信号与系统公式归纳

合集下载

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统-公式

信号与系统-公式

r 2

C1k C0
k
j
Z域 尺度变换
z ak f k F , a z a a
k m f k z
f k k m
1,2 a jb
e j
k C cos k D sin k 或A k cos k , 其中Ae
z
1

km
Pm k Pm 1k
m r m
m 1

m 1
Pk P0 1
k Pm k Pm 1k
Pa
k
k

Pk P0 1
时域积分
f
1
t F 0
F j j
不等于特征根时 等于特征单根时
t
尺度变换
f at
1 a
F j
a
F j
1,2 j
C cos t D sin t 或A cos t , 其中Ae
j
C jD
时移特性
f t t0 e
jt0
r 重共轭复根
r 1 r 2 Ar 1t cos t r 1 Ar 2t cos t r 2
t A0t r 2 cos t 0 e
频移特性
f t e
j0 t
F j 0
微分方程 激励 f t
微分方程 特征根 单实根
不同特征根所对应的齐次解 齐次解
yh t
对称性
傅里叶变换的性质
时域f t F j 频域 F jt 2 f

信号与系统第2章信号的复数表示

信号与系统第2章信号的复数表示
π
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2

信号与系统-公式总结

信号与系统-公式总结

信号与系统-公式总结信号与系统是电子信息类专业中的一门核心课程,主要研究信号的产生、变换、传输和处理过程,以及系统对信号的响应和处理。

信号与系统的学习需要掌握大量的数学知识和公式,下面就是信号与系统中一些重要的公式总结。

1. 信号的分类和表示:- 狄拉克脉冲函数:δ(t)- 单位阶跃函数:u(t)- 奇函数和偶函数性质:x(t) = x(-t) 和 x(t) = -x(-t)- 周期信号的频率和周期关系:f = 1/T2. 傅里叶变换:- 连续时间傅里叶变换(CTFT):X(jω)= ∫[−∞,∞]x(t)e^(-jωt)dt- 傅里叶反变换:x(t) = (1/2π) ∫[−∞,∞]X(jω)e^(jωt)dω- 周期信号的傅里叶级数展开:x(t) = ∑[k=−∞,∞]c(k)e^(jωk0t) - 频谱为实数的信号的性质:X(jω) = X*(−jω)3. 拉普拉斯变换:- 连续时间拉普拉斯变换(CTLT):X(s) = ∫[−∞,∞]x(t)e^(-st)dt- 拉普拉斯反变换:x(t) = (1 / 2πj) ∫[σ-j∞,σ+j∞]X(s)e^(st)ds- 零极点的性质:如果x(t)的拉普拉斯变换X(s)的极点位于左半平面,那么系统是稳定的。

4. Z变换:- 离散时间Z变换(DTZT):X(z) = ∑[n=−∞,∞]x(n)z^(-n) - Z反变换:x(n) = (1 / 2πj) ∮ X(z)z^(n-1)dz- 零极点的性质:如果X(z)的极点的模都小于1,则系统是稳定的。

5. 系统函数和频率响应:- 系统函数:H(s) = Y(s) / X(s) = L{h(t)}- 系统函数的零极点分解:H(s) = (s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm)- 频率响应:H(jω) = |H(jω)|e^(jφ(ω))6. 系统的时域响应和频域响应:- 系统的单位冲激响应:h(t) = L^{-1}{H(s)} 或 h(n) = Z^{-1}{H(z)}- 系统的频域响应:H(s) = ∫[−∞,∞]h(t)e^(-st)dt 或 H(z) =∑[n=−∞,∞]h(n)z^(-n)7. 信号的卷积运算:- 连续时间信号的卷积:y(t) = x(t) * h(t) = ∫[−∞,∞]x(t-τ)h(τ)dτ - 离散时间信号的卷积:y(n) = x(n) * h(n) = ∑[k=-∞,∞]x(k)h(n-k)8. 频域中的乘法和卷积:- 频域乘法:y(t) = x(t)h(t) = x(t) ⊗ h(t)- 频域卷积:y(t) = x(t) * h(t) = X(jω)H(jω)9. 系统的稳定性:- 连续时间系统的稳定性:系统零极点的实部都小于0时,系统是稳定的。

信号与系统第2章信号的复数表

信号与系统第2章信号的复数表
设C 为复数, a 、b 为实数。 复数C a jb , a 为实部,b 为虚部 根据欧拉公式,可以有下列表示形式: 复数C | C | e j ,其中| C | a2 b2 为复数的模, tg b / a , 为复数的辐角, 验证:| C | cos() a2 b2 cos[arctg(b / a)] a
kC ka jkb
| kC| e j k 0
பைடு நூலகம்
kC

|
kC
|
e
j(
)
k 0
共轭:
C* a jb
C* C e j
虚轴 j
C
kC
实轴
虚轴 j
C
实轴
C*
做复数的数乘运算时,复数的实部和虚部均要与乘数 相乘并作为新复数的实部和虚部。
换一种说法,做复数的数乘运算时,复数的模要与乘 数的绝对值相乘,作为新复数的模,而辐角的值要依 据乘数的符号确定,如乘数为非负实数,则辐角不变, 否则辐角要偏移180度。
第二章 信号的复数表示
2.1 欧拉公式
欧拉公式
欧拉公式,定义:
ejwt coswt j sinwt e jwt cos(wt) j sin(wt) coswt j sinwt (e jwt )*
注: X * 表示 X 的共轭
2.2 信号的复数表示
1、复数形式
做复数的共轭运算时,复数的实部不变而虚部取负。
换一种说法,做复数的共轭运算时,复数的模不变, 而辐角取负。
2、复数的加法和乘法
C1 、 C2 为复数,C1 a1 jb1 ,C2 a2 jb2 C1 | C1 | e j1 ,C2 | C2 | e j2 复数加法: C C1 C2 (a1 a2) j(b1 b2) 复数乘法: D C1 C2 a1a2 ja1b2 jb1a2 j2b1b2 , 复数中定义 j2 1 ,故 D (a1a2 b1b2) j(a1b2 b1a2)

