基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真

合集下载

ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现1.1 扩展有限元方法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。

在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。

针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。

另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。

除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。

ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。

由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度;3.自适应的网格是不被支持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。

裂纹扩展的扩展有限元(xfem)模拟实例详解

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。

断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。

如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。

这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。

损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。

这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。

1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。

debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。

cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。

cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。

这样就避免了裂纹尖端的奇异性。

Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。

Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。

此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。

《2024年基于ABAQUS的裂纹扩展仿真软件及应用》范文

《2024年基于ABAQUS的裂纹扩展仿真软件及应用》范文

《基于ABAQUS的裂纹扩展仿真软件及应用》篇一一、引言随着现代工程领域对材料性能要求的不断提高,裂纹扩展仿真技术成为了研究材料力学行为的重要手段。

ABAQUS是一款功能强大的工程仿真软件,其基于有限元方法,广泛应用于各种复杂的工程问题。

本文将详细介绍基于ABAQUS的裂纹扩展仿真软件及其应用,分析其原理、特点及在实际工程中的应用效果。

二、ABAQUS裂纹扩展仿真软件原理ABAQUS裂纹扩展仿真软件基于有限元方法,通过构建材料的几何模型、设置材料属性、加载边界条件等步骤,实现对裂纹扩展过程的仿真。

软件采用先进的断裂力学理论,可以模拟裂纹的萌生、扩展、合并等过程,为研究材料的力学行为提供有力支持。

三、ABAQUS裂纹扩展仿真软件特点1. 高度灵活性:ABAQUS裂纹扩展仿真软件具有高度的灵活性,可以模拟各种复杂的裂纹扩展过程。

2. 准确性高:软件采用先进的断裂力学理论,能够准确模拟裂纹的萌生、扩展和合并等过程。

3. 易于操作:软件界面友好,操作简便,用户可以轻松构建几何模型、设置材料属性及加载边界条件。

4. 广泛适用性:ABAQUS裂纹扩展仿真软件可应用于各种工程领域,如航空航天、汽车制造、建筑等。

四、ABAQUS裂纹扩展仿真软件应用1. 材料研发:通过模拟裂纹扩展过程,可以帮助研究人员了解材料的力学性能,为材料研发提供有力支持。

2. 产品设计:在产品设计阶段,通过仿真分析可以预测产品在使用过程中可能出现的裂纹扩展问题,从而优化设计,提高产品的可靠性。

3. 结构安全评估:ABAQUS裂纹扩展仿真软件可用于对结构进行安全评估,预测结构在使用过程中可能出现的裂纹扩展问题,为结构的安全使用提供保障。

4. 实际工程应用:ABAQUS裂纹扩展仿真软件已广泛应用于航空航天、汽车制造、建筑等领域。

例如,在航空航天领域,通过仿真分析可以预测飞机、火箭等结构在极端环境下的裂纹扩展情况,确保其安全性能;在汽车制造领域,通过仿真分析可以优化汽车零部件的设计,提高其耐用性和安全性。

《2024年基于ABAQUS的裂纹扩展仿真软件及应用》范文

《2024年基于ABAQUS的裂纹扩展仿真软件及应用》范文

《基于ABAQUS的裂纹扩展仿真软件及应用》篇一一、引言随着工程领域的不断发展,裂纹扩展的仿真与分析变得日益重要。

ABAQUS是一款广泛应用的工程仿真软件,能够有效地模拟裂纹扩展过程。

本文将详细介绍基于ABAQUS的裂纹扩展仿真软件,并探讨其在实际应用中的价值。

二、ABAQUS裂纹扩展仿真软件概述ABAQUS裂纹扩展仿真软件是一款集成了先进数值方法和算法的工程仿真软件,能够模拟裂纹从初始阶段到扩展直至断裂的全过程。

该软件具有以下特点:1. 高度集成:ABAQUS软件集成了前处理、求解和后处理等模块,方便用户进行裂纹扩展的仿真分析。

2. 精确性:采用先进的有限元方法和断裂力学理论,能够精确地模拟裂纹的扩展过程。

3. 多样性:支持多种材料和几何模型,满足不同领域的仿真需求。

4. 可视化:软件支持三维可视化,能够直观地展示裂纹扩展的过程和结果。

三、ABAQUS裂纹扩展仿真软件的工作原理ABAQUS裂纹扩展仿真软件通过以下步骤进行裂纹扩展的模拟:1. 建模与网格划分:根据实际需求建立几何模型并进行网格划分,为后续的仿真分析做好准备。

