北师大版选修1-2高中数学第3章《推理与证明》导学案

合集下载

高中数学第一章推理与证明全套教案北师大版选修2-2

高中数学第一章推理与证明全套教案北师大版选修2-2

例 2、试将平面上的圆与空间的球进行类比 .
圆的定义:平面内到一个定点的距离等于定长的点的集合
.
球的定义:到一个定点的距离等于定长的点的集合
.


弦←→截面圆Leabharlann 2 3、32 12 ,
3 13
2 22 ,
3 23
21 ,
33
a ,由此我们猜想:
b
am ( a , b , m 均为正实数)
bm
这种由某类事物的部分对象具有某些特征
, 推出该类事物的全部对象都具有这些特征的推理
事实概栝出一般结论的推理 , 称为归纳推理 .( 简称:归纳 )
归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、归纳
一.问题情境
从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一
株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子
.
他的思路是这样的:
茅草是齿形的;茅草能割破手 . 我需要一种能割断木头的工具;它也可以是齿形的
.
这个推理过程是归纳推理吗?
二.数学活动
我们再看几个类似的推理实例。
题也会越可靠,它是一种发现一般性规律的重要方法。
教学重点 :了解合情推理的含义,能利用归纳进行简单的推理。 教学难点 :用归纳进行推理,做出猜想。
教学过程 :
一、课堂引入:
从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理 的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理
2) 从已知的相同性质中推出一个明确表述的一般命题(猜想)