信号与系统公式大全

信号与系统公式大全

信号与系统公式大全1.傅里叶变换公式:F(ω) = ∫f(t)e^(-jωt)dtf(t)=∫F(ω)e^(jωt)dω2.傅里叶级数公式:f(t) = a_0/2 + ∑[a_n*cos(nωt) + b_n*sin(nωt)] a_n = (2/T)∫[f(t)*cos(nωt)]dtb_n = (2/T)∫[f(t)*sin(nωt)]dt3.傅里叶变换与傅里叶级数之间的关系:F(ω)=2π∑[a_n*δ(ω-nω_0)+b_n*δ(ω+nω_0)]a_n=f(nT)/Tb_n=04.系统均方根误差公式:E = √(∫[y(t)-x(t)]^2dt)5.窄带系统的频率响应公式:H(ω)=,H(0),*e^(jφ)φ=∠H(ω)-∠H(0)6.线性时不变系统的冲激响应公式:h(t)=L^{-1}[H(ω)]7.卷积公式:y(t)=h(t)*x(t)=∫h(τ)x(t-τ)dτ8.卷积定理:F_y(ω)=H(ω)F_x(ω)9.线性时不变系统的输入-输出关系公式:y(t)=x(t)*h(t)10.系统频率响应的幅度与相位关系:H(ω)=,H(ω),*e^(j∠H(ω))11.奇谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*sin(kωt)]dt12.偶谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*cos(kωt)]dt13.系统频率响应的单位脉冲响应关系:H(ω) = ∫h(t)e^(-jωt)dt以上是信号与系统中的一些重要公式,这些公式是理解和分析信号与系统的基础。

在学习时,我们可以通过掌握这些公式,理解它们的意义和用途,以便更好地应用在实际问题中。

同时,信号与系统还涉及到很多其他的公式和定理,如采样定理、拉普拉斯变换、Z变换等,这些内容超过1200字无法一一列举。

如果对这些公式有更进一步的了解,推荐阅读相关的教材和参考资料,以便更好地理解信号与系统的知识。

信号与系统概念公式总结

信号与系统概念公式总结

信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与线性系统分析总结

信号与线性系统分析总结
②两连续周期信号之和不一定是周期信号,而两周期序列之 和一定是周期序列。
•两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其 和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
总结
➢ 能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
-2 -1 0 1 2 3 ki
总结
例2 f1(k) ={0, 2 , 1 , 5,0} ↑k=1
f2(k) ={0, 3 , 4,0,6,0} ↑k=0
解:
3 , 4, 0, 6
×—————2 ,——1 ,—5 15 ,20, 0, 30
3 , 4, 0, 6 6 ,8, 0, 12 + ———————————— 6 ,11,19,32,6,30
总结
第二章 连续系统的时域分析
➢系统的时域求解,冲激响应,阶跃响应。
➢时域卷积: f1 (t) * f2 (t) f1 ( ) f2 (t )d
图解法一般比较繁琐,但若只求某一时刻卷积 值时还是比较方便的。确定积分的上下限是关
f1(-τ)
键。
f 1( τt )
2
f1(2-τ)
f1(t)、 f2(t)如图所示,已知f(t) = f2(t)* f1(t),求f(2) =?
*
d
n f 2 (t dtn
)
t
t
t
[
f1
(
)
*
f 2 ( )]d
[
f1 ( ) d ] *
f 2 (t)
f1 (t) *[
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为实虚奇
实信号的奇偶分解
帕斯瓦尔定理
双边拉普拉斯变换
单边拉普拉斯变换
双边Z变换
单边Z变换
公式
性质
信号
拉普拉斯变换
收敛域
信号
拉普拉斯变换
信号
Z变换
收敛域
信号
Z变换
线性
至少
至少
时移
(除了可能增加或除去0或 点)
尺度变换
S域平移
的比例伸缩
时域尺度变换
共轭
卷积
至少

至少
时域微分
至少
至少
S域微分
至少
时域积分
至少
积分/求和
(仅当 才为有限值且为周期的)
(仅当 才为有限值且为周期的)
(频域微分)
(频域微分)
实信号的共轭对称性
为实信号
为实信号
为实信号
为实信号
实偶信号
为实偶信号
为实偶函数
为实偶信号
为实偶数
为实偶信号
为实偶
为实偶信号
为实偶
实奇信号
为实奇信号
为纯虚奇函数
为实奇信号
为纯虚奇数
为实奇信号
为实虚奇
为实奇信号
初值定理
终值定理
若 , 且在 不包括任何冲激或高阶奇异函数,则
初值定理
若 , ,则
初值定理
连续时间基本傅立叶变换对
离散时间基本傅立叶变换对
信号
傅立叶变换
傅立叶级数系数
信号
傅立叶变换
1
1
拉普拉斯变换
Z变换
信号
变换
收敛域
信号
变换
收域
1
全部s
1
全部z
全部s
全部z,或除去0或
全部s
连续时间周期信号傅立叶级数
离散时间周期信号傅立叶级数
连续时间非周期信号傅立叶变换
离散时间傅立叶变换
公式
性质
连续时间周期信号
傅立叶级数系数
信号
傅立叶级数系数
信号
傅立叶变换
信号
傅立叶变换
周期为
线性
时移
频移
共轭
时间反转
时域尺度变换
( 周期为 )
(看成周期的,周期为mN)
周期卷积
相乘
微分/一阶差分
(时域微分)
相关文档
最新文档