2. 材料属性定义:定义材料的力学性能、断裂韧性等参数,为仿真分析提供依据。

3. 边界条件与载荷设置:设置模型的边界条件和载荷,模拟裂纹扩展过程中的实际情况。

4. 求解与分析:运用先进的有限元方法和断裂力学理论,对模型进行求解和分析,得到裂纹扩展的仿真结果。

四、ABAQUS裂纹扩展仿真软件的应用ABAQUS裂纹扩展仿真软件在工程领域具有广泛的应用价值,主要体现在以下几个方面:1. 材料科学研究:通过对材料的裂纹扩展过程进行仿真分析,研究材料的力学性能、断裂韧性等参数,为材料科学的研究提供有力支持。

2. 结构安全评估:通过对结构进行裂纹扩展仿真分析,评估结构的安全性能,预防结构破坏事故的发生。

3. 疲劳与耐久性分析:通过模拟裂纹在循环载荷下的扩展过程,评估结构的疲劳与耐久性能,为结构的优化设计提供依据。

裂纹扩展的扩展有限元(xfem)模拟实例详解

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。

断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。

如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。

这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。

损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。

这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。

1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。

debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。

cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。

cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。

这样就避免了裂纹尖端的奇异性。

Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。

Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。

此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。

利用ABAQUS模拟裂纹.ppt

利用ABAQUS模拟裂纹.ppt
• abaqus最擅长于动态非线性分析 • abaqus操作简单,使用方便
理论 LEFM Damage
技术方法 debond
cohesive element
collapse element
XFEM
应用类型
脆性断裂
韧性断裂
理 论
1.线弹性断裂力学 (LEFM)
模 型
2.基于牵引分离规则的损伤力学 (damage base traction-separation laws)
基于abaqus模拟热障涂层裂纹的 技术与方法
提纲
• 背景及目的 • abaqus简介 • abaqus中四种模拟裂纹技术的简介及实例 • 下一步计划
背景及目的
• 研究方向:CMAS对热 障涂层失效的影响。
• CMAS主要是影响热障 涂层应力和温度分布, 从而影响热障涂层脱落 速度。
• 热障涂层脱落主要是由 热障涂层中的裂纹状况 决定。
xfem在abaqus中的操作步骤实例结果开裂前开裂后不一定要设置预置裂纹裂纹可沿任意路径扩展不能输出裂纹扩展过程中的能量释放率特点结论由于热障涂层的裂纹大部分是脆性裂纹研究中能量释放率是一个重要的参考指标同时考虑操作过程难易情况因此选择abaqus中的debond技术来模拟cmas对热障涂层中裂纹的扩展的影响下一步计划用abaqus建立覆盖有cmas的热障涂层物理模型将物理模型转化为数值模型实现模型中裂纹的扩展thankyouforyourlistening
abaqus 技术
1.debond 2.cohesive element 3.collapes element 4.XFEM
1. debond
在abaqus中的操作步骤:
在分析步 之前设置 initial condition

《2024年基于ABAQUS的裂纹扩展仿真软件及应用》范文

《2024年基于ABAQUS的裂纹扩展仿真软件及应用》范文

《基于ABAQUS的裂纹扩展仿真软件及应用》篇一一、引言随着科技的不断进步,工程领域对材料性能的精确模拟和预测提出了更高的要求。

裂纹扩展作为材料失效的重要形式之一,其仿真研究在工程领域具有极高的价值。

ABAQUS是一款广泛应用于工程仿真分析的大型有限元软件,其在裂纹扩展仿真方面具有显著的优势。

本文将介绍基于ABAQUS的裂纹扩展仿真软件的开发及应用,以期为相关领域的研究提供参考。

二、ABAQUS裂纹扩展仿真软件的开发1. 软件开发背景及目标ABAQUS裂纹扩展仿真软件的开发旨在为工程领域提供一种高效、准确的裂纹扩展仿真工具。

该软件可实现对各种材料裂纹扩展过程的精确模拟,为材料性能的预测和优化提供有力支持。

2. 软件架构及功能该软件基于ABAQUS平台进行开发,采用有限元方法对裂纹扩展过程进行模拟。

软件具备以下功能:(1)材料模型:提供多种材料模型,如弹性、塑性、蠕变等,以满足不同材料仿真需求。

(2)网格划分:支持自动网格划分和手动调整,确保仿真结果的准确性。

(3)边界条件:可设置多种边界条件,如位移、力等,以满足仿真需求。

(4)裂纹扩展模拟:采用扩展有限元法(XFEM)对裂纹扩展过程进行模拟,实现高精度、高效率的仿真分析。

(5)后处理:提供丰富的后处理功能,如应力、应变、裂纹扩展路径等结果的查看和输出。

三、ABAQUS裂纹扩展仿真软件的应用1. 航空航天领域在航空航天领域,该软件可对飞机、火箭等航空航天器的结构进行裂纹扩展仿真分析,为结构设计和优化提供有力支持。