高中数学第三章推理与证明2数学证明教案(含解析)北师大版选修1_2

高中数学第三章推理与证明2数学证明教案(含解析)北师大版选修1_2

2数学证明数学证明看下面两个命题:(1)三角函数都是周期函数,y =tan x 是三角函数,所以y =tan x 是周期函数;(2)循环小数是有理数,0.332·是循环小数,所以0.332·是有理数. 问题1:这两个问题中的第一句都说明什么? 提示:一般性道理. 问题2:第二句又说什么?提示:特殊示例. 问题3:第三句呢?提示:由一般性道理对特殊示例作出判断.1.演绎推理的一般模式三段论是最常见的一种演绎推理形式,包括 大前提:一般性道理; 小前提:研究对象的特殊情况; 结论:由大前提和小前提作出的判断. 2.合情推理与演绎推理的关系合情推理是认识世界、发现问题的基础,演绎推理是证明命题、建立理论体系的基础.1.数学问题的解决和证明都蕴含着演绎推理,即一连串的三段论,解决问题的关键是找到每一步推理的依据——大前提、小前提.2.三段论中的大前提提供了一个一般性原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般性原理与特殊情况的内在联系,从而得到了第三个命题——结论.3.三段论推理的结论正确与否,取决于两个前提是否正确,推理形式是否正确.把演绎推理写成三段论[例1](1)等腰三角形的两底角相等,∠A,∠B是等腰三角形的两底角,则∠A=∠B.(2)以a n=2n+3为通项公式的数列{a n}为等差数列.[思路点拨] 首先分析出每个题的大前提、小前提及结论,再利用三段论形式写出来.[精解详析] (1)等腰三角形两底角相等,大前提∠A,∠B是等腰三角形的两底角,小前提∠A=∠B.结论(2)数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列,大前提通项公式a n=2n+3时,若n≥2,则a n-a n-1=2n+3-[2(n-1)+3]=2(常数),小前提以a n=2n+3为通项公式的数列为等差数列.结论[一点通] 三段论由大前提、小前提和结论组成.大前提提供一般性原理,小前提提供特殊情况,两者结合起来,体现一般性原理与特殊情况的内在联系,在用三段论写推理过程时,关键是明确命题的大、小前提,而大、小前提在书写过程中是可以省略的.1.推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是( )A.①B.②C.③ D.①和②解析:选B ①是大前提,②是小前提,③是结论.2.“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等.”此推理的大前提为( )A.正方形的对角线相等B.矩形的对角线相等C.等腰梯形的对角线相等D.矩形的对边平行且相等答案:B3.用三段论的形式写出下列演绎推理.(1)能被2整除的数都是偶数,34能被2整除,所以34是偶数.(2)奇函数f(x)若在x=0处有定义,则必有f(0)=0.现有f(x)=x,x∈R是奇函数,则有f(0)=0.解:(1)能被2整除的数都是偶数, (大前提)34能被2整除, (小前提)所以34是偶数. (结论)(2)奇函数f(x)若在x=0处有定义,则必有f(0)=0,(大前提)f(x)=x,x∈R是奇函数,且在x=0处有定义, (小前提)则有f(0)=0.(结论)演绎推理的判断[例2](1)自然数是整数,大前提-6是整数,小前提所以,-6是自然数.结论(2)中国的大学分布在中国各地,大前提北京大学是中国的大学,小前提所以,北京大学分布在中国各地.结论(3)三角函数是周期函数,大前提y=sin x(0<x<π)是三角函数,小前提y=sin x(0<x<π)是周期函数.结论[思路点拨] 判断三段论推理是否正确,必须严格按其推理规则进行考察,其推理规则为:所有M都是P,S是M,则S是P.既要看大前提、小前提是否有误,也要看推理形式是否合乎规范.[精解详析] (1)推理形式错误,自然数是整数为大前提,小前提应是判断某数为自然数,而不是某数为整数.(2)推理形式错误,大前提中M是“中国的大学”,它的含义是中国的每一所大学,而小前提中的“中国的大学”仅表示中国的一所大学,二者是两个不同的概念,犯了偷换概念错误.(3)推理形式错误,大前提中的“三角函数”和小前提中的“三角函数”概念不同.[一点通] 判断演绎推理是否正确的方法(1)看推理形式是否为由一般到特殊的推理,只有由一般到特殊的推理才是演绎推理,这是最易出错的地方;(2)看大前提是否正确,大前提往往是定义、定理、性质等,注意其中有无前提条件;(3)看小前提是否正确,注意小前提必须在大前提范围之内;(4)看推理过程是否正确,即看由大前提、小前提得到的结论是否正确.4.某人进行了如下的“三段论”:如果f′(x0)=0,则x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.你认为以上推理的( )A.大前提错误B.小前提错误C.推理形式错误D.结论正确解析:选A 若f′(x0)=0,则x=x0不一定是函数f(x)的极值点,如f(x)=x3,f′(0)=0,但x=0不是极值点,故大前提错误.5.观察下面的演绎推理过程,判断正确的是( )大前提:若直线a⊥直线l,且直线b⊥直线l,则a∥b.小前提:正方体ABCD­A1B1C1D1中,A1B1⊥AA1,且AD⊥AA1.结论:A1B1∥AD.A.推理正确B.大前提出错导致推理错误C.小前提出错导致推理错误D.仅结论错误解析:选B 由l⊥a,l⊥b得出a∥b只在平面内成立,在空间中不成立,故大前提错误.用三段论证明几何问题[例3] DE∥BA,求证:ED =AF,写出三段论形式的演绎推理.[思路点拨] 证明ED=AF,可证明四边形AEDF为平行四边形.[精解详析] 因为同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以FD∥AE.结论因为两组对边分别平行的四边形是平行四边形,大前提DE∥BA,且FD∥AE,小前提所以四边形AFDE为平行四边形.结论因为平行四边形的对边相等,大前提ED和AF为平行四边形AFDE的对边,小前提所以ED=AF.结论[一点通](1)三段论推理的根据,从集合的观点来讲,就是:若集合M的所有元素都具有性质P,S是M的子集,那么S中所有元素都具有性质P.(2)在几何证明题中,每一步实际上都暗含着一般性原理,都可以分析出大前提和小前提,把一般性原理用于特殊情况,从而得到结论.6.已知△ABC中,A=30°,B=45°,求证:a<b.证明:∵A=30°,B=45°,∴A<B.∴a<b.此问题的证明过程中蕴含的“三段论”中的大前提是________________.解析:大前提是三角形中“大边对大角,小边对小角”的一个结论.答案:在△ABC中,若A<B,则a<b7.如图,已知在梯形ABCD中,AB=DC=DA,AC和BD是梯形的对角线.求证:AC平分∠BCD.证明:∵等腰三角形两底角相等,大前提△ADC是等腰三角形,∠1和∠2是两个底角,小前提∴∠1=∠2.结论∵两条平行线被第三条直线截得的内错角相等,大前提∠1和∠3是平行线AD,BC被AC截得的内错角,小前提∴∠1=∠3.结论∵等于同一个角的两个角相等,大前提∠2=∠1,∠3=∠1,小前提∴∠2=∠3,即AC平分∠BCD.结论用三段论证明代数问题[例4] 已知n124成等差数列,又b n 1(n=1,2,3,…).证明:{b n}为等比数列.=a2n[证明] ∵lg a1,lg a2,lg a4成等差数列,∴2lg a2=lg a1+lg a4,即a22=a1a4.设{a n}的公差为d,即(a1+d)2=a1(a1+3d),a1d=d2,从而d(d-a1)=0.①若d =0,{a n }为常数列,相应{b n }也是常数列,此时{b n }是首项为正数,公比为1的等比数列.②若d =a 1≠0,则a 2n =a 1+(2n-1)d =2nd ,b n =1a 2n =12n d. 