最新【数学】北京市海淀区高一上学期期末考试试题

合集下载

2023-2024学年北京市海淀区高一上册期末数学学情检测模拟试卷合集2套(含答案)

2023-2024学年北京市海淀区高一上册期末数学学情检测模拟试卷合集2套(含答案)

2023-2024学年北京市海淀区高一上册期末数学质量检测模拟试题一、单选题1.已知集合{}|03A x x =<<,集合{}2B x x =≥.则集合A B = ()A .{}|2x x <B .{}2|0x x <≤C .{}|2x x ≤<3D .{}|2x x ≥【正确答案】C【分析】已知集合A 、集合B ,由集合的基本运算,直接求解A B ⋂.【详解】集合{}|03A x x =<<,集合{}2B x x =≥,则集合{}|23A B x x =≤< .故选:C2.命题:1,(1)0p x x x ∀>->,则p ⌝是()A .1,(1)0x x x ∀>-≤B .()1,10x x x ∀≤->C .()000110x x x ∃≤->,D .0001,(1)0x x x ∃>-≤【正确答案】D【分析】根据全称命题的否定是存在命题,即可得到答案.【详解】命题:1,(1)0p x x x ∀>->,则p ⌝.0001,(1)0x x x ∃>-≤故选:D3.下列函数中,既是奇函数又在()0,∞+上是增函数的是()A .()f x x x=B .()1f x x x =+C .()ln f x x=D .()2x f x =【正确答案】A【分析】分别判断每个函数的奇偶性和单调性是否符合题意.【详解】对A ,函数()f x x x =,定义域为R ,()()f x x x x x f x -=--=-=-,函数为奇函数,当()0,x ∞∈+时,()2f x x =,在()0,∞+上单调递增,A 选项正确;对B ,函数()1f x x x =+,1111424422f f ⎛⎫⎛⎫=+>=+ ⎪ ⎪⎝⎭⎝⎭,不满足在()0,∞+上是增函数,B 选项错误;对C ,函数()ln f x x =,定义域为()0,∞+,不是奇函数,C 选项错误;对D ,函数()2x f x =,定义域为R ,值域为()0,∞+,函数图象在x 轴上方,不关于原点对称,不是奇函数,D 选项错误.故选:A4.已知实数,,a b c 满足0a b c <<<,则下列式子中正确的是()A .b a c b->-B .2a bc <C .22b a --<D .||||a b c b <【正确答案】C【分析】ABD 错误的选项可以取特殊值进行判断,C 选项可以利用指数函数的性质判断.【详解】对于A 选项,例如1,1,20a b c =-==,则2,19b a c b -=-=,不满足b a c b ->-,A 选项错误;对于B 选项,例如5,1,2a b c =-==,225a =,2bc =,不满足2a bc <,B 选项错误;对于C 选项,由0a b c <<<可知,b a -<-,结合指数函数2x y =在R 上递增可知,22b a --<,C 选项正确;对于D 选项,例如5,1,2a b c =-==,||5a b =,||2c b =,不满足||||a b c b <,D 选项错误.故选:C5.已知0.20.233,log 3,log 2a b c ===,则()A .a b c>>B .a c b>>C .c a b >>D .c b a >>【正确答案】B 【分析】根据指数函数、对数函数的单调性判断各数的范围,可比较大小.【详解】根据指数函数、对数函数性质可得,0.20331a =>=,0.20.2log 3log 10b =<=,3log 2c =,由3330log 1log 2log 31=<<=,则01c <<,所以a c b >>,故选∶B .6.若角α的终边与单位圆交于点01,3x ⎛⎫ ⎪⎝⎭,则下列三角函数值恒为正的是()A .cos tan ααB .sin cos ααC .sin tan ααD .tan α【正确答案】A 【分析】由三角函数定义结合同角三角函数关系得到正弦和余弦值,从而判断出正确答案.【详解】由题意得:1sin 3α=,0cos 3x α===±,A 选项,sin 1cos tan cos sin 0cos 3αααααα=⋅==>,B 选项,01sin cos 3x αα=可能正,可能负,不确定;C 选项,20sin 1sin tan cos 9x αααα==可能正,可能负,不确定;D选项,sin tan cos 4ααα==±,错误.故选:A7.函数()ln 3f x x x =-在下列区间内一定存在零点的是()A .()1,2B .()2,3C .()3,4D .()4,5【正确答案】B【分析】构建新函数()3ln g x x x=-,根据单调性结合零点存在性定理分析判断.【详解】令()ln 30f x x x =-=,则3ln 0x x -=,构建()3ln g x x x =-,则()g x 在()0,∞+上单调递增,∵()()32ln 20,3ln 3102g f =-<=->,∴()g x 在()0,∞+内有且仅有一个零点,且零点所在的区间是()2,3,故函数()ln 3f x x x =-一定存在零点的区间是()2,3.