超声波测距总结报告

合集下载

超声波测距实验报告

超声波测距实验报告

超声波测距实验报告1. 实验目的1.掌握超声波测距的基本原理;2.熟悉超声波测距仪器的使用;3.培养实验操作能力和数据处理能力。

2. 实验原理超声波测距是利用超声波在空气中的传播速度和反射原理,通过测量超声波发射和接收之间的时间间隔来计算被测物体与测距仪之间的距离。

超声波在空气中的传播速度约为 340 m/s。

3. 实验器材与步骤3.1 器材1.超声波测距仪;2.连接线;3.测量物体。

3.2 步骤1.连接超声波测距仪与电源;2.打开超声波测距仪,进行自检;3.将测量物体放置在合适的位置;4.调整超声波测距仪的测量范围;5.记录测量数据;6.分析数据,计算距离。

4. 实验数据与分析本实验共进行五次测量,记录数据如下:序号 | 测量距离(cm) | 误差(cm) |— | ———— | ——– |1 | 150.0 | 2.0 |2 | 152.5 | 1.5 |3 | 148.0 | 2.0 |4 | 151.0 | 1.0 |5 | 149.5 | 1.5 |平均距离 = (150.0 + 152.5 + 148.0 + 151.0 + 149.5) / 5 = 150.0 cm最大误差 = 2.0 cm最小误差 = 1.0 cm5. 实验总结本次实验掌握了超声波测距的基本原理和操作方法,通过对测量数据的分析,得出被测物体与测距仪之间的平均距离为 150.0 cm,最大误差为 2.0 cm,最小误差为 1.0 cm。

实验结果表明,超声波测距技术在实际应用中具有较高的准确性和可靠性。

6. 建议与改进1.在实验过程中,要确保测量物体与测距仪之间的距离在测距仪的测量范围内;2.提高实验操作技巧,减小人为误差;3.后续可以尝试使用不同类型的超声波测距仪进行实验,比较其性能和精度。

7. 实验拓展7.1 超声波测距的应用领域超声波测距技术广泛应用于工业、农业、医疗、交通、安防等领域,例如:1.工业领域:测量物体的尺寸、厚度、距离等;2.农业领域:测量土壤湿度、作物高度等;3.医疗领域:测量人体内部器官的距离、厚度等;4.交通领域:车辆测距、速度检测等;5.安防领域:监控设备、报警系统等。

超声测距模块实验报告

超声测距模块实验报告

一、实验目的1. 理解超声波测距的基本原理。

2. 掌握超声波测距模块的硬件连接与软件编程。

3. 学习使用超声波测距模块进行距离测量。

4. 了解超声波测距在实际应用中的优势与局限性。

二、实验原理超声波测距是利用超声波在介质中传播的速度和距离之间的关系来测量距离的一种方法。

当超声波发射器发出超声波时,它会遇到障碍物并反射回来。

通过测量发射和接收超声波之间的时间差,可以计算出障碍物与发射器之间的距离。

超声波在空气中的传播速度大约为340m/s。

设超声波发射器与接收器之间的距离为d,超声波从发射器传播到障碍物并返回所需的时间为t,则有:\[ d = \frac{v \times t}{2} \]其中,v为超声波在空气中的传播速度,t为超声波往返所需的时间。

三、实验设备1. 超声波测距模块HC-SR042. STM32单片机开发板3. 调试工具4. 电源5. 导线四、实验步骤1. 硬件连接(1)将超声波测距模块的VCC、GND、TRIG和ECHO引脚分别连接到STM32单片机的3.3V、GND、GPIO和中断引脚。

(2)将STM32单片机的电源和地连接到实验平台的电源。

2. 软件编程(1)编写STM32单片机的程序,用于控制超声波测距模块。

(2)程序主要包含以下功能:- 初始化GPIO和中断引脚;- 发送触发信号;- 读取回响信号;- 计算距离;- 显示距离。

(3)使用HAL库函数实现上述功能。

3. 调试与测试(1)将程序烧录到STM32单片机中。

(2)使用调试工具检查程序运行情况。

(3)调整超声波测距模块的位置,测试不同距离下的测量结果。

五、实验结果与分析1. 实验数据通过实验,得到以下数据:| 距离(cm) | 测量值(cm) || :--------: | :--------: || 10 | 9.8 || 20 | 19.7 || 30 | 29.6 || 40 | 39.5 || 50 | 49.4 |2. 数据分析实验结果表明,超声波测距模块的测量精度较高,误差在±1cm以内。