这时{b n }是首项b 1=12d ,公比为12的等比数列.综上可知,{b n }为等比数列. [一点通](1)在证明或推理过程中,对于大前提,有一些是我们早已熟悉的公理、定理、定义、性质、公式,这些内容很多时候在证明或推理的过程中可以直接利用,不需再重新指出.因此,就会出现隐性三段论.(2)本题在推理过程中,好似未用到演绎推理的三段论,其实不然.只是大前提“等比数列的判定方法”在证明过程中省略,并不影响结论的正确性.8.“因为y =sin x 是区间⎣⎢⎡⎦⎥⎤0,π2上的增函数,所以sin 3π7>sin 2π5”,上述推理中,大前提为________________,小前提为________________,结论为________________.答案:y =sin x 是区间⎣⎢⎡⎦⎥⎤0,π2上的增函数 3π7∈⎣⎢⎡⎦⎥⎤0,π2,2π5∈⎣⎢⎡⎦⎥⎤0,π2,且3π7>2π5 sin 3π7>sin 2π59.已知函数f (x )=ax+bx ,其中a >0,b >0,x ∈(0,+∞),确定f (x )的单调区间,并证明在每个单调区间上的增减性.解:设0<x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a x 1+bx 1-⎝ ⎛⎭⎪⎫a x 2+bx 2 =(x 2-x 1)⎝ ⎛⎭⎪⎫a x 1x 2-b .当0<x 1<x 2≤ab时,则 x 2-x 1>0,0<x 1x 2<a b ,ax 1x 2>b ,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在⎝ ⎛⎦⎥⎤0,a b 上是减少的.当x 2>x 1≥ab时,则 x 2-x 1>0,x 1x 2>a b ,ax 1x 2<b ,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )在⎣⎢⎡⎭⎪⎫a b ,+∞上是增加的.1.应用三段论解决问题时,首先应该明确什么是大前提和小前提.但为了叙述简洁,如果大前提是人们熟知的,则可以省略不写.2.合情推理与演绎推理是常见的两种推理方式,二者的主要区别与联系是: 推理方式 意义主要形式 结论的真假 合情推理 认识世界、发现问题的基础 归纳推理、 类比推理 不确定 演绎推理证明命题、建立理论体系的基础三段论真1.下列四个推导过程符合演绎推理三段论形式且推理正确的是( )A .大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B .大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C .大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D .大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:选B 对于A ,小前提与结论互换,错误;对于B ,符合演绎推理过程且结论正确;对于C 和D ,均为大小前提及结论颠倒,不符合演绎推理三段论形式.故选B.2.“9的倍数都是3的倍数,某奇数是9的倍数,故此奇数是3的倍数”,上述推理是( )A .小前提错B .结论错C .正确的D .大前提错解析:选C ∵大前提,小前提,推理形式都正确,∴结论正确.3.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足的条件是( )A .a 2<b 2+c 2B .a 2=b 2+c 2C .a 2>b 2+c 2D .a 2≤b 2+c 2解析:选C 由cos A =b 2+c 2-a 22bc<0,∴b 2+c 2-a 2<0,∴a 2>b 2+c 2.4.在证明f (x )=2x +1为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数f (x )=2x +1满足增函数的定义是大前提;④函数f (x )=2x +1满足增函数的定义是小前提.其中正确的命题是( )A .①④B .②④C .①③D .②③解析:选A 根据三段论特点,过程应为:大前提是增函数的定义;小前提是f (x )=2x +1满足增函数的定义;结论是f (x )=2x +1为增函数,故①④正确.5.如图,α⊥β,α∩β=l ,P ∈α,PO ⊥l 交l 于O ,则可以得到的结论是________.解析:由面面垂直的性质定理知PO ⊥β. 答案:PO ⊥β6.函数y =2x +5的图像是一条直线,用三段论表示为: 大前提:_____________________________________________; 小前提:_____________________________________________; 结 论:_____________________________________________. 答案:一次函数的图像是一条直线 函数y =2x +5是一次函数 函数y =2x +5的图像是一条直线7.已知a ,b ,m 均为正实数,b <a ,用三段论形式证明b a <b +ma +m. 证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提)b <a ,m >0, (小前提)所以,mb <ma . (结论) 因为不等式两边同加上一个数,不等号不改变方向, (大前提)mb <ma , (小前提)所以,mb +ab <ma +ab ,即b (a +m )<a (b +m ), (结论) 因为不等式两边同除以一个正数,不等号不改变方向, (大前提)b (a +m )<a (b +m ),a (a +m )>0, (小前提)所以,b a +m a a +m <a b +m a a +m ,即b a <b +ma +m. (结论)8.如图,正三棱柱ABC ­A 1B 1C 1的棱长均为a ,D ,E 分别为C 1C ,AB 的中点,A 1B 交AB 1于点G .(1)求证:A 1B ⊥AD ; (2)求证:CE ∥平面AB 1D .证明:(1)如图,连接A 1D ,DG ,BD ,∵三棱柱ABC ­A 1B 1C 1是棱长均为a 的正三棱柱, ∴四边形A 1ABB 1为正方形,∴A 1B ⊥AB 1. ∵D 是C 1C 的中点, ∴△A 1C 1D ≌△BCD ,∴A 1D =BD .∵G 为A 1B 的中点, ∴A 1B ⊥DG . 又∵DG ∩AB 1=G , ∴A 1B ⊥平面AB 1D ,又∵AD 平面AB 1D ,∴A 1B ⊥AD . (2)连接GE ,∵EG ∥A 1A ,DC ∥AA 1, ∴GE ∥DC .∵GE =12AA 1=12a ,DC =12CC 1=12a ,∴GE =DC .∴四边形GECD 为平行四边形,∴EC ∥GD .又∵E C ⃘平面AB 1D ,DG 平面AB 1D , ∴EC ∥平面AB 1D .9.求证:函数f (x )=2x-12x +1是奇函数且在定义域上是增函数.证明:f (x )=2x+1-22x+1=1-22x +1, 所以f (x )的定义域为R.f (-x )+f (x )=⎝⎛⎭⎪⎫1-22-x+1+⎝ ⎛⎭⎪⎫1-22x +1 =2-⎝ ⎛⎭⎪⎫21+2x +22-x +1=2-⎝ ⎛⎭⎪⎫21+2x +2·2x1+2x=2-21+2x1+2x=2-2=0,即f (-x )=-f (x ),所以f (x )为奇函数. 任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫1-21+2x 1-⎝ ⎛⎭⎪⎫1-21+2x 2 =22x 1-2x 21+2x 21+2x 1,由于x 1<x 2,从而2x 1<2x 2,2x 1-2x 2<0. 所以f (x 1)<f (x 2),故f (x )为增函数.。