同时,该软件还可对航空航天材料进行性能预测和评估,为材料的选择和改进提供依据。

2. 汽车制造领域在汽车制造领域,该软件可对汽车零部件的裂纹扩展过程进行仿真分析,为汽车的结构设计和安全性能评估提供支持。

此外,该软件还可用于汽车新材料的研究和开发,为汽车制造业的创新发展提供技术支持。

3. 土木工程领域在土木工程领域,该软件可对建筑、桥梁、隧道等结构的裂纹扩展过程进行仿真分析,为结构的安全性和耐久性评估提供依据。

基于ABAQUS的裂纹扩展仿真软件及应用

基于ABAQUS的裂纹扩展仿真软件及应用

基于ABAQUS的裂纹扩展仿真软件及应用摘要:裂纹扩展仿真软件是材料力学领域中重要的工具之一。

本文介绍了一种基于ABAQUS的裂纹扩展仿真软件的开发和应用。

该软件结合ABAQUS的强大有限元分析功能和裂纹扩展理论,能够模拟裂纹在不同材料中的扩展过程,并可以用于评估裂纹扩展的速率、路径和影响因素等。

通过实例分析,展示了该软件在材料工程中的应用价值。

关键词:ABAQUS;裂纹扩展;仿真软件;应用1. 引言裂纹扩展是一种材料破坏的典型形式,对材料的强度、可靠性以及使用寿命有重要影响。

因此,对裂纹扩展的研究具有重要意义。

传统的实验方法虽然可以获得一些关于裂纹扩展的数据,但是实验周期长、成本高,不能满足大规模数据收集和分析的需求。

裂纹扩展仿真软件的开发就能够解决这一问题。

2. 基于ABAQUS的裂纹扩展仿真软件开发ABAQUS是一款功能强大的有限元分析软件,可以模拟材料的力学行为。

基于ABAQUS的裂纹扩展仿真软件利用ABAQUS的有限元方法,采用计算机辅助设计和数值计算方法,结合裂纹扩展理论,实现了裂纹扩展过程的模拟。

软件开发的核心是建立裂纹扩展模型。

首先,根据实际应用需求和研究目的,选取合适的材料模型,提取材料力学性质的参数。

然后,根据裂纹扩展行为的实际情况,选择适当的裂纹模型,并设计计算网格。

考虑到裂纹扩展过程中应力场的复杂性,需通过迭代计算得到裂纹尖端处的应力强度因子。

最后,计算得到裂纹扩展速率,并更新裂纹形貌。

3. 基于ABAQUS的裂纹扩展仿真软件应用基于ABAQUS的裂纹扩展仿真软件在材料工程领域中有着广泛的应用。

以下是一些典型的应用场景:3.1 裂纹扩展速率评估该软件可以模拟不同材料中的裂纹扩展过程,并可以根据计算结果评估裂纹扩展的速率。

通过对不同材料的裂纹扩展机制和速率的仿真,可以为材料的设计和改良提供参考。

3.2 裂纹扩展路径分析裂纹扩展仿真软件还能够模拟裂纹在材料中的传播路径。

对于复杂结构和材料,通过仿真软件可以预测裂纹传播的路径,并为结构强度和寿命分析提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真
————————————————————————————————作者: ————————————————————————————————日期:

基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真
齿轮传动是机械传动中最重要、应用最广泛的一种传动。

齿轮传动的主要优点有:传动效率高,工作可靠,寿命长,传动比准确,结构紧凑。

齿轮传动的失效一般发生在轮齿上,通常有齿面损伤和齿轮折断两种形式。

齿轮折断一般发生在齿根部位,包括疲劳折断和过载折断。

为了提高齿轮的可靠性和使用寿命,有必要对齿轮根部的断裂现象进行研究。

本文将从断裂力学角度出发,采用有限元的计算方法,研究齿根的断裂。

1 轮齿断裂分析
应力强度因子是描述裂纹尖端的一个参数,它与载荷大小以及几何有关,共有3种断裂模型(图1),在任何应力下的裂尖应力场为
ﻫ图1 断裂模型
式中:r为距裂尖的距离;θ=arctan(x2/x1);KI为Ⅰ型(张开)裂纹应力强度因子;KⅡ为Ⅱ型(张开)应力强度因子。