故选:B.8.已知函数()f x 定义域为D ,那么“函数()f x 图象关于y 轴对称”是“1x D ∀∈,都存在2x D ∈,使得12()()f x f x =成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】根据函数性质分别验证充分性与必要性是否成立,即可得答案.【详解】解:函数()f x 定义域为D ,若函数()f x 图象关于y 轴对称,则x D ∀∈,则x D -∈,且()()=f x f x -,所以1x D ∀∈,都存在21x x D =-∈,使得满足11()()f x f x =-,即12()()f x f x =成立,故充分性成立;若函数()1f x x =-,其定义域为R ,满足1x ∀∈R ,都存在212R x x =-∈,使得221111()12111()f x x x x x f x =-=--=-=-=成立,但是函数()f x 的图象不关于y 轴对称,故必要性不成立;故“函数()f x 图象关于y 轴对称”是“1x D ∀∈,都存在2x D ∈,使得12()()f x f x =成立”的充分不必要条件.故选:A.9.中医药在疫情防控中消毒防疫作用发挥有力,如果学校的教室内每立方米空气中的含药量y (单位:毫克)随时间x (单位:h )的变化情况如图所示.在药物释放过程中,y 与x 成正比;药物释放完毕后,y 与x 的函数关系式为19x a y -⎛⎫= ⎪⎝⎭(a 为常数),据测定,当空气中每立方米的含药量降低到13毫克以下,学生方可进教室,根据图中提供的信息,从药物释放开始到学生能进入教室,至少需要经过()A .0.4hB .0.5hC .0.7hD .1h【正确答案】C【分析】根据函数图象经过点()0.2,1,求出a 的值,然后利用指数函数的单调性解不等式即得.【详解】由题意知,点()0.2,1在函数19x a y -⎛⎫= ⎪⎝⎭的图象上,所以0.2119a -⎛⎫= ⎪⎝⎭,解得0.2a =,所以0.219x y -⎛⎫= ⎪⎝⎭,由0.21193x -⎛⎫< ⎪⎝⎭,可得20.41133x -⎛⎫< ⎪⎝⎭,所以20.41x ->,解得0.7x >,所以从药物释放开始,到学生回到教室至少需要经过的0.7小时.故选:C.10.已知三角形ABC 是边长为2的等边三角形.如图,将三角形ABC 的顶点A 与原点重合.AB 在x 轴上,然后将三角形沿着x 轴顺时针滚动,每当顶点A 再次回落到x 轴上时,将相邻两个A 之间的距离称为“一个周期”,给出以下四个结论:①一个周期是6;②完成一个周期,顶点A 的轨迹是一个半圆;③完成一个周期,顶点A 的轨迹长度是8π3;④完成一个周期,顶点A 的轨迹与x 轴围成的面积是8π3.其中说法正确的是()A .①②B .①③④C .②③④D .①③【正确答案】D 【分析】依题意将ABC 沿着x 轴顺时针滚动,完成一个周期,得出点A 轨迹,由题目中“一个周期”的定义、轨迹形状、弧长公式、扇形面积公式进行计算即可.【详解】如上图,ABC 沿着x 轴顺时针滚动完成一个周期的过程如下:第一步,ABC 绕点B 顺时针旋转至线段BC 落到x 轴上11B C 位置,得到111A B C △,此时顶点A 的轨迹是以B 为圆心,AB 为半径的一段圆弧,即顶点A 由原点O 沿 1AA 运动至1A 位置;第二步,111A B C △绕点1C 顺时针旋转至线段11C A 落到x 轴上22C A 位置,得到222A B C △,此时顶点A 的轨迹是以1C 为圆心,11C A 为半径的一段圆弧,即顶点A 由1A 沿 12A A 运动至2A 位置,落到x 轴,完成一个周期.对于①,∵11222AB B C C A ===,∴一个周期26AA =,故①正确;对于②,如图所示,完成一个周期,顶点A 的轨迹是 1AA 和12A A 组成的曲线,不是半圆,故②错误;对于③,由已知,111111π3A B C A C B ∠=∠=,∴11122π3A BA A C A ∠=∠=,∴ 1AA 的弧长114π3l A BA BC =∠⋅=, 12A A 的弧长2112114π3l A C A C A =∠⋅=,∴完成一个周期,顶点A 的轨迹长度为4π4π8π333+=,故③正确;对于④,如图,完成一个周期,顶点A 的轨迹与x 轴围成的图形为扇形1BAA ,扇形112C A A 与111A B C △的面积和,∵11122π3A BA A C A ∠=∠=,∴1112212π4π2233BAA C A A S S ==⨯⨯=扇形扇形,∵等边ABC 边长为2,∴111A B C S =∴完成一个周期,顶点A 的轨迹与x 轴围成的面积是4π4π8π333++=+,故④错误.∴正确的说法为:①③.故选:D.方法点睛:分步解决点A 轨迹,第一步是ABC 绕点B 滚动得到111A B C △,第二步是111A B C △绕点1C 滚动得到222A B C △,再将两步得到的点A 轨迹合并,即可依次判断各个说法是否正确.二、填空题11.4sin 3π=______.【正确答案】【分析】根据诱导公式,以及特殊角的正弦值,可得结果.