高中数学(选修1—2)《归纳推理》教学设计

高中数学(选修1—2)《归纳推理》教学设计

l 5 13 17

ll 1 95 9 2l 7 23 31
29
27
2 5
3 通 过 本 节 学 习 , 学 生 养 成 主 动 运 用 归 纳 推 理 思 维 的 . 使
意识 和 习惯 。
4 激 发 学 生 学 习 数 学 的 浓 厚 兴 趣 和 应 用 数 学 的 良好 品 . 质 , 步 形 成 发 现 新 知识 , 决 新 问 题 的 能力 。 逐 解
理能力。
质 , 利导 人本 节 新 课 。 顺 ( ) 二 引导 学生分析 总结 归纳思维解决数 学 问题 的方法步骤 。 1指 导 学 生 阅 读 课 本 例 题 : 1 哥 德 巴 赫 猜 想 ;2) 拉 公 . () ( 欧 式 ;3 数 列 通 项 公式 。 () 通 过 以 上 三 个 实 例 的 学 习 理 解 ,使 学 生 对 归 纳 推 理 有 一 个 初 步 的感 性认 识 。 2组 织 学 生 分 组 讨 论 : 励 学 生积 极 思 考 , 胆 发 表 自 己 . 鼓 大 的看 法 与 见 解 .结 合 教 材 内容 初 步 得 出归 纳 推 理 解 决 实 际 问 题 的“ 观察 规 律 一 猜 想 结 果一 检 验 论证 ” 方 法 步骤 。 的 3教 师 总结 归 纳 推 理 概 念 。 . 归 纳 推 理 是 根 据 一 类 事 物 中部 分 事 物 具 有 某 种 属 性 。 推 断 该 类 事 物 中所 有 事 物 都 具 有 这 种 属 性 的 一 种 推 理 形 式 。 它 是 由局 部 到 整 体 、 别 到 一 般 的 一 种思 维 方 式 。 个 ( ) 识 应 用 . 题 训 练 三 知 解 例 3将 正 奇 数 按 下 面 表 格 中 的 数 字 呈 现 的规 律填 入 各 方 . 格 中, 则数 字 5 位 于 第 几 行 第 几 列 ? 5

