抗体人源化思路

合集下载

抗体人源化是什么?

抗体人源化是什么?

抗体人源化是什么?
抗体人源化,是重组抗体(单克隆抗体)生产制备实验研究的重要组成部分。

所谓抗体人源化,为从鼠源性抗体往人源性抗体发展的过程。

百余年前,抗体与抗原特异性结合、抗体被动免疫特性等原理的揭示,开辟了疾病诊断的新途径。

而1975年单克隆抗体技术的问世,加快了这一方法的广泛应用。

初期,临床上使用的单抗多数为鼠源性单抗,由于人和小鼠的种属特异性,鼠源性抗体的使用存在种种限制。

鼠抗体虽然对靶抗原是特异的,可以与靶抗原特异性结合,但它不能激活相应的人体效应系统,如抗体依赖的细胞介导的细胞毒作用(ADCC)、补体依赖的细胞毒作用(CDC)等,从而无法正常的发生抗原-抗体反应;此外,鼠抗体作为外源蛋白进入人体,会使人体免疫系统产生应答,产生以鼠抗体作为抗原的特异性抗体,即产生人抗鼠抗体(human anti.mouse antibody,HAMA),通常异源蛋白在人体内会很快得到清除,半衰期很短。

由于鼠源性抗体在临床应用上存在种种限制,人们利用重组DNA技术对鼠源抗体进行人源化改造,使抗体人源化。

人源化抗体的制备策略

人源化抗体的制备策略
转基因小鼠制备的人抗体, 其功效优于其他技术生产的抗正常人体蛋白单抗。 小鼠识别抗 原和动员抗原的抗体系统仍保持完整, 容易把人体蛋白识别为异物。 此外, 由于抗体是体内 产生的, 经历了正常装配和成熟过程, 从而保证成品具有较高的靶结合亲和力。 但转基因小 鼠也存在一些缺陷, 即转基因通常有体细胞突变和其他独特的序列, 导致不完整的人序列; 而 且, 由 于抗体是在小鼠体内装配, 因而产生的单抗具有鼠糖基化的模式,所以这些单抗最终并 不是全人源化的。
三、 完全人源化抗体
1. 抗体库技术 噬菌体抗体库技术的产生依赖于 3 项实验技术的发展: 一是 PCR 技术的发展使人们可以用一组引物 ( 免疫 球蛋白可变区中骨架部分的保守序列) , 通过 RT- PCR 直接从 B 淋巴细胞总RNA 克隆出全套免疫球蛋白可变 区基因, 从而使抗体库的构建简单易行; 二是噬菌体展示技术( 即将抗体通过与噬菌体外壳蛋白融合表达在 噬菌体的表面, 进而经亲和富集法筛选表达有特异活性的抗体) 的建立, 实现了基因型和表型的统一, 提供 了 高效率的筛选系统, 这是噬菌体抗体库技术的核心; 三是从大肠杆菌分泌表达有结合功能的免疫球蛋白 分子片段。
二、 CDR 移植的人源化抗体
鼠源性抗体 V 区中的 FR 仍残留一定的免疫原性, 这种抗体还远非真正的人源化 抗体, 有些还能产生很强的抗独特型反应。 为减少鼠源成分, 人们进一步用人的 FR 替代鼠 FR, 形成更为完全的人源化抗体, 即 除 了 3 个 CDR 是 鼠 源 的 外 , 其 余 全部是人源结构, 又称 CDR 移植抗体( CDR- grafted antibody) 或改型抗体 ( reshaped antibody) 。
人源化抗体的制备策略有哪些
目录一、 嵌ຫໍສະໝຸດ 抗体 二、CDR 移植的人源化抗体