【详解】4sinsin sin 333ππππ⎛⎫=+=-= ⎪⎝⎭故本题主要考查诱导公式,属基础题.12.函数()f x =___________.【正确答案】1,e ∞⎡⎫+⎪⎢⎣⎭【分析】根据二次根式以及对数函数的性质,求出函数有意义所需的条件.【详解】函数()f x =01ln 0x x >⎧⎨+≥⎩,解得1e x ≥,即函数定义域为1,e ∞⎡⎫+⎪⎢⎣⎭.故1,e ∞⎡⎫+⎪⎢⎣⎭13.函数()21f x x x =-+在区间[0,3]上的值域是___________.【正确答案】3,74⎡⎤⎢⎥⎣⎦【分析】对二次函数配方,结合单调性得函数的值域.【详解】2213()1()24f x x x x =-+=-+,所以()f x 在10,2⎡⎫⎪⎢⎣⎭上单调递减,在1,32⎛⎤ ⎥⎝⎦上单调递增,13(24f =,(0)1f =,(3)7f =,所以()f x 值域为3,74⎡⎤⎢⎥⎣⎦.故答案为.3,74⎡⎤⎢⎥⎣⎦14.已知函数()()2log 1f x x =+,若()f x x >,则x 的范围是___________.【正确答案】()0,1【分析】作出两个函数的图像,利用数形结合解不等式.【详解】作出函数()2log 1y x =+和函数y x =的图像,如图所示,两个函数的图像相交于点()0,0和()1,1,当且仅当()0,1x ∈时,()2log 1y x =+的图像在y x =的图像的上方,即不等式()>f x x 的解集为()0,1.故()0,115.在平面直角坐标系xOy 中,设角α的始边与x 轴的非负半轴重合,角α终边与单位圆相交于点03,5P y ⎛⎫ ⎪⎝⎭,将角α终边顺时针旋转π后与角β终边重合,那么cos β=___________.【正确答案】35-##-0.6【分析】先根据三角函数的定义算出cos α,然后根据,αβ的关系结合诱导公式计算cos β.【详解】根据三角函数的定义,3cos 5α=,由题意,πβα=-,于是()3cos cos πcos 5βαα=-=-=-.故35-16.已知某产品总成本C (单位:元)与年产量Q (单位:件)之间的关系为24016000C Q =+.设年产量为Q 时的平均成本为f (Q )(单位:元/件),那么f (Q )的最小值是___________.【正确答案】1600【分析】由题意得到年产量为Q 时的平均成本为()1600040C f Q Q Q Q==+,再利用基本不等式求解.【详解】解:因为某产品总成本C (单位:元)与年产量Q (单位:件)之间的关系为24016000C Q =+.所以年产量为Q 时的平均成本为()16000401600C f Q Q Q Q ==+≥,当且仅当1600040Q Q=,即20Q =时,()f Q 取得最小值,最小值为1600,故1600三、双空题17.已知函数()21,16,3x x a f x x x x a ⎧-<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,a 为常数.(1)当3a =时,如果方程()0f x k -=有两个不同的解,那么k 的取值范围是___________;(2)若()f x 有最大值,则a 的取值范围是___________.【正确答案】()1,7-[]0,3【分析】(1)通过讨论21x y =-和163y x x ⎛⎫=-- ⎪⎝⎭的单调性得出函数()f x 在3a =时的单调性,将方程()0f x k -=有两个不同的解转化为函数()f x 与直线y k =有两个不同的交点的问题,即可得出k 的取值范围.(2)根据(1)中得出的21x y =-和163y x x ⎛⎫=-- ⎪⎝⎭的单调性,分类讨论a 不同情况时()f x 图象的情况,即可得出a 的取值范围.【详解】解(1)由题意,在21x y =-中,函数单调递增,且1y >-,在163y x x ⎛⎫=-- ⎪⎝⎭中,2163y x x =-+,对称轴()16832213b x a =-=-=⨯-,∴函数在83x =处取最大值,为28168643339y ⎛⎫=-+⨯= ⎪⎝⎭,函数在8,3⎛⎫-∞ ⎪⎝⎭上单调递增,在8,3⎛⎫+∞ ⎪⎝⎭上单调递减,在()21,16,3x x a f x x x x a ⎧-<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,a 为常数中,当3a =时,()21,316,33x x f x x x x ⎧-<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,函数在(),3∞-上单调递增,在[)3,+∞上单调递减,当3x <时,3()21(3)217x f x f =-<=-=,∵()211x f x =->-,∴当3x <时,()17f x -<<,当3x ≥时,()()221616333733f x x x f =-+≤=-+⨯=,∴函数在3x =处取最大值7,∵方程()0f x k -=有两个不同的解,即()f x k =有两个不同的解,∴函数()f x 与直线y k =有两个不同的交点,∴17k -<<,∴k 的取值范围为()1,7-,(2)由题意及(1)得,在21x y =-中,函数单调递增,且1y >-,在163y x x ⎛⎫=-- ⎪⎝⎭中,对称轴83x =,在83x =处取最大值649,且在8,3⎛⎫-∞ ⎪⎝⎭上单调递增,在8,3⎛⎫+∞ ⎪⎝⎭上单调递减,函数()21,16,3x x a f x x x x a ⎧-<⎪=⎨⎛⎫--≥ ⎪⎪⎝⎭⎩,a 为常数∵()f x 有最大值,∴21x y =-在x a =的值要不大于16()3y x x =--在x a =的值,当a<0时,21x y =-图象在163y x x ⎛⎫=-- ⎪⎝⎭上方,显然21x y =-在x a =的值要大于163y x x ⎛⎫=-- ⎪⎝⎭在x a =的值,不符题意,舍去当0a ≥时,由(1)知,当03a ≤≤时21x y =-在x a =的值不大于163y x x ⎛⎫=-- ⎪⎝⎭在x a =的值,综上,03a ≤≤.故()1,7-;[]0,3.思路点睛:本题考查根据方程根的个数求解参数范围的问题,解决此类问题的基本思路是将问题转化为两函数的图象交点个数问题,进而作出函数图象,采用数形结合的方式来进行分析求解.四、解答题18.已知3cos 5α=-,π,π2α⎛⎫∈ ⎪⎝⎭(1)求sin α,tan α;(2)求()()cos 3ππsin tan π2ααα+⎛⎫+- ⎪⎝⎭的值.【正确答案】(1)4sin 5α=,4tan 3α=-.(2)34-【分析】(1)由同角三角函数的平方关系和商数关系进行运算即可;(2)结合第(1)问结果,由诱导公式进行运算即可.【详解】(1)222316sin 1cos 1525αα⎛⎫=-=--= ⎪⎝⎭,∵π,π2α⎛⎫∈ ⎪⎝⎭,∴sin 0α>,∴4sin 5α=,∴sin tan s 43co ααα==-.(2)原式()()()()cos 3πcos cos πsin cos tan sin tan πcos 2cos απααααααααα++-===⋅-⎛⎫⎛⎫+-⋅- ⎪ ⎪⎝⎭⎝⎭cos 3sin 4αα==-.19.已知函数()()221R f x x mx m m =+-+∈(1)若函数()f x 在区间()1,3-上单调,求实数m 的取值范围;(2)解不等式()21f x x <+.【正确答案】(1)(][),62,∞-∞-⋃+(2)当2m =-时,不等式()21f x x <+的解集为∅,当2m >-时,不等式()21f x x <+的解集为(),2m -,当2m <-时,不等式()21f x x <+的解集为()2,m -,【分析】(1)根据二次函数的性质确定参数m 的取值区间;(2)由题化简不等式()21f x x <+,求出对应方程的根,讨论两根的大小关系得出不等式()21f x x <+的解集.【详解】(1)函数()221f x x mx m =+-+的对称轴2m x =-,函数()f x 在区间()1,3-上单调依题意得12m -≤-或32m -≥,解得2m ≥或6m ≤-,所以实数m 的取值范围为(][),62,∞-∞-⋃+.(2)由()21f x x <+,即22121x mx m x +-+<+,即()2220x m x m +--<,令()()()222020x m x m x x m +--=⇒-+=得方程的两根分别为2,m -,当2m =-,即2m =-时,不等式()21f x x <+的解集为∅,当2m >-,即2m >-时,不等式()21f x x <+的解集为(),2m -,当2m <-,即2m <-时,不等式()21f x x <+的解集为()2,m -,综上,当2m =-时,不等式()21f x x <+的解集为∅,当2m >-时,不等式()21f x x <+的解集为(),2m -,当2m <-时,不等式()21f x x <+的解集为()2,m -,20.给定函数22()11x f x x =-+.(1)求函数()f x 的零点;(2)证明:函数()f x 在区间(0,)+∞上单调递增;(3)若当,()0x ∈+∞时,函数()f x 的图象总在函数()3g x ax =-图象的上方,求实数a 的取值范围【正确答案】(1)1x =,12x =-;(2)见解析;(3)(,2]-∞.【分析】(1)令()0f x =求解即可;(2)根据函数单调性的定义证明即可;(3)由题意可得221x a x x <++在,()0x ∈+∞上恒成立,令22(),01x h x x x x=+>+,利用函数的单调性的定义可得()h x 在(0,)+∞上单调递减,且有()2h x >,即可得a 的取值范围.