高中数学第三章推理与证明1.1.2类比推理教案含解析北师大版选修1_2

高中数学第三章推理与证明1.1.2类比推理教案含解析北师大版选修1_2

1.2 类比推理类比推理三角形有下面两个性质:(1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的12.问题1:你能由三角形的这两个性质推测空间四面体的性质吗?试写出来. 提示:(1)四面体任意三个面的面积之和大于第四个面的面积; (2)四面体的体积等于底面积与高乘积的13.问题2:由三角形的性质推测四面体的性质体现了什么?提示:由一类事物的特征推断另一类事物的类似特征,即由特殊到特殊.定义特征由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.合情推理合情推理的含义(1)合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)归纳推理和类比推理是最常见的合情推理.1.类比推理是从人们已经掌握了的事物特征,推测正在被研究中的事物的特征.所以类比推理的结果具有猜测性,不一定可靠;2.类比推理以旧的知识作为基础,推测新的结果,具有发现功能.平面图形与空间几何体的类比[例1] (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦长相等; (3)圆的周长C =πd (d 是直径); (4)圆的面积S =πr 2.[思路点拨] 先找出相似的性质再类比,一般是点类比线、线类比面、面积类比体积. [精解详析] 圆与球有下列相似的性质:(1)圆是平面上到一定点的距离等于定长的所有点构成的集合;球面是空间中到一定点的距离等于定长的所有点构成的集合.(2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形.通过与圆的有关性质类比,可以推测球的有关性质.圆球圆心与弦(非直径)中点的连线垂直于弦 球心与截面(不经过球心的小圆面)圆心的连线垂直于截面与圆心距离相等的两条弦长相等与球心距离相等的两个截面的面积相等圆的周长C =πd 球的表面积S =πd 2圆的面积S =πr 2球的体积V =43πr 3[一点通] 解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:平面图形 立体图形 点 点、线 直线 直线、平面 边长 棱长、面积面积 体积 三角形 四面体 线线角 面面角 平行四边形平行六面体圆球1.下面类比结论错误的是( )A .由“若△ABC 一边长为a ,此边上的高为h ,则此三角形的面积S =12ah ”类比得出“若一个扇形的弧长为l ,半径为R ,则此扇形的面积S =12lR ”B .由“平行于同一条直线的两条直线平行”类比得出“平行于同一个平面的两个平面平行”C .由“在同一平面内,垂直于同一条直线的两条直线平行”类比得出“在空间中,垂直于同一个平面的两个平面平行”D .由“三角形的两边之和大于第三边”类比得出“凸四边形的三边之和大于第四边” 解析:选C 只有C 中结论错误,因为两个平面还有可能相交.2.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P ­ABC 中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.定义、定理与性质的类比[例2][精解详析] ①两实数相加后,结果是一个实数,两向量相加后,结果仍是向量; ②从运算律的角度考虑,它们都满足交换律和结合律, 即:a +b =b +a ,a +b =b +a ,(a +b )+c =a +(b +c ),(a +b )+c =a +(b +c ); ③从逆运算的角度考虑,二者都有逆运算,即减法运算, 即a +x =0与a +x =0都有唯一解,x =-a 与x =-a ;④在实数加法中,任意实数与0相加都不改变大小,即a +0=a .在向量加法中,任意向量与零向量相加,既不改变该向量的大小,也不改变该向量的方向,即a +0=a .[一点通] 运用类比推理常常先要寻找合适的类比对象,本例中实数加法的对象为实数,向量加法的对象为向量,且都满足交换律与结合律,都存在逆运算,而且实数0与零向量0分别在实数加法和向量加法中占有特殊的地位.因此我们可以从这四个方面进行类比.3.试根据等式的性质猜想不等式的性质并填写下表.等式不等式a =b ⇒a +c =b+c① a =b ⇒ac =bc ② a =b ⇒a 2=b 2③答案:①a >b ⇒a +c >③a >b >0⇒a 2>b 2(说明:“>”也可改为“<”)4.已知等差数列{a n }的公差为d ,a m ,a n 是{a n }的任意两项(n ≠m ),则d =a n -a mn -m,类比上述性质,已知等比数列{b n }的公比为q ,b n ,b m 是{b n }的任意两项(n ≠m ),则q =________.解析:∵a n =a m qn -m,∴q =⎝ ⎛⎭⎪⎫a n a m 1n -m.答案:⎝ ⎛⎭⎪⎫a n a m 1n -m1.类比推理先要寻找合适的类比对象,如果类比的两类对象的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠.2.归纳推理与类比推理都是合情推理.归纳推理是从特殊过渡到一般的思想方法,类比推理是由此及彼和由彼及此的联想方法,归纳和类比离不开观察、分析、对比、联想,许多数学知识都是通过归纳与类比发现的.1.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适( ) A .三角形 B .梯形 C .平行四边形D .矩形解析:选C 从构成几何图形的几何元素的数目、位置关系、度量等方面考虑,用平行四边形作为平行六面体的类比对象较为合适.2.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体P ­ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P ­ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4解析:选C 设内切球的球心为O ,所以可将四面体P ­ABC 分为四个小的三棱锥,即O ­ABC ,O ­PAB ,O ­PAC ,O ­PBC ,而四个小三棱锥的底面积分别是四面体P ­ABC 的四个面的面积,高是内切球的半径,所以V =13S 1r +13S 2r +13S 3r +13S 4r =13(S 1+S 2+S 3+S 4)r ,∴r =3VS 1+S 2+S 3+S 4.3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 类比等比数列{b n }中b 1b 2b 3…b 9=b 95,可得在等差数列{a n }中a 1+a 2+…+a 9=9a 5=9×2.4.类比三角形中的性质: ①两边之和大于第三边; ②中位线长等于底边长的一半; ③三内角平分线交于一点. 可得四面体的对应性质:①任意三个面的面积之和大于第四个面的面积;②过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14;③四面体的六个二面角的平分面交于一点. 其中类比推理方法正确的有( ) A .① B .①② C .①②③D .都不对解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.5.在△ABC 中,D 为BC 的中点,则AD ―→=12()AB ―→+AC ―→ ,将命题类比到四面体中去,得到一个命题为:______________________________________..解析:平面中线段的中点类比到空间为四面体中面的重心,顶点与中点的连线类比顶点和重心的连线.答案:在四面体A ­BCD 中,G 是△BCD 的重心,则AG ―→=13()AB ―→+AC ―→+AD ―→ 6.运用下面的原理解决一些相关图形的面积问题:如果与一条固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k ,那么甲的面积是乙的面积的k 倍.你可以从给出的简单图形①②中体会这个原理.现在图③中的两个曲线方程分别是x 2a 2+y 2b2=1(a >b>0)与x 2+y 2=a 2,运用上面的原理,图③中椭圆的面积为__________.解析:由于椭圆与圆截y 轴所得线段之比为b a, 即k =b a,所以椭圆面积S =πa 2·b a=πab . 答案:πab7.在Rt △ABC 中,若∠C =90°,则cos 2A +cos 2B =1,在空间中,给出四面体性质的猜想.解:如图,在Rt △ABC 中,cos 2A +cos 2B =⎝ ⎛⎭⎪⎫b c 2+⎝ ⎛⎭⎪⎫a c 2=a 2+b2c 2=1.于是把结论类比到四面体P ­A ′B ′C ′中,我们猜想,三棱锥P ­A ′B ′C ′中,若三个侧面PA ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.8.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.(1)写出相应的结论,判断该结论是否正确,并加以证明; (2)写出该结论一个更为一般的情形(不必证明).解:(1)在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下:∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) =10d +10d +…+10d =100d =300,10个同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300. (2)在公差为d 的等差数列{a n }中, 若S n 是{a n }的前n 项和, 则对于任意k ∈N +, 数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 也成等差数列,且公差为k 2d .9.先阅读下列不等式的证法,再解决后面的问题:已知a 1,a 2∈R ,a 1+a 2=1,求证a 21+a 22≥12.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2, 则f (x )=2x 2-2(a 1+a 2)x +a 21+a 22=2x 2-2x +a 21+a 22. 因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4-8(a 21+a 22)≤0,所以a 21+a 22≥12.(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1,请写出上述结论的推广式; (2)类比上述证法,对你推广的结论加以证明. 解:(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1, 求证:a 21+a 22+…+a 2n ≥1n.(2)证明:构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2,则f (x )=nx 2-2(a 1+a 2+…+a n )x +a 21+a 22+…+a 2n =nx 2-2x +a 21+a 22+…+a 2n . 因为对一切x ∈R ,恒有f (x )≥0, 所以Δ=4-4n (a 21+a 22+…+a 2n )≤0.。

