最新第7章稳恒磁场习题(包含答案)
第7章稳恒磁场及答案教学总结

第7 章稳恒磁场及答
案
第七章稳恒电流
1、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S , S 边线所在平面的法
线方向单位矢量n 与B 的夹角为
,则通过半球面 S 的磁通量(取弯面向外为正)
(C) o I /4 . (D) 2 o I/3 .
4、如图,在一固定的载流大平板附近有一载流小线框能自由转 动或平
动.线框平面与大平板垂直.大平板的电流与线框中电流 方向如图所示,
则通电线框的运动情况对着从大平板看是:
(A)靠近大平板.
(B)顺时针转动. (C)逆时针转动. (D)离开大平板向外运动.
(A) r 2B . . (B) 2 r 2B . 2 2
(C) - r Bsin . (D) - r Bcos . 2、磁场由沿空心长圆筒形导体的均匀分布的 \ B 电流产生,圆筒半径为 R , x 坐标轴垂直圆筒 轴线,原点在中心轴线上.图(A)〜(E)哪一条 曲线表示B -x 的关系? AB (A) (D) 『(C) )R x O R x n 3、如图,两根直导线ab 和cd 沿半径方向被 接到一个截面处处相等的铁环上,稳恒电流
I 从a 端流入 而从d 端流出,则磁感强度 B 沿图中闭合路径L 的积分 B dl 等于 L
1 (A) 。
1 .
(B)-。
丨. 3 L。
习题7解答第7章稳恒磁场21题孙

习题7解答1.解:不是,在它的延长线上就不产生磁场。
2.解:如果一个电子在通过空间某一区域时不发生偏转,不能判断该区域无磁场,因为有可能存在与电子运动速度垂直的磁场,此时电子不受力,将维持惯性保持直线运动。
如果它发生偏转,也不能肯定那个区域存在着磁场,因为电场也可以使电子偏转.3解:此题利用场强叠加原理求解。
将无限长导线看作三部分组成:射线AB 、CD 和半圆弧BC ,三段导线在O 点产生的磁感应强度分别为(设垂直纸面向里为正方向):R40πμIB AB =RIB BC 40μ=0=CD B (因为O 点在CD 延长线上)故所求为:)11(40+=++=πμR I B B B B CD BC AB O 。
4解:与上题类似,将整段导线分成四部分:两个半圆和两段直线,并取垂直纸面向里为正方向。
两个半圆在O 点产生的磁感应强度分别为a I 40μ和bI40μ,两段直线的延长线都过O 点,所以在O 点产生的磁感应强度均为零。
故所求为:)11(40ba I B +=μ。
5解:与上题类似,将整段导线看成两部分组成:圆和无限长直导线,并取垂直纸面向里为正方向。
圆环导线在O 点产生的磁感应强度为2R0Iμ,无限长直导线在O 点产生的磁感应强度为R20πμI -。
故所求为:)11(20πμ-=R I B 。
6.解:此题关键点在于对匝数密度n 的理解:一匝宽为d ,则单位宽度内有n 匝(dn 1=)。
故所求为:)(103.1430T nI B -⨯==μ,方向平行于管轴。
7.解:把电子绕核运动看作圆电流,则电流强度I 为:aev e T e I πωπ22===于是圆电流中心磁感应强度为:)(T rIB 12.420==μ8.解:如题8图,旋转的带电圆盘可以看作一组同心圆电流,所求可以理解为这组圆电流在盘心处产生的磁感应强度之和。
取一半径为r 、宽为dr 的细环,以ω旋转起来形成的电流dI 为:rdr rdr Tq dI σωωππσ==∑=22该环在盘心处激发的磁感应强度dB 为:dr r dI dB σωμμ00212==整个圆盘在盘心处激发的磁感应强度B 为:R dr dB B Rσωμσωμ0002121===⎰⎰9.解:如题9图选取坐标,在θ处取一宽为d l 的无限长直电流dI :d d d d I I I I l R R R θθπππ===dI在轴上P 点产生的磁场dB 为:0002d d d d 222I I I B R R Rμμθπμθπππ===dB 的方向垂直于dl 所在的半径,且有RI B B x 202d cos cos d d πθθμ=θ=RI B B y 202d sin )2cos(d d πθθμ-=θ+π=题7图rd θx yd lθθdB xdB ydBR O题9图于是有502222cos d 6.3710T 2x I I B R Rππμμθθππ--===⨯⎰() 0)2d sin (2220=πθθμ-=⎰ππ-RI B y所以)(1037.65T i B B B y x -⨯=+=10.解:同轴电缆导体内的电流均匀分布,产生的磁场呈轴对称分布,可利用安培环路定理求磁感。
第7章 (稳恒磁场)习题课

二.载流导线和运动电荷所受磁场力
1. 洛伦兹力: 特征:方向垂直于v和B所构成的平 面;不作功,不改变电荷的速率和动能.