KⅢ为Ⅲ型(撕开)应力强度因子。

对于二维裂纹,假定KⅡ为0。

裂纹扩展方向根据条件аσθθ/аθ=0或者γγθ=0,得到
为了计算二维情况下的积分,ABAQUS定义了围线围绕着裂尖由单元组成的环形域(图2)。

图2 裂纹尖端环形域
计算J积分时,围线外的节点处值为0,围线内的所有节点(裂纹
扩展方向)的值为l,但外层单元的中间点除外,这些节点根据在单元中的位置被置于0和1之间。

裂纹扩展角度口可以参考裂纹平面计算,当裂纹扩展方向沿着初始裂纹方向时,θ=0;当K1>0时,θ<0;当K1<0时,θ>0。

裂纹扩展角度从q到n(图3)。

图3裂纹尖端扩展方向
2轮齿断裂有限元仿真
2.1应力分析
2.1.1 模型的建立
根据Pro/E参数化建模建立渐开线齿轮模型,选用的齿轮材料是普通的钢,弹性模量210GPa,泊松比为0.3(图4),然后定义一对啮合齿轮(图5),大齿轮齿数为100。

在齿轮啮合处定义3个接触对(图6)。

图4 齿轮模型

图5 一对啮合的齿轮
图6 定义3对接触对
在计算小齿轮最大应力位置和小齿轮轮齿啮合处最大受力点时,约束小齿轮内径,给大齿轮施加绕其轴心的扭矩180 T。

在计算K值时对齿轮进行网格划分,定义为二阶网格。

由于裂纹尖端的应力和应变是奇异的,因此在进行有限单元建模时,必须先在裂纹尖端位置定义奇异点,并且围绕裂纹的有限单元是二项式奇异单元,单元边上的中间点放到1/4边处(图7)。

图7 2—D断裂模型所采用的计算单元
2.1.2结果分析
通过计算得知,当大齿轮转动的过程中,在小齿轮齿根处有最大主应力,如图8所示。

建模时,人为将最大主应力单位的一个侧面垂直于过度圆角,得到初始裂纹位置以及方向,假定初始裂纹长度为0.2 mm(图9)。


图8小齿轮第2对接触处应力云图ﻫﻫ
图9 初始裂纹
当大齿轮转动的过程中,得到小齿轮上3对接触对处的受力分布图(图10,11,12)。

通过分析,可以找到小齿轮轮齿上最大受力点,即在大齿轮转动15.455°时,小齿轮第2对接触处为加载载荷位置,最大载荷X方向为—209×6 N,Y方向为655×6 N。

图10第1对接触受力分布图ﻫ
图11 第2对接触受力分布图ﻫﻫ
图12 第3对接触受力分布图
2.2裂纹扩展仿真研究
根据以上分析,得到初始裂纹位置以及方向,然后约束截取部位和内径,在齿轮啮合部位施加载荷,X方向为一209 × 6 N,Y方向为655×6N。

在用ABAQUS计算应力强度因子的过程中采用五围积分法,计算文件step中添加如下参数,控制围积分输出*Contour integral,crack name=H-Output-1_Crack-1,contours=5,crack tip nodes其中,原始裂纹的初始裂纹平面通过两节点矢量测量,得到[一1.250,1.561,0.0]。

每一步裂纹扩展的初始裂纹平面可以根据上一步的裂纹平面旋转疗得到。

扩展步长定义为0.2 mm,结果分别输出KⅠ,KⅡ和θ。

其裂纹扩展趋势如表1所示。

把表2中的KⅠ和KⅡ以及裂纹长度拟合成曲线(图13)。

表1裂纹扩展截图
表2 裂纹扩展数据
根据图13可知,裂纹长度在3.2 mm之内时,KⅠ值变化缓慢;在裂纹长度超过4.4mm后,KⅠ值迅速增加,裂纹快速扩展达到断裂。

图13 K值随裂纹长度变化
3结束语
本文提出了基于ABAQUS的研究裂纹扩展的方法,并考虑1对齿轮在啮合过程中轮齿受力是不断变化的,给定一定转矩后通过分析得到轮齿受力最大位置以及最大应力区域,从而得到假定裂纹源头和初始裂纹方向。

众所周知,齿根断裂前裂纹必然有一个扩展过程。

本文从最大周向应力角度,给出了裂纹扩展角的计算方法,同时结合一个实例,在ABAQUS软件中分步模拟了裂纹扩展趋势,为进行齿轮的可靠性设计和抗断裂设计打下了基础。

相关文档
最新文档