超声波测距仪-实习总结

超声波测距仪-实习总结

超声波测距仪-实习总结第一篇:超声波测距仪-实习总结电子实习总结2010-2011学年第一学期,08级电气工程及其自动化专业电子实习与09级电气工程及其自动化专业数字电子技术课程设计,所采用的题目均是“超声波无线测距仪设计”。

该题目是贯彻机电系教学改革精神,根据实践教学要求,新近设计研发的实习内容。

经过两周的实习过程,对于其中一些进步的方面与发现的问题进行总结,以便为接下来的教改工作提供有价值的参考。

对于此次设计过程,一些收获令人满意:第一,从教师团队的角度来说,是一次比较成功的锻炼机会。

无论对于设计研发的老师,还是对参与实习指导的老师,都从中得到了全方面的提高。

相对于原先的教学套件,本设计从理论基础,到软硬件设计,老师们都能够做到深刻理解,熟练掌握。

因此在实习过程中,指导的针对性相较以往,有了明显的进步。

学生反响较好。

同时,在实习结束时进行答辩,有效的提高了教师对于学生掌握实践效果的认识,能够更好的指导下一步的工作。

第二,从学生角度来说,一周的时间,严格按照实习大纲安排,进行了全方面的理论学习,到元器件焊接,最后进行设计分组答辩。

时间紧凑,内容充实。

从实习答辩过程与实习报告的反馈来看,大家都能够做到主动思考,积极求解。

尤其是对于一些成绩相对较差的学生,在实习过程中表现非常主动,令人印象深刻。

尤其在答辩过程中,将固定的“老师问——学生答”方式实现反转,变成“学生问——教师答——教师问——学生答”,用答疑的方式,鼓励学生们发现问题,解决问题。

这种尝试,对于实习过程总结与提高意义重大。

尤其是鼓励每名同学积极主动的寻找问题,用启发式的问题促进每个人去思考问题,符合我们教学改革的目的。

同时,让每名老师的身份由“考官”变为考生,也能够很好的促进教师们的学习能力,为更好的了解学生所想,打下基础。

建议将此经验进行系内教研讨论。

第三,从系部角度来说,由于教学改革势在必行,因此由任课教师设计有针对性的实习内容也是大势所趋。

实训报告超声波测距仪

实训报告超声波测距仪

一、实训目的本次实训旨在通过实际操作,掌握超声波测距仪的设计、制作和调试方法,了解超声波测距的原理和特点,提高动手能力和创新思维。

二、实训内容1. 超声波测距原理超声波测距仪是利用超声波的传播速度和反射原理进行距离测量的设备。

当超声波发射器发射超声波信号后,遇到障碍物会反射回来,接收器接收反射信号,通过计算超声波往返时间,即可得到距离。

2. 超声波测距仪设计(1)硬件设计本次实训所设计的超声波测距仪主要由以下模块组成:1)超声波发射模块:采用超声波发射器产生40kHz的超声波信号。

2)超声波接收模块:采用超声波接收器接收反射回来的超声波信号。

3)单片机模块:采用AT89S51单片机作为主控制器,负责控制超声波发射、接收、数据处理和显示。

4)显示模块:采用四位共阳数码管显示距离。

5)电源模块:采用稳压电源为整个系统供电。

(2)软件设计1)初始化:设置单片机工作状态,初始化各个模块。

2)超声波发射:单片机控制超声波发射器发射超声波信号。

3)超声波接收:单片机控制超声波接收器接收反射回来的超声波信号。

4)数据处理:计算超声波往返时间,根据超声波在空气中的传播速度,计算出距离。

5)显示:将计算出的距离显示在数码管上。

3. 超声波测距仪调试(1)硬件调试:检查各个模块的连接是否正确,确保电路正常工作。

(2)软件调试:编写程序,调试单片机控制程序,使超声波测距仪能够正常工作。

三、实训过程1. 硬件制作(1)按照电路图连接各个模块,焊接电路板。

(2)组装超声波发射器、接收器和数码管。

2. 软件编写(1)根据超声波测距原理,编写程序实现超声波发射、接收、数据处理和显示功能。