什么是抗体人源化

什么是抗体人源化

什么是抗体人源化目前,用细胞工程制备人单抗在技术上和伦理上都存在一些难题,治疗性抗体的开发就集中在具有治疗前景的鼠源单抗上。

但是鼠源单抗对人体具有异源性反应,可诱发人抗鼠抗体效应(Human anti-mouse antibodies, HAMA反应),使得单抗的治疗效果明显滞后。

随着基因重组技术的发展和人们对抗体结构认识的深入,研究者们尝试对鼠源性抗体进行改造,致力于在保留与抗原结合的高亲和力的基础上,减少异源性抗体的免疫原性,推动抗体人源化研发的进程。

人源化抗体主要指以用基因克隆及DNA重组技术对鼠源单克隆抗体改造,重新表达产生的抗体。

其大部分氨基酸序列被人源序列取代,基本保留亲本鼠单克隆抗体的亲和力和特异性,又降低了其异源性,有利应用于人体。

嵌合抗体和CDR移植抗体根据人源化程度不同,单抗又可分为嵌合抗体(60%-70%人源化氨基酸序列)和CDR(complementarity-determining region)移植抗体(90%-95%人源化氨基酸序列)。

1、人-鼠嵌合抗体人-鼠嵌合抗体(chimeric antibody):第一代人源化抗体。

其是在基因水平上将鼠源单克隆抗体的V区和人抗体的C区(variable region, 可变区)连接,在合适的宿主细胞内表达可得到人-鼠嵌合抗体。

嵌合抗体用于人体所产生的HAMA反应比鼠源单抗明显减弱;另外,人源C区(constant region,恒定区)可更有效地介导人体一些免疫反应,如CDC(complement-dependent cytotoxicity, CDC, 依赖补体的细胞毒性作用),ADCC(antibody dependent cell mediated cytotoxicity, 抗体依赖的细胞介导的细胞毒性作用)。

2、CDR移植抗体嵌合抗体虽然可以部分解决异种蛋白的排斥问题,但由于其还含有鼠源V区,依然有可能会诱发HAMA反应,干扰抗体疗效,诱发超敏反应,在临床上其应用会受到一定限制。

抗体人源化的主要原理

抗体人源化的主要原理

抗体人源化的主要原理抗体人源化是指将动物来源的抗体(如小鼠抗体)转化为人源化的抗体,以增强其在人体内的稳定性和效力。

这一技术的研发和应用,为人类在治疗疾病方面带来了革命性的变革。

本文将介绍抗体人源化的主要原理,从基因工程的角度解释其实现方法。

抗体人源化的主要原理基于两个关键概念:可变区和框架区。

可变区决定了抗体的特异性,而框架区则决定了抗体的稳定性和结构。

在动物来源的抗体中,可变区和框架区通常相互关联,难以分离。

为了实现抗体人源化,需要对这两个区域进行调整和优化。

人源化抗体的设计通常涉及到克隆和表达人类免疫球蛋白基因。

其中,免疫球蛋白基因是一种编码抗体的基因,包括了可变区和框架区。

通过克隆和表达人类免疫球蛋白基因,可以获得人类免疫球蛋白。

为了使人源化抗体具有与动物来源抗体相似的特异性和效力,需要将动物来源抗体的可变区与人类免疫球蛋白基因的框架区进行重组。

这一步骤需要利用基因工程技术,将动物来源抗体的可变区和人类免疫球蛋白基因的框架区进行融合。

通过这种方式,可以将动物来源抗体的特异性与人类免疫球蛋白的结构相结合,实现抗体人源化。

在抗体人源化的过程中,还需要考虑到抗体的亲和力和稳定性。

亲和力是指抗体与靶标结合的紧密程度,而稳定性则是指抗体在人体内的耐受性和长期效果。

为了增强抗体的亲和力和稳定性,可以通过点突变和序列优化的方法进行改良。

点突变是指通过人工改变抗体分子中的一个或多个氨基酸残基,以增强其与靶标的结合能力。

序列优化则是指通过人工改变抗体分子的氨基酸序列,以增强其稳定性和生物活性。

抗体人源化的主要原理可以总结为:克隆和表达人类免疫球蛋白基因,重组动物来源抗体的可变区和人类免疫球蛋白基因的框架区,通过点突变和序列优化的方法进行改良,以获得具有高亲和力和稳定性的人源化抗体。