陕西省吴堡县吴堡中学高中数学 第三章 推理与证明 分析法典例导航课件 北师大版选修1-2

陕西省吴堡县吴堡中学高中数学 第三章 推理与证明 分析法典例导航课件 北师大版选修1-2

1 证法三:(综合法,因为左边是分式型,利用基本不等式 x+ x ≥2(x>0)使左边向整式型过渡) a b (法一 )∵ + b + + a ≥2 b a a · b+ 2 b b · a=2 a a
a b +2 b,当且仅当 a=b 时取等号,∴ + ≥ a+ b. b a
( 法二 ) ∵
1 x1,x2∈0,2且 x1≠x2.
x1+x2 1 求证:2[f(x1)+f(x2)]>f 2 .
x +x 1 2 1 证明: 要证 [f(x1)+f(x2)]>f , 2 2 2 1 1 -1 只需证:lgx -1+lgx -1>2lg 1 2 x1+x2 1 1 2 2 -1 只需证:x -1x -1> . x + x 1 2 1 2 1 1 2 2 -1 ∵x -1x -1- 1 2 x1+x2
a b a a b b + ( a+ b)=a+b+ + ≥a + b + b a b a
2
a ab b · =a+b+2 ab=( a+ b)2,当且仅当 a=b 时取等 b a
a b 号,∴ + ≥ a+ b. b a
设 f(x)=ax2+bx+c(a≠0),若函数 f(x+1)与 f(x)的图象 1 关于 y 轴对称.求证:f(x+ )为偶函数. 2
π 已知 α,β≠kπ+ (k∈Z),且 2 ①sin θ+cos θ=2sin α,②sin θ· cos θ=sin2β, 1-tan2α 1-tan2β 求证: 2 = 2 . 1+tan α 21+tan β
[证明过程] 由①得(sin θ+cos θ)2=4sin2α, 即 1+2sinθcos θ=4sin2α 把②代入上式并整理得:4sin2α-2sin2β=1 ③ 1-tan2α 1-tan2β 另一方面,要证 2 = 2 , 1+tan α 21+tan β sin2α sin2β 1- 2 1- 2 cos α cos β 只需证 = 2 , sin2α sin β 1+ 2 1+ 2 cos α 2 cos β

高中数学选修1-2第三章 推理与证明1_归纳与类比1_2类比推理-精选学习文档

高中数学选修1-2第三章 推理与证明1_归纳与类比1_2类比推理-精选学习文档

1.2 类比推理一、教学目标1.知识与技能:(1)结合已学过的数学实例,了解类比推理的含义;(2)能利用类比进行简单的推理;(3)体会并认识类比推理在数学发现和生活中的作用。

2.方法与过程:递进的了解、体会类比推理的思维过程;体验类比法在探究活动中:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

3.情感态度与价值观:体会类比法在数学发现中的基本作用:即通过类比,发现新问题、新结论;通过类比,发现解决问题的新方法。

培养分析问题的能力、学会解决问题的方法;增强探索问题的信心、收获论证成功的喜悦;体验数学发现的乐趣、领略数学方法的魅力!同时培养学生学数学、用数学,完善数学的正确数学意识。

二、教学重点:了解类比推理的含义,能利用类比进行简单的推理。

教学难点:培养学生“发现—猜想—证明”的推理能力。

三、教学方法:探析归纳,讲练结合四、教学过程(一)复习:归纳推理的概念:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都具有这种属性。

我们将这种推理方式称为归纳推理。

注意:利用归纳推理得出的结论不一定是正确的。

1.归纳推理的要点:由部分到整体、由个别到一般;2.典型例子方法归纳。

(二)引入新课:据科学史上的记载,光波概念的提出者,荷兰物理学家、数学家赫尔斯坦•惠更斯曾将光和声这两类现象进行比较,发现它们具有一系列相同的性质:如直线传播、有反射和干扰等。

又已知声是由一种周期运动所引起的、呈波动的状态,由此,惠更斯作出推理,光也可能有呈波动状态的属性,从而提出了光波这一科学概念。

惠更斯在这里运用的推理就是类比推理。

(三)例题探析例1:已知:“正三角形内一点到三边的距离之和是一个定值”,将空间与平面进行类比,空间中什么样的图形可以对应三角形?在对应图形中有与上述定理相应的结论吗?解:将空间与平面类比,正三角形对应正四面体,三角形的边对应四面体的面。