(2)调试程序,确保超声波测距仪能够正常工作。

3. 调试与测试(1)检查电路连接是否正确,确保电路正常工作。

(2)调试单片机控制程序,使超声波测距仪能够正常工作。

(3)进行实际测量,测试超声波测距仪的测量精度和稳定性。

四、实训结果与分析1. 测量精度通过实际测量,超声波测距仪的测量精度在1厘米以内,满足日常使用要求。

超声测距实验报告

超声测距实验报告

超声测距实验报告一、实验目的本次超声测距实验的主要目的是研究和掌握利用超声波进行距离测量的原理和方法,并通过实际操作和数据分析,评估测量系统的精度和可靠性。

二、实验原理超声波是一种频率高于 20kHz 的机械波,其在空气中传播时具有良好的指向性和反射特性。

超声测距的基本原理是利用超声波在发射后遇到障碍物反射回来的时间差来计算距离。

具体计算公式为:距离=(超声波传播速度×传播时间)/ 2 。

在常温常压下,空气中超声波的传播速度约为 340 米/秒。

通过测量超声波从发射到接收的时间间隔 t,就可以计算出距离。

三、实验仪器与材料1、超声测距模块:包括发射探头和接收探头。

2、微控制器:用于控制超声模块的工作和处理数据。

3、显示设备:用于显示测量结果。

4、电源:为整个系统供电。

5、障碍物:用于反射超声波。

四、实验步骤1、硬件连接将超声测距模块的发射探头和接收探头正确连接到微控制器的相应引脚。

连接电源,确保系统正常供电。

将显示设备与微控制器连接,以便显示测量结果。

2、软件编程使用相应的编程语言,编写控制超声模块工作和处理数据的程序。

实现测量时间的计算和距离的换算,并将结果输出到显示设备。

3、系统调试运行程序,检查系统是否正常工作。

调整发射功率和接收灵敏度,以获得最佳的测量效果。

4、测量实验将障碍物放置在不同的距离处,进行多次测量。

记录每次测量的结果。

五、实验数据与分析以下是在不同距离下进行多次测量得到的数据:|距离(米)|测量值 1(米)|测量值 2(米)|测量值 3(米)|平均值(米)|误差(米)||||||||| 05 | 048 | 052 | 050 | 050 | 000 || 10 | 095 | 105 | 100 | 100 | 000 || 15 | 148 | 152 | 150 | 150 | 000 || 20 | 190 | 205 | 195 | 197 | 003 || 25 | 240 | 255 | 245 | 247 | 003 || 30 | 290 | 305 | 295 | 297 | 003 |通过对实验数据的分析,可以看出在较近的距离(05 米至 15 米)内,测量误差较小,基本可以准确测量。

超声波测距仪实训报告

超声波测距仪实训报告

超声波测距仪实训报告一、实训目的本次超声波测距仪实训的主要目的是让我们深入了解超声波测距的原理和应用,通过实际操作和调试,掌握超声波测距仪的设计、制作和调试方法,提高我们的实践动手能力和解决问题的能力,同时培养我们的团队合作精神和创新思维。

二、实训原理超声波测距的原理是利用超声波在空气中的传播速度和往返时间来计算距离。

超声波发生器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

已知超声波在空气中的传播速度为 340 米/秒,根据计时时间 t 就可以计算出发射点距障碍物的距离 s,即 s = 340t/2。

三、实训设备与材料1、超声波传感器模块(包括发射探头和接收探头)2、单片机开发板3、显示屏4、杜邦线若干5、面包板6、电源适配器四、实训步骤1、硬件电路设计将超声波传感器模块与单片机开发板进行连接,使用杜邦线将发射探头连接到单片机的某个输出引脚,接收探头连接到单片机的某个输入引脚。