【详解】(1)解:因为22()11x f x x =-+,所以1x ≠-,令22()101x f x x =-=+,则有221x x =+,即2210x x --=,解得1x =或12x =-;(2)证明:任取1212,(0,),x x x x ∈+∞<,则222212122112121212121212222(1)2(1)2()()()()11(1)(1)(1)(1)x x x x x x x x x x x x f x f x x x x x x x +-+-++-=-==++++++,因为120x x <<,所以121212122()()0(1)(1)x x x x x x x x -++<++,即1212()()0()()f x f x f x f x -<⇔<,所以函数()f x 在区间(0,)+∞上单调递增;(3)解:由题意可得22131x ax x ->-+在,()0x ∈+∞上恒成立,即221x a x x<++在,()0x ∈+∞上恒成立,令22222()22,011(1)x h x x x x x x x x =+=-+=+>+++,因为0x >,22022(1)x x +>+=+,当x 趋于+∞时,2(1)x x +趋于0,22(1)x x ++趋于2,所以()()2,(0)h x x ∈+∞>,,所以由221x a x x<++在,()0x ∈+∞上恒成立可得2a ≤,故a 的取值范围为(,2]-∞.21.如图,四边形OABC 是高为2的等腰梯形.//,4,2OA BC OA CB ==(1)求两条腰OC ,AB 所在直线方程;(2)记等腰梯形OABC 位于直线(04)x m m =<≤左侧的图形的面积为()f m .①当12m =时,求图形面积()f m 的值;②试求函数()y f m =的解析式,并画出函数()y f m =的图象.【正确答案】(1)腰OC所在直线方程为y =,腰AB所在直线方程为y =+;(2)①()f m =,②()22,0134m f m m m <≤⎪=-<≤-+<≤⎪⎩,图象见解析.【分析】(1)由已知,解三角形求点,,,O A B C 的坐标,利用待定系数法求其方程;(2)①解三角形结合三角形面积公式求01m <≤时()f m 的解析式,由此求12m =时,()f m 的值;②分别在条件01m <≤,13m <≤,34m <≤下求()f m ,由此可得函数()y f m =的解析式,作出函数()y f m =的图象.【详解】(1)过点C 作CE OA ⊥,垂足为E ,过点B 作BF OA ⊥,垂足为F ,又//OA BC ,2BC =,所以四边形BCEF 为矩形,且2EF =,因为四边形OABC 为等腰梯形,4,2OA OC AB ===,所以1OE AF ==,CE BF =所以()((()0,0,,3,,4,0O C B A ,设直线OC 的方程为y kx =1k =⨯,所以k =所以腰OC所在直线方程为y =,设直线AB 的方程为y sx t =+,则304s t s t =+=+⎪⎩,所以s t ⎧=⎪⎨=⎪⎩,所以腰AB所在直线方程为y =+,(2)①当01m <≤时,设直线x m =与直线,OA OC 的交点分别为,M N ,则//MN CE ,所以~OMN OEC ,所以MN OM CE OE=,又,1OM m CE OE ===,所以MN =,所以()212OMN f m S m ==⨯=故当12m =时,()f m =,②由①知,当01m <≤时,()2f m =,当13m <≤时,设直线x m =与直线,OA OC 的交点分别为,G H ,则//GH CE ,由已知四边形CEGH 为矩形,所以()(1OCE CEGH f m S S m m =++- ,当34m <≤时,设直线x m =与直线,OA OC 的交点分别为,K L ,则//KL BF ,所以~AKL AFB ,所以KL AK FB AF=,又4,1AK m BF AF =-==,所以)4MN m =-,所以()(()()22414422OABC AKL f m S S m m +=-=---=+- ,所以()22,01,134m f m m m <≤⎪=<≤-+<≤⎪⎩,作函数()y f m =的图象可得22.设A 是正整数集的非空子集,称集合{|||,B u v u v A =-∈,且}u v ≠为集合A 的生成集.(1)当{}1,3,6A =时,写出集合A 的生成集B ;(2)若A 是由5个正整数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正整数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【正确答案】(1){}2,3,5B =;(2)4;(3)不存在,理由见解析.【分析】(1)利用集合的生成集定义直接求解;(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)假设存在集合{},,,A a b c d =,可得d a c a b a ->->-,d a d b d c ->->-,c a c b ->-,16d a -=,然后结合条件说明即得.