得到猜测:正四面体内一点到四个面距离之和是一个定值。

2019-2020年高中数学北师大版选修1-2第三章《推理与证明》(第1课时 合情推理)精品学案

2019-2020年高中数学北师大版选修1-2第三章《推理与证明》(第1课时 合情推理)精品学案

2019-2020年高中数学北师大版选修1-2第三章《推理与证明》(第1课时合情推理)精品学案1.结合已学过的数学实例和生活实例,了解归纳推理与类比推理的含义.2.能利用归纳方法进行简单推理,体会并认识归纳推理在数学发展中的作用.3.掌握类比推理的一般方法,会对一些简单问题进行类比,得出新的结论,培养学生的类比推理能力.重点:了解合情推理的含义,能利用归纳进行简单的推理.难点:用归纳、类比进行推理,作出猜想.历史上,人们提出过许多永动机的设计方案,有人采用“螺旋汲水器”的原理,有人利用轮子惯性原理,有人利用水的浮力或毛细作用的原理,但均以失败告终.于是人们纷纷认为:不可能制造出永动机.问题1:他们为什么认为不可能制造出永动机?通过大量失败的例子归纳推理得到的,并由后人提出的能量守恒定律彻底说明永动机不可制造.问题2:归纳推理、类比推理及其特点(1)归纳推理:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,我们把这种推理方式称为归纳推理.它具有以下几个特点:①归纳推理是由部分到整体、由个别到一般的推理.②利用归纳推理得出的结论不一定是正确的,但是可以为我们的研究提供一种方向.(2)类比推理:由于两类不同对象具有某些类似的特性,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.它具有以下几个特点:①类比是从人们已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果.②类比是从一种事物的特殊属性推测另一种事物的特殊属性,是一种从特殊到特殊的推理.③类比的结果不一定正确,但它却有发现的功能.问题3:归纳推理、类比推理的一般步骤(1)归纳推理:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想);如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可能为真.归纳推理的一般思维过程:①找出两类对象之间可以确切表述的相似特征;②用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;③检验猜想.类比推理的一般思维过程:问题4:合情推理及其意义归纳推理和类比推理都是最常见的合情推理.合情推理是根据实验与实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.尽管合情推理的结果不一定正确,但是,在数学、科学、经济和社会的历史发展中,合情推理有非常重要的价值,它是科学发现和创造的基础.数学中有一条三角形定理:三角形的两边之和大于第三边,根本不存在一条边大于其他两边之和的三角形.这个数学原理被一位科学家成功地运用到社会科学领域.他认为,历史上如果三个割据势力并存,就形成了三足鼎立,这是一种比较稳定的结构.如果强者侵犯了弱者,被侵犯的弱者就会与另一个弱者联合起来.结盟之后,两边之和大于第三边,稳定的三足结构就不会被破坏.只有当强者的力量超过了两个弱者之和,三国鼎立的局面才会结束.这位科学家利用类比推理表达自己的思想,使抽象的道理具体化,使论述更加形象,收到了良好的表达效果.1.数列{a n}的前四项为,1,,,由此可以归纳出该数列的一个通项公式为().A.a n=B.a n=C.a n=D.a n=【解析】将前四项分别写成,,,,即可作出归纳.【答案】B2.由数列1,10,100,1000,…猜测该数列的第n项可能是().A.10nB.10n-1C.10n+1D.11n【答案】B3.已知点A(x1,)、B(x2,)是函数y=x2的图像上任意不同两点,依据图像可知,线段AB总是位于A、B两点之间函数图像的上方,因此有结论>()2成立.运用类比思想方法可知,若点C(x1,lg x1)、D(x2,lg x2)是函数y=lg x(x>0)的图像上的不同两点,则类似地有成立.【解析】因为线段总是位于C、D两点之间函数图像的下方,所以有<lg.【答案】<lg4.观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?【解析】设f(n)为n个点可连的弦的条数,则f(2)=1=,f(3)=3=,f(4)=6=,f(5)=10=,…,故f(n)=.归纳推理的应用已知函数f(x)=,设f1(x)=f(x),f n(x)=f n-1[f n-1(x)](n>1,n∈N+),则f3(x)的表达式为,猜想f n(x)(n∈N+)的表达式为.【方法指导】写出f1(x),f2(x),f3(x),观察f n(x)的特点,从而归纳出f n(x).【解析】由f1(x)=f(x)得f2(x)=f1[f1(x)]==,f3(x)=f2[f2(x)]==,…,由此猜想f n(x)=(n∈N+).【答案】f3(x)=f n(x)=(n∈N+)【小结】归纳推理的一般步骤:(1)经过观察个别情况发现某些相同的性质;(2)从已知的相同性质中推出一个有明确结论的一般性命题.利用类比推理猜想结论在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19,n∈N+)成立,类比上述性质,相应地:在等比数列{b n}中,若b9=1,则有等式成立.【方法指导】寻找类比对象,理解等差数列性质,结合等比数列性质给出结论.【解析】等差数列用减法定义性质用加法表述(若m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p+a q);等比数列用除法定义性质用乘法表述(若m,n,p,q∈N+,且m+n=p+q,则a m·a n=a p·a q).由此,猜测本题的答案为b1b2…b n=b1b2…b17-n(n<17,n∈N+).【答案】b1b2…b n=b1b2…b17-n(n<17,n∈N+)【小结】本题考查等差数列与等比数列的类比.类比问题的关键是找好对应的类比对象,理解类比前问题成立的条件也是个关键.通过类比方法解题通过计算可得下列等式:22-12=2×1+132-22=2×2+142-32=2×3+1……(n+1)2-n2=2×n+1将以上各式分别相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即1+2+3+…+n=.类比上述求法,请你求出12+22+32+…+n2的值.【方法指导】利用提示的思路求得(n+1)3-n3=3×n2+3×n+1,再叠加即可.【解析】23-13=3×12+3×1+133-23=3×22+3×2+143-33=3×32+3×3+1……(n+1)3-n3=3×n2+3×n+1将以上各式分别相加得:(n+1)3-13=3×(12+22+32+…+n2)+3×(1+2+3+…+n) +n,所以12+22+32+…+n2=[(n+1)3-1-n-3··n]=n(n+1)(2n+1).【小结】类比推理是由特殊到特殊的推理,其关键就是注重本质的推导方式,通过这种推导方式对解决另一个问题起到指导作用.(1)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,……根据以上事实,由归纳推理可得:当n∈N+且n≥2时,f n(x)=f(f n-1(x))=.(2)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个...等式..为.【解析】(1)观察给定的各个函数解析式,可知分子都为x,分母都为关于x的一次式的形式且各个式子的常数项分别为2,4,8,16,…,这样f n(x)对应的函数的分母的常数为2n,x的系数比常数少1即为2n-1,因此f n(x)=f(f n-1(x))=.(2)由题中等式可知第i个等式左边为1到i+1的立方和,右边为1+2+…+(i+1)的平方,所以第五个等式为13+23+33+43+53+63=212.【答案】(1)(2)13+23+33+43+53+63=212下列是用类比法进行猜测的几个结论:①由“a=b⇒ac=bc”类比得到“a>b⇒ac>bc”;②由“a(b+c)=ab+ac”类比得到“sin(A+B)=sin A+sin B”;③由“=(a>0,b>0,c>0)”类比得到“=(a>0,b>0,c>0)”;④由“分数的分子、分母同乘一个非零的数,分数值不变”类比得到“分数的分子、分母同乘一个非零的式子,分数值不变”.其中,正确结论的个数为().A.0B.1C.2D.3【解析】当c≤0时,①类比的结论不正确;②类比的结论是学生刚学习三角时经常出现的错误;③类比的结论也是学生在学习对数时常犯的错误,即类比推理的结论不一定正确;④类比的结论是正确的.【答案】B在平面上,若两个正三角形的边长之比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,求它们的体积之比.【解析】由类比推理得,若两个正四面体的棱长的比为1∶2,则它们的体积比为1∶8.下面计算验证,假设两个正四面体的棱长分别为1和2,如图,正四面体ABCD的棱长为1,取BC的中点E,作AO⊥ED于O,则OD=ED=×=,又在Rt△AOD中,AO===,则V正四面体ABCD=S△BCD·AO=××=.同理,可算得棱长为2的正四面体的体积V正四面体A'B'C'D'=2.∴V正四面体ABCD∶V正四面体A'B'C'D'=∶=1∶8.1.根据给出的数塔猜测123456×9+7等于().1×9+2=1112×9+3=111123×9+4=11111234×9+5=1111112345×9+6=111111A.1111110B.1111111C.1111112D.1111113【答案】B2.对命题“正三角形的内切圆切于三边的中点”,可类比猜想出:正四面体的内切球切于四面体().A.各正三角形内一点B.各正三角形的某高线上的点C.各正三角形的中心D.各正三角形外的某点【解析】正四面体的四个面都是正三角形,其内切球与正四面体的四个面相切于各正三角形的中心.【答案】C3.在数列{a n}中,a1=2,a n+1=(n∈N+),可以猜测数列的通项a n的表达式为.【答案】a n=(n∈N+)4.如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA、SB、SC和底面ABC所成的角分别为α1、α2、α3,三侧面△SBC、△SAC、△SAB的面积分别为S1、S2、S3,类比三角形中的正弦定理,给出空间情形的一个猜想.【解析】在△DEF中,由正弦定理得==,于是类比三角形中的正弦定理,在四面体S-ABC 中,猜想:==.(xx年·陕西卷)观察下列等式:12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为.【解析】设等式右边的数的绝对值构成数列{a n},∵a2-a1=2,a3-a2=3,a4-a3=4,…,a n-a n-1=n,以上所有等式相加可得a n-a1=2+3+4+…+n,即a n=1+2+3+…+n=,再观察各式的符号可知第n个等式为12-22+32-42+…+(-1)n+1n2=(-1)n+1·.【答案】12-22+32-42+…+(-1)n+1n2=(-1)n+1·1.观察(x2)'=2x,(x4)'=4x3,(cos x)'=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于().A.f(x)B.-f(x)C.g(x)D.-g(x)【解析】由给出的例子可以归纳推理得出:若函数f(x)是偶函数,则它的导函数是奇函数,因为定义在R上的函数f(x)满足f(-x)=f(x),即函数f(x)是偶函数,所以它的导函数是奇函数,即有g(-x)=-g(x),故选D.【答案】D2.下图所示的是一串白黑相间排列的珠子,若按这种规律从左往右排起来,则第36颗珠子的颜色为().A.白色B.黑色C.白色的可能性大D.黑色的可能性大【解析】把三颗白珠子与两颗黑珠子看作一个整体,即5个珠子一个周期,故第36颗珠子与第1颗珠子的颜色相同.【答案】A3.已知经过计算和验证有下列正确的不等式:+<2,+<2,+<2,根据以上不等式的规律,写出对正实数m,n成立的条件不等式:.【答案】当m+n=20时,有+≤24.将全体正奇数排成一个三角形数阵:13 5791113151719……按照以上规律的排列,求第n(n≥3)行从左向右的第3个数.【解析】前n-1行有1+2+3+…+(n-1)=个数,加上第n行(n≥3)从左向右的3个数共有(-+3)个数,故第n(n≥3)行从左向右的第3个数为2(-+3)-1=n2-n+5.5.观察下列各式:72=49,73=343,74=2401,…,则7xx的末两位数字为().A.01B.43C.07D.49【解析】∵75=16807,76=117649,77=823543,78=5764801,…,发现74k-2的末两位数字为49,74k-1的末两位数为43,74k的末两位数为01,74k+1的末两位数为07,k∈N+,∵7xx=74×504-2,∴末两位数为49.【答案】D6.观察式子:1+<,1++<,1+++<,…,则可归纳出的式子为().A.1+++…+<(n≥2)B.1+++…+<(n≥2)C.1+++…+<(n≥2)D.1+++…+<(n≥2)【答案】C7.在平面几何体中,△ABC的内角∠C的平分线CE分AB所成线段的比=.把这个结论类比到空间:在三棱锥A—BCD中(如图),DEC平分二面角A—CD—B且与AB相交于E,则得到类比的结论是.【答案】=8.已知数列{a n}的前n项和为S n,a1=-,且S n-1++2=0(n≥2,n∈N+),计算S1,S2,S3,S4,并猜想S n 的表达式.【解析】当n=1,S1=a1=-;当n=2时,=-2-S1=-,∴S2=-;当n=3时,=-2-S2=-,∴S3=-;当n=4时,=-2-S3=-,∴S4=-;猜想:S n=-(n∈N+).9.在公比为4的等比数列{b n}中,若T n是数列{b n}的前n项积,则有,,仍成等比数列,且公比为4100;类比上述结论,在公差为3的等差数列{a n}中,若S n是{a n}的前n项和,则有也成等差数列,且该等差数列的公差为.【答案】S20-S10,S30-S20,S40-S3030010.在数列{a n}中,a1=1,当n≥2时,其前n项和S满足=a n(S n-).(1)求,,,并求(不需证明);(2)求数列{a n}的通项公式.【解析】(1)当n≥2时,由a n=S n-S n-1和=a n(S n-),得=(S n-S n-1)(S n-),即=2+,所以=2+=2+1=3,=2+=5,=2+=7,……=2+=2n-1.(2)由(1)知S n=,当n≥2时,a n=S n-S n-1=-=-,显然a1=1不符合上述表达式,所以数列{a n}的通项公式为a n=。