将显示屏连接到单片机的相应引脚,以便显示测量到的距离值。

2、软件编程选择合适的编程语言和开发环境,如 C 语言和 Keil 软件。

编写初始化程序,包括单片机引脚的配置、定时器的设置等。

编写超声波发射和接收的控制程序,实现超声波的发射和接收,并计算往返时间。

根据距离计算公式,将计算得到的距离值转换为合适的格式,并通过显示屏进行显示。

3、系统调试硬件调试:检查电路连接是否正确,电源是否正常,传感器是否工作正常等。

软件调试:通过单步调试、设置断点等方式,检查程序的执行流程和计算结果是否正确。

综合调试:将硬件和软件结合起来进行调试,不断修改和优化程序,直到系统能够稳定准确地测量距离。

五、实训过程中遇到的问题及解决方法1、测量误差较大问题描述:测量得到的距离值与实际距离存在较大偏差。

原因分析:可能是由于超声波在空气中的传播受到温度、湿度等环境因素的影响,也可能是由于硬件电路的干扰或者软件算法的不完善。

超声波测距实习报告

超声波测距实习报告

一、实习背景随着科技的不断发展,超声波测距技术逐渐在各个领域得到广泛应用。

为了提高自身实践能力,了解超声波测距技术在实际应用中的原理和操作,我参加了本次超声波测距实习。

二、实习目的1. 了解超声波测距的基本原理及工作流程;2. 掌握超声波测距仪的使用方法及注意事项;3. 培养动手能力和团队合作精神;4. 提高对超声波测距技术在实际应用中的认识。

三、实习内容1. 超声波测距原理及工作流程超声波测距是利用超声波在介质中传播的速度和反射原理来测量距离的一种技术。

当超声波发射器发出超声波后,在遇到障碍物时,部分超声波会被反射回来。

通过测量发射超声波和接收反射超声波之间的时间差,可以计算出障碍物与测距仪之间的距离。

超声波测距工作流程如下:(1)发射器发射超声波;(2)超声波遇到障碍物后反射回来;(3)接收器接收反射回来的超声波;(4)计算发射和接收之间的时间差;(5)根据超声波在介质中的传播速度,计算出障碍物与测距仪之间的距离。

2. 超声波测距仪的使用方法及注意事项(1)使用前,确保超声波测距仪的电源充足,避免因电量不足导致测量误差;(2)将测距仪放置在平稳的表面上,避免因震动导致测量误差;(3)调整测距仪的量程,使其适应被测物体的距离;(4)根据需要,调整测距仪的发射角度,确保超声波能够有效传播;(5)在测量过程中,避免测距仪受到其他信号的干扰;(6)测量完成后,关闭测距仪,确保设备安全。

3. 实际操作在实习过程中,我们使用超声波测距仪对实验室内的物体进行了测量。

具体操作如下:(1)将测距仪放置在平稳的桌面上;(2)调整测距仪的量程,使其适应被测物体的距离;(3)调整测距仪的发射角度,确保超声波能够有效传播;(4)按下测距仪的测量按钮,开始测量;(5)观察测距仪的显示屏,读取测量结果;(6)重复以上步骤,对多个物体进行测量。

四、实习心得通过本次超声波测距实习,我深刻认识到以下几方面:1. 超声波测距技术在实际应用中的重要性;2. 掌握超声波测距仪的使用方法及注意事项对于提高测量精度至关重要;3. 动手能力在实践过程中得到了锻炼,为今后的工作积累了宝贵经验;4. 团队合作精神在实习过程中得到了体现,为今后的团队协作打下了基础。