抗体人源化技术的发展和应用,为药物研发和临床治疗提供了新的途径。

相比于动物来源的抗体,人源化抗体在人体内的稳定性和效力更高,副作用更少。

抗体人源化技术进阶之路

抗体人源化技术进阶之路

抗体人源化技术进阶之路在过去的十几年中,FDA已经批准了近100种抗体用于人类的疾病治疗。

抗体药物经历了最初的多克隆抗体到单抗,并最终到基因工程的三个阶段。

20世纪80年代初,随着鼠单抗在临床的大量应用,人们发现异源的鼠单抗所具有的免疫原性会引起强烈的抗抗体反应(HAMA),从而使患者发生严重的过敏反应和毒副作用,使其药物失去其应有的疗效。

这使得之后的研究者致力于进行人源化改造,从而避免其在人体中免疫反应。

经过多年的努力,目前人们已经可以使用嵌合抗体技术、人源化抗体技术、全人抗体技术来大大降低抗体药物的HAMA反应,以满足临床的要求(图1)。

虽然嵌合抗体成功地保留了亲本小鼠抗体的特异性,降低了其免疫原性,但是V区的FR区和CDR区仍有可能诱导强烈的HAMA反应。

因此V区的人源化甚至全人源势在必行。

在过去的几十年中,人源化方法已经多样化,目前人们已经创建了以重构抗体、表面重塑抗体、链替换抗体为代表的多种人源化抗体技术。

图1. 抗体人源化重构抗体技术是英国剑桥大学Winter研究小组在1986年首先发明的,经过进一步完善,目前成熟的重构抗体技术路线是分析亲本鼠单抗的V区,确定CDR区和FR区,进而通过数据库检索比对和计算机同源建模,寻找出具有最大同源性的人的FR区模板,综合考虑确定FR区需要进行回复突变的关键残基,最终获得高亲和的人源化抗体(图2)。