【详解】(1)因为{}1,3,6A =,所以132,165,363-=-=-=,所以{}2,3,5B =;(2)设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为21314151a a a a a a a a <<<----,所以B 中元素个数大于等于4个,又{}1,2,3,4,5A =,则{}1,2,3,4B =,此时B 中元素个数等于4个,所以生成集B 中元素个数的最小值为4;(3)不存在,理由如下:假设存在4个正整数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集B 由,,,,,b a c a d a c b d b d c ------组成,又,,d a c a b a d a d b d c c a c b ->->-->->-->-,所以16d a -=,若2b a -=,又16d a -=,则14d b B -=∉,故2b a -≠,若2d c -=,又16d a -=,则14c a B -=∉,故2d c -≠,所以2c b -=,又16d a -=,则18d b c a -+-=,而{},3,5,6,10d b c a --∈,所以18d b c a -+-=不成立,所以假设不成立,故不存在4个正整数构成的集合A ,使其生成集{}2,3,5,6,10,16B =.方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.2023-2024学年北京市海淀区高一上册期末数学质量检测模拟试题一、单选题1.已知集合{}260A x x x =+-<,{}13B x x =-<<,则A B ⋃=()A .()3,3-B .()2,3-C .()1,5-D .()5,3-【正确答案】A 【分析】求出集合A ,根据并集的运算即可求出结果.【详解】解260x x +-<可得,32x -<<,所以{}|32A x x =-<<,所以{}{}{}|3213|33A B x x x x x x ⋃=-<<⋃-<<=-<<.故选:A.2.已知命题2:5,210p x x x ∃>-+>,则p ⌝为()A .25,210x x x ∀≤-+≤B .25,210x x x ∀>-+≤C .25,210x x x ∃>-+≤D .25,210x x x ∃≤-+>【正确答案】B【分析】根据全称命题的否定为特称命题,否量词,否结论即可得解.【详解】命题2:5,210p x x x ∃>-+>的否定p ⌝为:25,210x x x ∀>-+≤,故选:B.3.下列函数中,既是偶函数又在()0+∞,上是增函数的是()A .()lg f x x=B .()0.3x f x =C .()3f x x =D .()21f x x =【正确答案】A 【分析】根据单调性排除BD ,根据奇偶性排除C ,A 满足单调性和奇偶性,得到答案.【详解】对选项A :()()lg f x x f x -==,函数为偶函数,当0x >时,()lg f x x =为增函数,正确;对选项B :()0.3x f x =在()0+∞,上为减函数,错误;对选项C :()()3f x x f x -=-=-,函数为奇函数,错误;对选项D :()21f x x =在()0+∞,上为减函数,错误;故选:A4.不等式2311x x +≥-的解集为()A .312x x x ⎧⎫<≥⎨⎬⎩⎭或B .{}4x x ≥C .{}4x x ≤-D .{14}x x x >≤-或【正确答案】D【分析】将原不等式转化为一元二次不等式求解.【详解】2311x x +≥-,即23410,011x x x x ++-≥≥--,等价于()()41010x x x ⎧+-≥⎨-≠⎩,解得1x >或4x ≤-;故选:D.5.已知函数()21log f x x x =-在下列区间中,包含()f x 零点的区间是()A .()01,B .()12,C .()23,D .()34,【正确答案】B【分析】确定函数单调递增,计算()10f <,()20f >,得到答案.【详解】()21log f x x x =-在()0,∞+上单调递增,()110f =-<,()1121022f =-=>,故函数的零点在区间()12,上.故选:B6.已知a =0.63,b =30.6,c =log 30.6,则()A .a <b <cB .b <a <cC .c <a <bD .c <b <a 【正确答案】C【分析】利用对数函数和指数函数的性质求解即可.【详解】因为0<0.63<0.60=1,则0<a <1,而b =30.6>30=1,c =log 30.6<log 31=0,所以c <a <b .故选:C7.已知实数,a b ,若a b <,则下列结论正确的是()A .11a b>B .22a b <C .1122ab⎛⎫⎛⎫> ⎪ ⎝⎭⎝⎭D .()ln 0b a ->【正确答案】C【分析】对ABD 选项采用取特殊值验证即可,对于C ,首先构造指数函数,利用单调性即可.【详解】因为a b <,则对于A ,取1a =-,1b =,则11a b <,A 错误;对于B ,取1a =-,1b =,此时22a b =,故B 错误;对于C ,构造指数函数1()2xf x ⎛⎫= ⎪⎝⎭,则()f x 单调递减,因为a b <,所以有()()f a f b >,即1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 正确;对于D ,取13a =、12b =,则()111ln ln ln 0236b a ⎛⎫-=-=< ⎪⎝⎭,故D 错误.