超声波测距实验报告

超声波测距实验报告
超声波发射器发射一组超声波脉冲 脉冲遇到物体后反射回来 接收器接收到反射回来的脉冲,并计算时间差 根据时间差和声波速度,计算出物体距离
超声波测距模块工作原理
超声波发射器发射 一组超声波脉冲
脉冲遇到物体后反 射回来
超声波接收器接收 反射回来的脉冲
通过计算发射和接 收脉冲之间的时间 差,得到物体与传 感器之间的距离
编写Arduino程序,控制 超声波传感器发送和接收 信号
连接Arduino板与电脑, 上传程序并运行
调整超声波传感器的角度 和位置,确保测量距离准 确
开始测量
准备超声波传感器和Arduino板 连接超声波传感器和Arduino板 编写程序,设置触发和接收引脚 启动Arduino板,开始测量距离
数据记录和处理
添加标题
添加标题
添加标题
添加标题
拓展应用场景:将超声波测距技术 应用于更多领域,如自动驾驶、智 能机器人等。
降低成本:通过优化设计和生产工艺, 降低超声波传感器和测距系统的成本, 使其更广泛地应用于各种领域。
感谢您的观看
汇报人:XX
实验步骤
准备实验器材
超声波传感器 添加标题
连接线 添加标题
添加标题 Arduino开发板
添加标题 面包板
跳线 添加标题
测量工具 添加标题
添加标题 电脑和软件
添加标题 实验环境
搭建实验装置
准备超声波传感器、 Arduino板、面包板、跳 线等材料
连接超声波传感器与 Arduino板的引脚
连接Arduino板与面包板 的引脚
学会使用超声波传感器进行距离测 量
学会分析实验数据,得出结论
掌握数据处理和分析技巧
学习如何使用超声波传感器进行距 离测量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子技术实验课程设计超声波测距系统总结报告自03胡效赫2010012351一、课题内容及分析首先根据课程所给的几个题目进行选择,由于自己最近在做电子设计大赛的平台设计,希望对超声波测距在定位方面应用有更详尽的了解,所以选择课题三——超声波测距作为课程设计,内容如下:对课题进行分析:实验提供超声波传感器T40-16和R40-16,利用面包板和小规模芯片搭接电路,实现距离的测量及显示。

大致思路即驱动发射端发出超声波,接收端收到返回的脉冲进行处理与计算得到测量距离并通过数码管和蜂鸣器显示。

二、方案比较与选择由于超声波测距方案原理基本相同,只要能够检测出发射到接收的时间,并通过相应计算就可以得到所测距离。

所以问题大致分为驱动发射端、接收端检测、间隔时间计算与计算结果显示四部分。

具体的方案设计如下:闸门脉冲源产生基准宽度为T 的闸门脉冲,该脉冲一方面控制计数电路的计数启动和并产生计数器清零脉冲,使计数器从零开始对标准脉冲源输出的时钟脉冲(频率为17KHz)计数。

同时开启控制门,超声波振荡器输出的40kHz脉冲信号通过控制门,放大后送至超声波换能器,由发射探头转换成声波发射出去。

该超声波经过一定的传播时间,达到目标并反射回来,被超声波换能器的接收探头接收变成电信号,经放大、滤波、电压比较和电平转换后,还原成方波。

图中的脉冲前沿检测电路检测出第一个脉冲的前沿,输出控制信号关闭计数器,使计数器停止计数。

则计数器的计数值反映了超声波从发射到接收所经历的时间(或距离)。

三、模块化设计及参数估算1、闸门控制模块●设计思路555振荡电路产生频率为2Hz的脉冲,作为闸门脉冲源。

RC微分电路将输出的2Hz脉冲进行微分运算产生脉冲信号,作为计数启动和计数清零的信号,分别控制D触发器的置高端和74LS90的清零端。

●参数设计:555振荡电路T = (R1+2*R2)*C*ln2。

其中R1取4.7kΩ,R2接入10kΩ滑动变阻器,最后实测7.51kΩ,C取47uF。

RC微分电路R为1kΩ,C为4.7nF2、超声波发生模块●设计思路555振荡电路产生频率为40kHz的脉冲,作为驱动超声波发射端的基础脉冲信号。

同时由2Hz闸门信号作为门控(高电平有效)。

再利用电压比较器,对555脉冲信号进行整形,而后输出。

●参数设计555振荡电路T = (R1+2*R2)*C*ln2。

其中R1取2kΩ,R2接入1kΩ滑动变阻器,最后实测440Ω,C取10nF。

3、超声波接收模块●设计思路电压放大电路,利用LF347放大超声接收端信号电压比较电路,利用电阻分压设计阈值电压V REF,当没有接收到信号时V-大于V+,输出为负,当接收到信号时V-小于V+,输出为正。