目前在GeneBank 和IMGT等公用数据库中收录了大量的抗体的可变区基因共寻找最佳匹配的亲本鼠单抗的人FR序列。

确定需要保留和改变的关键残基目前仍然是重构抗体人源化抗体最关键也是最困难的一步,它要求我们对于抗体抗原复合物的空间结构要具有足够的知识积累。

当然目前人们已经总结出了一些需要保留的重要残基的规律,包括CDR两侧保守序列,有可能直接参与抗原结合位点以及对空间结构有重要影响的残基。

目前已被批准的上市的人源抗体中,基本全采用的重构抗体技术。

图2. 重构抗体技术CDR移植产生的人源化抗体对人类的免疫原性通常比小鼠或嵌合抗体低;但是,由于CDR不是人类的,它们仍然具有免疫原性。

抗体人源化的主要原理

抗体人源化的主要原理

抗体人源化的主要原理抗体人源化是一种生物技术手段,用于将动物源性抗体转化为人源性抗体,以提高其在临床应用中的效果和安全性。

这一技术的主要原理是通过基因工程方法将动物免疫系统中产生抗体的基因导入到人体细胞中,使其能够产生与动物源性抗体具有相同抗原特异性的人源性抗体。

抗体是人体免疫系统中的重要组成部分,其能够识别并结合到入侵体内的病原体或异常细胞,从而触发免疫反应,清除这些病原体或异常细胞。

然而,由于动物源性抗体与人体内抗原的差异,使用动物源性抗体在临床应用中存在一些问题,如免疫原性反应、抗体产量低、抗体结构与功能的不稳定等。

为克服这些问题,科学家们开展了抗体人源化的研究。

首先,需要从动物中提取抗体基因,通常是通过免疫动物模型来获得。

然后,利用基因克隆技术将这些抗体基因导入到人源细胞中,使其能够产生与动物源性抗体具有相同抗原特异性的抗体。

这一过程主要包括以下几个步骤:1. 抗体基因的选择和克隆:从动物的淋巴细胞中提取抗体基因,通常是通过PCR技术扩增目标基因。

然后,将扩增的基因序列进行纯化和克隆,得到抗体基因的克隆片段。

2. 基因导入和表达:将抗体基因导入到人源细胞中,通常是通过转染等技术实现。

导入后,细胞会利用其自身的机制进行基因的表达和蛋白质的合成,从而产生人源性抗体。

3. 抗体的筛选和优化:通过筛选和优化的方法,从转染的细胞中筛选出产生目标抗体的细胞株。

同时,可以通过基因工程方法对抗体的结构和功能进行优化,以提高抗体的亲和力和稳定性。

4. 抗体的大规模生产:一旦获得了产生目标抗体的细胞株,就可以进行大规模的抗体生产。

通常采用的方法是利用细胞培养技术,将产生目标抗体的细胞株培养在培养基中,通过细胞的分裂和增殖,大量产生目标抗体。

抗体人源化的主要原理是通过基因工程方法将动物免疫系统中产生抗体的基因导入到人体细胞中,使其能够产生与动物源性抗体具有相同抗原特异性的人源性抗体。

这一技术的应用广泛,不仅可以用于治疗各种疾病,如肿瘤、感染性疾病等,还可以用于研究和诊断。

抗体人源化的主要原理

抗体人源化的主要原理

抗体人源化的主要原理抗体人源化是一种重要的生物技术,它可以将动物源性抗体转化为人源性抗体,从而提高抗体的稳定性和效力。

抗体人源化的主要原理是通过基因工程技术将动物源性抗体的变异区域与人源性抗体的框架区域进行重组,从而得到具有人源性的抗体。

抗体是一种能够识别和结合特定抗原的蛋白质分子,它们在人体的免疫系统中起着重要的作用。

传统上,抗体是从动物体内提取的,如小鼠、兔子等。

然而,这些动物源性抗体在临床应用中存在一些问题,如免疫原性反应、免疫复合物形成等。

因此,研究人员开始探索将动物源性抗体转化为人源性抗体的方法。

抗体人源化的主要原理是通过基因工程技术将动物源性抗体的变异区域与人源性抗体的框架区域进行重组,从而得到具有人源性的抗体。

具体来说,抗体人源化的过程包括以下几个步骤:1. 克隆动物源性抗体的基因序列。

这一步骤通常通过PCR技术从动物体内提取的抗体细胞中扩增出抗体基因序列。

2. 选择人源性抗体的框架区域。

人源性抗体的框架区域是指抗体分子中不参与抗原结合的区域,它们具有较高的稳定性和低的免疫原性。

因此,选择人源性抗体的框架区域可以提高抗体的稳定性和降低免疫原性。

3. 将动物源性抗体的变异区域与人源性抗体的框架区域进行重组。