方向沿x方向 (若F为正值,则合力的方向与x轴正向一致)。
例5 半径分别为R1和R2的两个半圆弧与直径的两小段
构成的通电线圈abcda (如图所示),放在磁感强度
为B的均匀磁场中,平行线圈所在平面.则 线圈的磁矩大小为
1 2 I ( R2 R12 ) 2 ___________ ,
R2 a b
2r
0
2
R o r
dr
B
0
2
dr
0
R
0R
2
dr
例4. 均匀带电细直线AB, 电荷线密度为λ, 绕垂直于 直线通过O 点的轴以角速度ω 匀速转动( 线形状不 变, O 点在A B 延长线上) , 求: r dr (1 ) O点的磁感应强度B; O B a A (2 ) 磁矩m ; b (1)解 :在带电细线离O点r处取线元dr,其带 电量 dq dr,旋转时相当于一圆电流
2 r 2 R2 I 1 H 2 2 2r R R 3 2
1.解: 圆电流在O点产生的磁场 0 I 2 B1 方向× 2R 长直导线电流在O点产生的磁场 0 I 2 方向× B2 2R 导体管在O点产生的磁场由安培环路定理求得,
B3
0 I1
2 (d R)
方向×
圆心O点处的磁感应强度
第7章_稳恒磁场集美大学物理答案

班级____________ 姓名______________ 学号_________________ 第7-1 毕奥—萨伐尔定律 一.选择题:1.一根载有电流I 的无限长直导线,在A 处弯成半径为R 的圆形,由于导线外有绝缘层,在A 处两导线靠得很近但不短路,则在圆心处磁感应强度B 的大小为:( C ) (A) (μ0+1)I /(2πR ) (B) μ0I /(2πR ) (C) μ0I (-1+π)/(2πR )(D) μ0I (1+π)/(4πR )2.将半径为R 的无限长导体薄壁管(厚度忽略) 沿轴向割去一宽度为h (h <<R )无限长狭缝后,再沿轴向均匀地流有电流,其面电流密度为i (即沿圆周每单位长度的电流),则管轴线上磁感应强度的大小是:( A )(A) R h i πμ2/0 (B) 0(C) R h i πμ4/0(D) h i 0μ二、计算题:3.载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为R 的半圆,则圆心处的磁感应强度B 的大小为多少? 解: 选为正方向123B B B B →→→→=++1(14IB Rομπ=--2,42I B R ομπ=⋅ 34I B R ομ=∴)12(4-+=ππμοRIB4.用相同的导线组成的一导电回路,由半径为R 的圆周及距圆心为R /2的一直导线组成(如图),若直导线上一电源ε,且通过电流为I ,求圆心O处的磁感应强度。
解 设大圆弧的电流为1I ,小圆弧的电流为2I ,则12I I I +=,选为正方向根据电阻定律有1122l I Sl I S ερερ⎧=⎪⎪⎨⎪=⎪⎩可得:1122I l I l =大圆弧电流在圆心处O 产生的磁感应强度:大小为01114I l B R μπ=,方向为 小圆弧电流在圆心处O 产生的磁感应强度:大小为02224I lB Rμπ=,方向为⊗直导线电流在圆心处O 产生的磁感应强度:大小为0035cos cos 66242I I B R R μππππ⎛⎫=-= ⎪⎝⎭,方向为所以,总电流在圆心处O 产生的磁感应强度:312B B B B =++,大小为:02IB Rπ=,方向为5.如图,两线圈共轴,半径分别为1R 和2R ,电流分别为I 1 和I 2 ,电流方向相同,两圆心相距2 b ,联线的中点为O 。
第7章 稳恒磁场习题解答

40 第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=, A 40=I ,试求圆心O 点的磁感应强度的大小和方向。
解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。
由例7-2 圆弧 acb的磁感应强度 4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。
4120.8610TB B B -=-=⨯方向垂直纸面向外。
7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。
解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B。
根据叠加原理可知,O 点处磁感应强度321B B B B ++=。
01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。
7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IBlμ=⨯-=⨯习题7-1图41212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。
解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。
最新第7章稳恒磁场及答案