2020北师大版高中数学选修1-2 课后习题:第三章 归纳推理

2020北师大版高中数学选修1-2 课后习题:第三章  归纳推理

[A 组 基础巩固]1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( ) A .f (x ) B .-f (x ) C .g (x )D .-g (x )解析:由所给函数及其导数知,偶函数的导函数为奇函数.因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ). 答案:D2.已知数列{a n }满足a 0=1,a n =a 0+a 1+…+a n -1(n ≥1),则当n ≥1时,a n 等于( ) A .2n B.12n (n +1) C .2n -1D .2n -1解析:a 0=1,a 1=a 0=1,a 2=a 0+a 1=2a 1=2,a 3=a 0+a 1+a 2=2a 2=4,a 4=a 0+a 1+a 2+a 3=2a 3=8,….猜想当n ≥1时,a n =2n -1. 答案:C3.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数的点数可以排成一个正三角形(如下图).试求第七个三角形数是( ) A .27 B .28 C .29D .30解析:第七个三角形数是1+2+3+4+5+6+7=28,故选B. 答案:B4.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63D .128解析:5=22+1,9=23+1,17=24+1,33=25+1, 归纳可得:x =26+1=65.答案:B5.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( ) A .289 B .1 024 C .1 225D .1 378解析:由图形可得三角形数构成的数列通项a n =n2(n +1),同理可得正方形数构成的数列通项b n =n 2,若a 既是三角形数又是正方形数,则a +1为偶数,a 为奇数,故排除B 、D ;由n2(n +1)=289=17×17,知n ∉N ,所以排除A ,而1 225=352=35×35×22=49×502=1 225,满足题意,故选C. 答案:C6.f (n )=1+12+13+…+1n (n ∈N +),计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,推测当n ≥2时,有________. 解析:f (4)=f (22)>2+22,f (8)=f (23)>3+22,f (16)=f (24)>4+22,f (32)=f (25)>5+22.答案:f (2n )>n +227.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为________.解析:由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81.答案:5+6+7+8+9+10+11+12+13=818.观察下列不等式:1+122<3 2,1+122+132<53,1+122+132+142<74,……照此规律,第五个...不等式为________.解析:归纳观察法.观察每行不等式的特点,每行不等式左端最后一个分数的分母与右端值的分母相等,且每行右端分数的分子构成等差数列.∴第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<1169.意大利数学家斐波那契在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对大兔子每月能生一对小兔子,而每对小兔子过了一个月就可以长成大兔子,如果不发生死亡,那么由一对大兔子开始,一年后能有多少对大兔子呢?我们依次给出各个月的大兔子对数,并一直推算下去到无尽的月数,可得数列:1,1,2,3,5,8,13,21,34,55,89,144,233,…这就是斐波那契数列,此数列中,a1=a2=1,当n≥3时,归纳出a n与a n-1间的递推关系式.解析:因为2=1+1,3=1+2;5=2+3,8=3+5,…,逐项观察分析每项与其前几项的关系易得:从第三项起,它的每一项等于它的前面两项之和,即a n=a n-1+a n-2(n≥3,n∈N+).10.已知sin230°+sin290°+sin2150°=32;sin25°+sin265°+sin2125°=32,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般性的命题,并给予证明. 解析:一般形式:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明:左边=1-cos 2α2+1-cos (2α+120°)2+1-cos (2α+240°)2=32-12[cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2α·cos 240°-sin 2αsin 240°] =32-12[cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α]=32=右边 (将一般形式写成sin 2(α-60°)+sin 2α+sin 2(α+60°)=32,sin 2(α-240°)+sin 2(α-120°)+sin 2α=32等均正确.) [B 组 能力提升]1.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性( )解析:每行的各个方格中的白圈个数分别为9,8,7,排除B 项、D 项.黑圈按照依次向右,右边无圆圈则向下的顺序每次移动两格(下幅图中被消去的白圈不计算在移动格子内),所以符合条件的只有C 项. 答案:C2.数列2,5,11,20,x,47,…中的x 的值为________.解析:5-2=3,11-5=6,20-11=9,看出x -20=12,47-x =15,∴x =32. 答案:323.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=x x +2,f 2(x )=f (f 1(x ))=x 3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n∈N+且n≥2时,f n(x)=f(f n-1(x))=________.解析:依题意,先求函数结果的分母中x项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n=2n-1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n=2n.所以当n≥2时,f n(x)=f(f n-1(x))=x(2n-1)x+2n.答案:x(2n-1)x+2n4.(1)如图(a)(b)(c)(d)为四个平面图形.数一数,每个平面图形各有多少个顶点?多少条边?它们分别围成了多少个区域?请将结果填入下表(按填好的例子做).(2)(3)现已知某个平面图形有1 005个顶点,且围成了1 005个区域,试根据以上关系确定这个图形有多少条边.解析:(1)填表如下:(2)由该表可以看出,所给四个平面图形的顶点数、边数及区域数之间有下述关系:4+3-6=1,8+5-12=1,6+4-9=1,10+6-15=1.所以我们可以推断:任何平面图形的顶点数、边数及区域数之间都有下述关系:顶点数+区域数-边数=1.(3)由上面所给的关系,可知所求平面图形的边数. 边数=顶点数+区域数-1=1 005+1 005-1=2 009.5.某少数民族的刺绣有着悠久的历史,如图①②③④所示,为她们刺绣的最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多,刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式; (3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解析:(1)f (5)=41. (2)f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, ……由上述规律,得f (n +1)-f (n )=4n .∴f (n +1)=f (n )+4n ,f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2) =f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1.(3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n),∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12[(1-12)+(12-13)+(13-14)+…+(1n -1-1n )]=1+12(1-1n )=32-12n .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 第3章《推理与证明》导学案
北师大版选修1-2
学习目标 1. 了解合情推理和演绎推理的含义;
2. 能用归纳和类比进行简单的推理;掌握演绎推理的基本模式;
3. 能用综合法和分析法进行数学证明;
4. 能用反证法进行数学证明. 学习过程
一、课前准备
(预习教材P 28~ P 55,找出疑惑之处)
复习1:归纳推理是由 到 的推理. 类比推理是由 到 的推理. 合情推理的结论 . 演绎推理是由 到 的推理.
演绎推理的结论 .
复习2:综合法是由 导 ;
分析法是由 索 .
直接证明的两种方法: 和 ;
是间接证明的一种基本方法.
二、新课导学
※ 学习探究
探究任务一:合情推理与演绎推理
问题:合情推理与演绎推理是相辅相成的,前者是后者的前提,后者论证前者的可靠性.你能举出几个用合情推理和演绎推理的例子吗?
探究任务一:直接证明和间接证明
问题:你能分别说出这几种证明方法的特点吗?结合自己以往的数学学习经历,说说一般在什么情况下,你会选择什么相应的证明方法?
※ 典型例题
例1 已知数列{}n a 的通项公式
2
1()(1)n a n N n +=∈+, 记12()(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1),(2),(3)f f f 的值,推测出()f n 的值.
变式:已知数列()()1111
,,,,1335572121n n ⨯⨯⨯-
+
⑴求出1234,,,S S S S ;⑵猜想前n 项和n S .
(理科)(3)并用数学归纳法证明你的猜想是否正确?
变式:如右图所示,SA ⊥平面ABC ,AB BC ⊥,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F ,求证:⑴SAB BC ⊥面;⑵AF SC ⊥.
A B
C S F E
小结:证明问题对思维的深刻性、严谨性和灵活性有较高的要求.
※ 动手试试
练1. 求证:当220x bx c ++=有两个不相等的非零实数根时,0bc ≠.
练2. 数列{}n a 满足*2,n n S n a n N =-∈
(1)计算1234,,,a a a a ,并由此猜想通项公式n a ;
(2)用数学归纳法证明(1)中的结论.(理科)
三、总结提升
※ 学习小结
※ 知识拓展 帽子颜色问题
“有3顶黑帽子,2顶白帽.让三个人从前到后站成一排,给他们每个人头上戴一顶帽子.每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色.(所以最后一个人可以看
C 3H 8C 2H 6
CH 4H H H H H H H H
H H H H H H C C C C C
H H H H C 见前面两个人头上帽子的颜色,中间那个人看得见前面那个人的帽子颜色但看不见在他后面那个人的帽子颜色,而最前面那个人谁的帽子都看不见.现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人.事实上他们三个戴的都是黑帽子,那
么最前面那个人一定会知道自己戴的是黑帽子.为什么?
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 按照下列三种化合物的结构式及分子式的规律,
1. 求证22y ax bx c =++,22y bx cx a =++,
22y cx ax b =++(,,a b c 是互不相等的实数),3条抛物线至少有一条与x 轴有两个交点.。

相关文档
最新文档