这一步骤通常通过PCR技术将动物源性抗体的变异区域与人源性抗体的框架区域进行连接,从而得到具有人源性的抗体。

4. 通过表达和纯化技术得到抗体。

将重组后的抗体基因序列导入表达系统中,通过表达和纯化技术得到具有人源性的抗体。

抗体人源化的主要优点是可以提高抗体的稳定性和效力,降低免疫原性反应和免疫复合物形成等问题。

此外,抗体人源化还可以减少动物实验的使用,从而降低动物伦理问题和成本。

总之,抗体人源化是一种重要的生物技术,它可以将动物源性抗体转化为具有人源性的抗体,从而提高抗体的稳定性和效力。

抗体人源化的主要原理是通过基因工程技术将动物源性抗体的变异区域与人源性抗体的框架区域进行重组。

随着生物技术的不断发展,抗体人源化技术将在临床应用中发挥越来越重要的作用。

抗体人源化的主要原理

抗体人源化的主要原理

抗体人源化的主要原理抗体人源化是一种重要的生物工程技术,通过对抗体进行基因工程改造,使其具备与人类抗体相似的结构和功能,从而增强其在治疗和诊断领域的应用。

抗体人源化的主要原理包括人源化基因设计、基因克隆、表达和纯化等步骤。

人源化基因设计是抗体人源化的关键步骤之一。

一般来说,人源化的抗体是通过将小鼠源抗体的可变区与人源抗体的框架区(FR)进行重组来实现的。

在设计人源化基因时,需要选择与小鼠源抗体可变区高度同源的人源抗体可变区作为替代。

这样,可以保留小鼠源抗体的结构和功能,同时减少人体免疫系统对抗体的排斥反应。

基因克隆是将人源化基因插入真核表达载体的过程。

首先,需要设计引物,引物的选择应根据人源化基因的序列设计,确保引物与目标基因的特异性和互补性。

然后,通过PCR反应扩增人源化基因,并经过酶切和连接等步骤,将目标基因插入真核表达载体。

最后,将重组的质粒转化到大肠杆菌中,经过筛选和测序,得到正确的克隆。

接下来,表达是指将基因在宿主细胞中转录和翻译成蛋白质的过程。

通常使用哺乳动物细胞作为表达宿主,如CHO细胞或HEK293细胞。

将重组的真核表达载体导入到宿主细胞中,通过细胞培养和优化培养条件,促使基因在细胞中进行表达。

随着基因的表达,抗体蛋白质会被合成和折叠成稳定的三维结构。

纯化是将表达的抗体蛋白质从细胞培养上清中提取和纯化的过程。

通常采用亲和层析、离子交换层析和凝胶过滤等技术,根据抗体的特性和目的,选择合适的纯化方法。

通过这些纯化步骤,可以去除杂质和其他蛋白质,最终得到高纯度的抗体。

抗体人源化技术的主要原理是通过基因工程手段将小鼠源抗体改造成人源化抗体,使其在结构和功能上更接近人类抗体。

这样做的目的是为了减少抗体治疗中的免疫反应和排斥反应,提高抗体的治疗效果和安全性。

抗体人源化技术的发展为临床医学带来了革命性的突破,为疾病的治疗和诊断提供了更多选择和可能性。

总结起来,抗体人源化的主要原理包括人源化基因设计、基因克隆、表达和纯化等步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重组抗IL-1R人源化抗体制备思路:
1.制备生产高亲和力的抗IL-1R鼠源单克隆抗体的杂交瘤细胞株;→
2.杂交瘤细胞总RNA提取,用RT-PCR 技术克隆鼠源单抗可变区基因;→
3.IL-1R鼠源单克隆抗体可变区氨基酸序列的分析;→
4.IL-1R鼠源单克隆抗体相应可变区片段(Fv)的模型构建;→
5.人抗体接纳体构架氨基酸序列的分析和选择;→
6.人源化抗体的设计和实际构建;
(设计、构建策略:
①模板替换,使用与鼠对应部分有较大同源性的人FR替换鼠FR;
②表面重塑,对鼠CDR和FR表面残基进行镶饰或重塑,使类似于人抗体CDR
的轮廓或人FR的型式;
③补偿变换,对起关键作用的残基进行改变,以补偿完全的CDR移植;
④定位保留,人源化单抗以人FR保守序列为模板,但保留了鼠源单抗可变
区中参与抗原结合的氨基酸残基,包括CDR和FR中的一些关键残基;)→
7.将构建的抗体重轻链基因电转化到CHO细胞中,制备获得抗IL-1R重组抗体;
8.通过体外和/或体内测定方式证实制备抗体具有高亲和力及高特异性;
9.获得产生抗IL-1R人源化抗体的单克隆细胞株。

相关文档
最新文档