第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅LlB d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.n B α SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x 电流 圆筒II ab c d 120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案: 一 选择题1、D2、A3、D4、B5、2ln 20πIaμ6、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 x i B π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里. (3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμb b a x +π=ln 20δμ 方向垂直纸面向里.9、解:由安培环路定理: ∑⎰⋅=i I l Hd 0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ r >R 3区域: H = 0,B = 0x d x PO x党的十九届四中全会精神解读1.《中共中央关于坚持和完善中国特色社会主义制度、推进国家治理体系和治理能力现代化若干重大问题的决定》提出,到(),各方面制度更加完善,基本实现国家治理体系和治理能力现代化。
第7章 稳恒磁场习题解答

第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=,A 40=I ,试求圆心O 点的磁感应强度的大小和方向。
解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。
由例7-2 圆弧acb 的磁感应强度4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。
4120.8610TB B B -=-=⨯方向垂直纸面向外。
7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。
解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B 。
根据叠加原理可知,O 点处磁感应强度321B B B B++=。
01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为习题7-1图0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。
7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IB lμ=⨯-=⨯212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。
解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。
第7章稳恒磁场分析

第6章恒定磁场习题6.1 毕奥—萨伐尔定律一.选择题( )1、宽为a ,厚度可以忽略不计的无限长扁平载流金属片,如图6.1.1所示,中心轴线上方一点P 的磁感应强度的方向是(A) 沿y 轴正向. (B )沿z 轴负向.(B) (C) 沿y 轴负向. (D) 沿x 轴正向.( )2、两无限长载流导线,如图6.1.2放置,则坐标原点的磁感应强度的大小和方向分别为:(A)2μ0 I / (2 π a ) ,在yz 面内,与y 成45︒角. (B)2μ0 I / (2 π a ) ,在yz 面内,与y 成135︒角. (C)2μ0 I / (2 π a ) ,在xy 面内,与x 成45︒角.(D)2μ0 I / (2 π a ) ,在zx 面内,与z 成45︒角. ( )3、一无限长载流导线,弯成如图6.1.3所示的形状,其中ABCD 段在x O y平面内,BCD 弧是半径为R 的半圆弧,DE 段平行于O z 轴,则圆心处的磁感应强度为(A) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )-μ0 I / (4R )] .(B) j μ0 I / (4 π R ) -k [μ0 I / (4 π R ) + μ0 I / (4R )] . (C) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )+μ0 I / (4R )] . (D) j μ0 I / (4 π R ) -k [μ0 I / (4 π R )-μ0 I / (4R )] .( )4、一电流元i d l 位于直角坐标系原点,电流沿Z 轴方向,空间点P ( x , y , z )的磁感应强度沿x 轴的分量是:(A) 0.(B) –(μ0 / 4π)i y d l / ( x 2 + y 2 +z 2 )3/2 . (C) –(μ0 / 4π)i x d l / ( x 2 + y 2 +z 2 )3/2 .(D) –(μ0 / 4π)i y d l / ( x 2 + y 2 +z 2 ) .( )5、电流I 由长直导线1 沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2 返回电源 (如图6.1.4),若载流直导线1、2和三角形框在框中心O 点产生的磁感应强度分别用B 1 、B 2和B 3 表示,则O 点的磁感应强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0 .