故选:C8.某市6月前10天的空气质量指数为35,54,80,86,72,85,58,125,111,53,则这组数据的第75百分位数是()A .84.5B .85C .85.5D .86【正确答案】D【分析】按照求解百分位数的流程,先计算出100.757.5⨯=,然后由小到大排序,选取第8个数作为第75百分位数.【详解】100.757.5⨯=,故从小到大排列后:35,53,54,58,72,80,85,86,111,125取第8个数作为第75百分位数,第8个数是86故选:D9.学校开展学生对食堂满意度的调查活动,已知该校高一年级有学生550人,高二年级有学生500人,高三年级有学生450人.现从全校学生中用分层抽样的方法抽取60人进行调查,则抽取的高二年级学生人数为()A .18B .20C .22D .30【正确答案】B【分析】求出高一年级学生、高二年级学生、高三年级学生人数比,再列式计算作答.【详解】依题意,该校高一年级学生、高二年级学生、高三年级学生人数比为:550:500:45011:10:9=,所以抽取的高二年级学生人数为10602011109⨯=++.故选:B10.物理学规定音量大小的单位是分贝(dB),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:010Ilg Iη=(其中0I 是人耳能听到声音的最低声波强度),一般声音在30分贝左右时不会影响正常的生活和休息,超过50分贝就会影响睡眠和休息;70分贝以上会造成心烦意乱,精神不集中,影响工作效率,甚至发生事故;长期生活在90分贝以上的噪声环境,就会得“噪音病”,汽车的噪声可以达到100分贝,为了降低噪声对周围环境的影响,某高速公路上安装了隔音围挡护栏板,可以把噪声从75分贝降低到50分贝,则50dB 声音的声波强度是75dB 声音的声波强度的()A .5210-倍B .3210-倍C .2310-倍D .2510-倍【正确答案】A首先根据题意得到10010I I η=,再代入公式计算即可.【详解】因为010IlgI η=,所以10010I I η=.所以50510027510010=1010I I -倍.故选:A二、填空题11.函数()()lg 32f x x =-的定义域为_____.【正确答案】[)2,+∞【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【详解】由题意,可知20320x x -≥⎧⎨->⎩,解得2x ≥,所以函数的定义域为[)2,+∞.故[)2,+∞.12.某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的的频率分布直方图,根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数为:_____.【正确答案】140【分析】求出这200名学生中每周的自习时间不少于22.5小时的频率,即可求得答案.【详解】由频率分布直方图得:这200名学生中每周的自习时间不少于22.5小时的频率为:(0.020.10) 2.50.71+⨯-=,这200名学生中每周的自习时间不少于22.5小时的人数为:2000.7140⨯=,故140.13.若“11x -<<”是“0x a -≤”的充分不必要条件,则实数a 的取值范围是________.【正确答案】[)1,+∞【分析】结合充分不必要条件即可求出结果.【详解】因为0x a -≤,即x a ≤,由于“11x -<<”是“0x a -≤”的充分不必要条件,则11x x a -<<⇒≤,但11x -<<不能推出x a ≤,所以1a ≥,故答案为.[)1,+∞三、双空题14.函数22(0,1)x y a a a +=->≠恒过的定点坐标为___________,值域为_____________.【正确答案】()2,1--()2,-+∞【分析】根据010a a =≠(),求出对应的,x y 的值得到定点坐标,再由指数函数值域得所求值域.【详解】令20x +=,解得:2x =-,此时121y =-=-,故函数22(0,1)x y a a a +=->≠恒过定点()2,1--.指数函数(0,1)x y a a a =>≠的值域为()0,∞+,函数22(0,1)x y a a a +=->≠的图像,可将指数函数(0,1)x y a a a =>≠的图像向左平移两个单位,再向下平移两个单位,所以函数22(0,1)x y a a a +=->≠的值域为()2,-+∞.故()2,1--;()2,-+∞.15.已知函数1,02()ln ,2x f x x x x ⎧<≤⎪=⎨⎪>⎩,则函数()f x 最小值为_______________;如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是__________________.【正确答案】12##0.5()ln 2,+∞【分析】空1利用函数单调性求函数()f x 最小值,空2作函数()f x 与y k =的图像,从而利用数形结合求解.