稳压电路,电压比较器输出端接1kΩ电阻,反接5V稳压管接地,使没有信号即输出为负时,输出-0.7V电平,有信号即输出为正时,输出5V电平。

●参数设计放大电路电阻值为1kΩ和750kΩ,放大倍数为750。

电压比较器V REF由100kΩ电阻和100kΩ的滑动变阻器分压决定,最终滑动变阻器阻值取为5.68kΩ,V REF取值大致为-0.6V。

4、计数控制模块●设计思路计数控制模块由,计数启动和计数停止控制组成。

由D触发器进行实现当计数开始时闸门信号的微分电路给出低电平脉冲将Q置高,计数信号有效。

而接收到回波后,接收信号由低变高,CLK产生上升沿将Q置低,计数信号关闭。

5、计数模块●设计思路555振荡电路产生17kHz的脉冲型号用来计数三个74LS90级联,采用十进制接法计数,分别对应米、分米、厘米。

计数信号控制源由计数控制模块的D触发器的Q信号给出计数信号清零源由闸门控制信号的微分模块经由缓冲器后给出高脉冲清零。

●参数设计555振荡电路T = (R1+2*R2)*C*ln2。

其中R1取5.1kΩ,R2接入47kΩ滑动变阻器,最后实测18.98kΩ,C取2.2nF。

6、报警模块●设计思路令A[4],B[4],C[4]分别对应米、分米、厘米,同时当模块计数时报警应该无效,设D触发器输出信号为Q,则逻辑函数Alarm = A1’A0’B3’B2’B1’Q利用与非、或非及非逻辑运算搭接电路四、实验电路总图1、电路原理图2、时序图3、面包板布局五、实验结果与实验中出现的问题分析1、实验结果结果:基本要求及提高要求全部完成。

其中四个地方用到了滑动变阻器分别是三个555的脉冲源(产生2Hz、17kHz和40kHz的方波)和接收模块的电压比较器阈值电压V REF的确定。

调试结果的各阻值已在模块设计中标明。

2、实验中出现的问题及分析A.微分电路输出信号的检查开始分模块调试时,不会测量微分电路输出的脉冲信号,然后不能确定问题出现在下级还是本级。

经过老师的提示,只要把示波器显示的波形调到最粗最亮,调成相应扫描速度,可以看到面板上有亮点间歇显示。

从而验证微分电路输出信号无误,并且幅值正确。

B.数码管显示不稳定数码管显示不稳定,多数原因是由于数字电路与模拟电路相互干扰,计数器中混有杂波和高频信号。

用示波器测量计数电路的74LS90的信号,发现有17kHz的杂波。

首先将模拟地和数字地分开将555振荡电路的地直接由引线接到学习机上,而后数码管开始显示,但仍不太稳定。

再在VCC和GND之间跨接0.1uF的电容滤掉杂波。

之后数码管稳定显示。

C.信号输出不正确D触发器输出电平Q在未接受到信号时应该是低电平,但始终是高电平。

开始时不确定前级各模块的正确与否,有些停滞,之后确定前级信号正确,D触发器接线正确,而输出信号不对,则一定芯片的问题。

换了芯片之后,输出正常。

六、收获、体会和建议1、收获与体会本次实验充分体会电路模块设计与调试的过程,对于设计电路和测试电路的能力有了更一步的提升。

首先,搭接与调试电路时,应该本着自顶向下逐步求精的原则,在理解原理并确定原理正确之后,先对于面包板的布局进行规划,把相应的芯片测试后,插到相应部分,保证后面搭接时方便并且思路清晰。

然后,按分模块逐级搭接调试的原则测试电路,保证了每一级的输入信号都是正确的后,如果输出不正确,去检查接线,接线正确后检查芯片是否正常工作。

最后,发现信号干扰问题,尝试用滤波,分离数字地和模拟地,以及简单的搭接电容的方法,解决干扰。

依照上述方法调试电路,保持一颗正常心态,可以高效并且正确的完成问题。

2、建议由于整个实验过程中只需要,测量接收波形的上升沿,所以对于模拟电路中波形整形处理部分现对简单。

现提出以下课程建议:建议老师将提高要求的测量距离改为高于3m,这样同学们利用波形放大然后与阈值电压比较的方法就不能实现了,因为相应的杂波干扰也会随之放大,冲过阈值电压,影响结果。