(B) B = 0,因为虽然B 1 ≠0,B 2 ≠0,但 B 1 +B 2 = 0 ,B 3 = 0. (C) B ≠ 0,因为虽然B 3 =0,但B 1 +B 2 ≠ 0. (D) B ≠ 0,因为虽然B 1 +B 2 = 0,但B 3 ≠0 . ( )6、如图6.1.5,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 =21B 2. (D) B 1 = B 2 /4. ( )7、边长为 l 的正方形线圈中通有电流I ,此线圈在A 点(见图6.1.6)产生的磁感强度B 为 (A)l Iπ420μ. (B) l Iπ220μ (C) lIπ02μ. (D) 以上均不对. ( )8、如图6.1.7所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,· ·xyz -aaII O图6.1.2y -R · · xz R I IO A BC DE图6.1.3 12 O a bcI I图6.1.4图6.1.5AII 图6.1.6则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零.( )9、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图6.1.8所示.问哪些区域中有某些点的磁感强度B 可能为零? (A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ.二.填空题 1、氢原子中的电子,以速度v 在半径r 的圆周上作匀速圆周运动,它等效于一圆电流,其电流I 用v 、r 、e (电子电量)表示的关系式为I = ,此圆电流在中心产生的磁场为B= ,它的磁矩为p m = .2、真空中稳恒电流I 流过两个半径分别为R 1 、R 2的同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入 (1) 如果两个半圆面共面,如图6. 1.9 (1),圆心O 点磁感应强度B 0 的大小为 ,方向为 ; (2) 如果两个半圆面正交,如图6.1.9(2),则圆心O 点磁感应强度B 0 的大小为 ,B 0的方向与y 轴的夹角为 .3、求图6.1.10中各图P 点的磁感强度B 的大小和方向三.计算题1、 如图,将一导线由内向外密绕成内半径为R 1 ,外半径为R 2 的圆形平面线圈,共有N 匝,设电流为I ,求此园形平面载流线圈在中心O 处产生的磁感应强度的大小.II · O O · I I x yz R 1R 2R 2 R 1 (1)(2)图6.1.91 2a bOI I · ·cI db a图6.1.7图6.1.8I aI2P IP a a图6.1.102.、宽为b的无限长平面导体薄板,通过电流为I,电流沿板宽度方向均匀分布,求:(1)在薄板平面内,离板的一边距离为b的M点处的磁感应强度;(2)通过板的中线并与板面垂直的直线上的一点N处的磁感应强度,N点到板面的距离为x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习八磁感应强度毕奥—萨伐尔定律(黄色阴影表示答案) 一、选择题
如图8.1所示,边长为l的正方形线圈中通有电流I,则此线圈在
: A
l
I
π
μ
2
2
0.(C)
l
I
π
μ
2
(D) 以上均不对.
电流I由长直导线1沿对角线AC方向经A点流入一电阻均匀分布的正方形导线框,再由D点沿对角线BD方向流出,经长直导线2返回电源, 如图8.2所示. 若载流直导线1、2和正方形框在导线框中心O点产生的磁感强度分别用B1、B2和B3表示,则O点磁感强度的大小为:A
(A) B = 0. 因为B1 = B2 = B3 = 0 .
(B) B = 0. 因为虽然B1 ≠ 0, B2 ≠ 0, B1+B2 = 0, B3=0
(C) B ≠ 0. 因为虽然B3 = 0, 但B1+B2 ≠ 0
(D) B≠ 0. 因为虽然B1+B2 = 0, 但B3 ≠ 0
3. 如图8.3所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I,这三条导线在正三角形中心O
(D)
B =3μ0I/(3πa) . .
如图8.4所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O点的磁感强度大小等于:C
(A)
R
I
π
μ
2
0.
(B)
I
μ
.
(D) )
1
1(
4
π
μ
+
R
I
.
二、填空题
如图8.6所示,在真空中,电流由长直导线1沿切向经a点流
入一电阻均匀分布的圆环,再由b点沿切向流出,经长直导线2返
回电源.已知直导线上的电流强度为I,圆环半径为R,∠aob=180︒.
则圆心O点处的磁感强度的大小B = .0
图8.1
图8.2
图8.3
图8.4
图8.6
练习九 毕奥—萨伐尔定律(续)
一、选择题
1. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为θ,如图9.1所示. 则通过半球面S 的磁通量
为:
(A) πr 2B . (B) 2πr 2B .
(C) -πr 2B sin θ. (D) -πr 2
B cos θ.
如图9.4,载流圆线圈(半径为R )与正方形线圈(边长为a )通有相同电流I ,若两线圈中心O 1与O 2处的磁感应强度大小相同,则半径R 与边长a
(A) 1:1. (B) π2:1.
