[k]],k取值范围∈(-∞,+∞)4.离散时间线性时不变系统的传递函数与频率响应的关系:H(z)=X(z)e(z)/Y(z)5.频率响应:H(e^(jω))=,H(e^(jω)),e^(jθ),θ为相位五、线性系统的稳定性与有限长度冲激响应(LTI)系统:1.有限长度冲激响应(LTI)系统的定义:输出的响应是输入信号与冲激响应的线性组合2.LTI系统的单位脉冲响应:h[n]={1,n=0;0,n≠0}3.稳定性的定义:输入有界时,输出也有界4.必要稳定性条件:系统的传递函数的所有极点都在单位圆内以上是《信号与线性系统分析》中的一些重要公式的汇总。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统常用公式
一、周期信号的傅里叶级数
1.三角函数形式的傅里叶级数: ,其中
, , 。
2.指数形式的傅里叶级数: ,其中 。
二、傅里叶变换
1.傅氏正变换:
2.傅氏逆变换:
3.傅里叶变换基本性质:
性质
时域
频域
1.线性
2.对称性
3.尺
7.时域微分
8.时域积分
三、拉普拉斯变换
(1) (2)
(3) (4)
(5) (6)
1.拉氏正变换:
2.拉氏逆变换:
3.拉氏变换的基本性质:
性质
时域
复频域
1.线性
2.时域微分
3.时域积分
4.时移
5.s域时移
6.尺度变换
四、z变换
1.z正变换:
2.z逆变换:
3.z变换的基本性质:
1.线性
2.位移
3.z域微分
4.z域尺度变换
五、卷积
1.连续时间信号的卷积:
2.离散时间信号的卷积:
3.卷积定理:
相关文档
最新文档