所以此时同学应该使用选频电路选出40kHz的波形,控制后面的计数模块,对于模拟电路部分会有更高的锻炼。

附工作日志8月21日经过周末的预习,查找了关于超声传感器的原理知识和超声测距的相关内容。

分析了超声测距的实现方案,并将电路分为各个模块实现,每个模块进行了相应仿真(但有些仿真结果不理想,待硬件实测)。

本日上午首先针对超声测距系统方案中的几个模块与同学进行了讨论,包括方波频率的选择与实现,闸门信号的实现与清零,以及面包板的布局合理性。

而后首先搭接了三个555方波发生器。

上午只搭接测试出了,40kHz的方波本日下午再次对于板子的规划进行思考,并大致划分了区域,把相应用到的芯片放到了相应的位置。

然后搭接测试出了2Hz方波。

分别测试两种方波的频率均很稳定,效果不错。

而后开始搭接超声发射模块的实现,将两种频率的方波进行逻辑运算,经由LS00,信号传至运算放大器LF347,将信号与2.5V电压值进行比较,得到最终的大约0.5s驱动一次超声波发射器的效果。

但是遇到的问题是,当2Hz和40kHz的方波共同输入到LS00中时,对2Hz 的方波进行测量,示波器显示的频率很难稳定下来,发现混有杂波,可能是40kHz 的杂波,也可能是交流成分。

进行了各种测试,重新退到上一步骤,检查芯片的问题,等等。

但是问题并没解决,后来怀疑是示波器测量可能不是很准。

直接测量最终运放发射的信号,发现效果正常。

问题解决。

而后进行超声接收信号接收处理的部分电路的搭接,以及触发器电路的搭接。

之后搭出17kHz的脉冲源后,下课。

晚上又把数码显示和蜂鸣器部分搭出来了,明天分模块测试。

8月22日由于昨天已经把各个模块全部搭好,今天开始分模块测试和模块的联调测试。

今天下来调试结果:超声波发射模块调试通过正常运行,并且接收模块可以接收到相应信号,在示波器上显示相应波形。

40kHz的555脉冲源正常,2Hz的555脉冲源正常,经过LS00运算后,到LF347正常驱动T40-16,而相应的R40-16接收到反射的超声波信号后,产生较大幅值的波形(较之原有的干扰信号),可以通过放大,与阈值电压比较后得到相应的脉冲信号(没有接收到信号时,信号为0,大于阈值电压,最终输出低电平信号-0.7V;接收到信号后,信号为负,小于阈值电压,最终由于稳压管稳压后输出高电平5V)。

即,当调整出较好的阈值电压后接收到超声信号后会产生相应的上升沿信号。

对于闸门信号的作用部分,由74LS74双上升沿D触发器来完成。

对2Hz脉冲信号进行微分运算,上升沿时给出正脉冲,经由40106COMS施密特反相器可以得到一直是高电平闸门信号时给出低电平和一直是低电平闸门信号时给出高电平的信号。

将LS74的置高端接前者信号,给出低电平脉冲时D触发器被置高,而只有CLK信号给出上升沿后才能将D触发器置低。

!!!但是输入信号都测出来了,输出不对哎有木有所以明天LS74是重点哎有木有!!!而后是计数器显示模块,需要有17kHz的555脉冲源,搞定。

与经由闸门信号控制锁存后的Q输出端进行逻辑运算(LS00),结果输出到LS90中进行计数并在数码管中显示。

同时从计数的信号端中做组合逻辑实现低于0.2m时报警。

同时计数器的清零信号由闸门信号微分运算后COMS施密特反相器整形后得到。

开始没有产生555脉冲信号的时候,将CLK和CLR用学习机模拟,效果很好,接上555后发现数码管不稳,有木有!!!模拟地和数字有干扰有木有!!!想办法有木有!!!数电电子技术实验考核的时候就有这个问题木有解决,明天上午一定要解决有木有!!!8月23日今天来到实验室后重新整理了思路,调整了心态。

理清了各个模块的作用关系,由最初级开始逐级测试,当确定D触发器的输入信号均正常,并且接线正常,而输出不正常,所以果断换了74LS74。

突然之间信号变好了,然后数码管开始工作了,无比的开心。

直接找助教验收基本实验,助教发现信号并不是很稳定,然后感觉计数器和数码管显示部分仍有杂波干扰,在VCC和GND之间接入0.1uF,信号稳定了,基本实验调试通过。

相关文档
最新文档