三、计算题1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图9.6
所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1
回路的磁通量与通过S 2回路的磁通量之比. (此题作为悬
赏题)
练习十 安培环路定理
一、选择题
2. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为
B 1,圆柱体外(r >R )的磁感强度为B 2,则有:
(A) B 1、B 2均与r 成正比. (B) B 1、B 2均与r 成反比. (C) B 1与r 成正比, B 2与r 成反比. (D) B 1与r 成反比, B 2与r 成正比.
在图10.1(a )和10.1(b )中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 2和I 2,其分布相同,且均在真空中,但在图10.1(b )中,L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:
(A)
⎰⋅1
d L l B =⎰⋅2
d L l B , 21
P P B B =. (B) ⎰⋅1
d L l B ≠⎰⋅2
d L l B , 21
P P B B
=.
图9.1
图9.4
图9.6
P 1
L (a )
3 P 2 (b )
图10.2
(D) ⎰⋅1
d L l B ≠⎰⋅2
d L l B , 2
1
P P B B
≠.
如图10.2所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰
⋅L
l B d 等于:
(A) μ0I . (B) μ0I /3. (C) μ0I /4. (D) 2
μ0I /3 . 如图
10.3,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路
(B) 0 d =⋅⎰L
l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰L
l B ,且环路上任意点B ≠0. (D) 0 d ≠⋅⎰L
l B ,
且环路上任意点B =0.
二、填空题
两根长直导线通有电流I ,图10.4所示有三种环路,
对于环路a ,
=⋅⎰a L l B d ;
对于环路b , =⋅⎰b
L l B d ;
对于环路c , =⋅⎰
c
L l B d . μ0I , 0, 2μ0I .
练习十一
安培力 洛仑兹力
一、选择题
如图11.1所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B
(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.
5. 一电子以速度
v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是
图10.4
图10.3
图11.1
(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v. (D) 反比于B ,反比于v
练习十三 静磁场习题课
一、选择题
1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量Φm 与磁场磁感强度B 的大小的关系曲线是图13.1中的哪一条 D
边长为l 的正方形线圈,分别用图13.2所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:
(A) B 1 = 0 . B 2 = 0.
(B) B 1 = 0 . l I
B πμ0222=
l
π01
l I
πμ0222.
如图13.3, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA '轴转动,导线通电转过θ 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即θ 角不变),可以采用哪一种办法?
(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2.
(D) 将磁场B 减少1/4,线框中电流强度减少1/4.
《大自然的色彩》教案
教学目标:
1、知识性目标:能够了解和感受春天给自然界带来的变化,知道表现春天的常用色彩。
2、情感性目标:感受利用各种媒材,大胆表现所带来的乐趣。
培养学生热爱大自然、热
图13.3
图13.2
l
(1)
d
图
13.1
(A)
(D) (C)
(B)
(E)
爱生活的情感。
3、能力性目标:培养学生对自然界的观察能力,对色彩的感受能力和识别能力。
教学重点与难点:
重点:观察和记忆色彩,能够利用各种方法进行表现,并体验到活动的乐趣。
难点:表现方法的运用以及整体色彩的把握及创新表现。
课前准备:
教师:电脑设备、各种颜色彩纸、工具材料、板刷。
学生:彩笔、各色彩纸、水粉色、有关春天色彩的图片材料。
教学设计:
1、游戏导入。
(1)教师说:我们先来听一首歌曲,你可以跟着音乐唱起来也可以动起来。
你知道这首歌唱的是什么吗?《春天在哪里?》。
(2)激发学生的兴趣,对原有的自然界的体验产生回忆,启发学生的想象。
2、展示图片。
(1)教师用多媒体课件展示春天的画面。
(2)学生观察、记忆、想象,感受春天的色彩。
3、交流。
(1)教师说:同学们,想一想,你能用什么方法来描述一下春天。
(2)教师启发学生除了绘画方法还可以通过音乐、诗歌、舞蹈等多种方法来表现美丽的春天,并组织学生讨论。
4、欣赏感受。
(1)教师利用多媒体展示用不同方法表现的春天的色彩。
(2)教师对相关知识进行总结:在我们的绘画作品中点、线、面是美术的最基本的语言,有了它们,我们的作品就更加丰富多彩了。