【详解】1()f x x =在区间(]0,2上单调递减,当02x <≤时,1()2f x ≥;()ln f x x =在区间()2,+∞上单调递增,当2x >时,()ln 2f x >,1ln 22≤,∴函数()f x 最小值为12.作出函数1,02()ln ,2x f x x x x ⎧<≤⎪=⎨⎪>⎩与y k =的图像如下,∴结合图像可知,方程()f x k =有两个不同的实根,那么实数k 的取值范围()ln 2,+∞四、解答题16.计算下列各式的值:(1)()212342716e 1+-+-;(2)2lg8lg 2lg 25log 8-+-.【正确答案】(1)13(2)1-【分析】(1)由指数幂的运算性质求解即可;(2)由对数的运算性质求解即可【详解】(1)()212342716e 1+-+-()()2134343521=+-+952113=+-+=;(2)2lg8lg 2lg 25log 8-+-3lg 2lg 22lg 53=-+-()2lg 2lg53=+-231=-=-17.已知甲乙两人的投篮命中率分别为0.80.7,,如果这两人每人投篮一次,求:(1)两人都命中的概率;(2)两人中恰有一人命中的概率.【正确答案】(1)0.56;(2)0.38.【分析】(1)利用相互独立事件概率计算公式,求得两人都命中的概率.(2)利用互斥事件概率公式和相互独立事件概率计算公式,求得恰有一人命中的概率.【详解】记事件A ,B 分别为“甲投篮命中",“乙投篮命中”,则()0.8,()0.7P A P B ==.(1)“两人都命中”为事件AB ,由于A ,B 相互独立,所以()()()0.80.70.56P AB P A P B ==⨯=,即两人都命中的概率为0.56.(2)由于AB AB +互斥且A ,B 相互独立,所以恰有1人命中的概率为()P AB AB +0.8(10.7)(10.8)0.70.38=⨯-+-⨯=.即恰有一人命中的概率为0.38.关键点睛:本小题主要考查相互独立事件概率计算,考查互斥事件概率公式,关键在于准确地理解题意和运用公式求解.18.某班倡议假期每位学生每天至少锻炼一小时.为了解学生的锻炼情况,对该班全部34名学生在某周的锻炼时间进行了调查,调查结果如下表:锻炼时长(小时)56789男生人数(人)12434女生人数(人)38621(Ⅰ)试根据上述数据,求这个班级女生在该周的平均锻炼时长;(Ⅱ)若从锻炼8小时的学生中任选2人参加一项活动,求选到男生和女生各1人的概率;(Ⅲ)试判断该班男生锻炼时长的方差21s 与女生锻炼时长的方差22s 的大小.(直接写出结果)【正确答案】(Ⅰ)6.5小时(Ⅱ)35(Ⅲ)2212s s >(Ⅰ)由表中数据计算平均数即可;(Ⅱ)列举出任选2人的所有情况,再由古典概型的概率公式计算即可;(Ⅲ)根据数据的离散程度结合方差的性质得出2212s s >【详解】(Ⅰ)这个班级女生在该周的平均锻炼时长为53687682911306.53862120⨯+⨯+⨯+⨯+⨯==++++小时(Ⅱ)由表中数据可知,锻炼8小时的学生中男生有3人,记为,,a b c ,女生有2人,记为,A B 从中任选2人的所有情况为{,},{,},{,},{,}a b a c a A a B ,{,},{,},{,}b c b A b B ,{,},{,},{,}c A c B A B ,共10种,其中选到男生和女生各1人的共有6种故选到男生和女生各1人的概率63105P ==(Ⅲ)2212s s >关键点睛:在第二问中,关键是利用列举法得出所有的情况,再结合古典概型的概率公式进行求解.19.已知函数()212xf x a =++是定义在R 上的奇函数.(1)求f (x )的解析式及值域:(2)判断f (x )在R 上的单调性,并用单调性定义.....予以证明.(3)若()3f m -不大于f (1),直接写出实数m 的取值范围.【正确答案】(1)()2112xf x =-+,()1,1-(2)单调递减,证明见解析(3)(][),44,-∞-⋃+∞【分析】(1)根据定义在R 上的奇函数()00f =列方程,解方程得到1a =-,即可得到解析式,然后根据20x >和反比例函数的单调性求值域即可;(2)根据单调性的定义证明即可;(3)根据单调性解不等式即可.【详解】(1)因为()f x 为R 上的奇函数,所以()020012f a =+=+,解得1a =-,所以()2112xf x =-+,因为121x +>,所以20212x<<+,211112-<-<+x ,所以()f x 的值域为()1,1-.(2)()f x 在R 上单调递减,设12x x >,则()()()()()21121212222221112121212x x x x x x f x f x --=--+=++++,因为12x x >,所以21220x x -<,()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上单调递减.(3)(][),44,m ∈-∞-+∞ .20.为了节能减排,某农场决定安装一个可使用10年的太阳能供电设备,使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池板面积x (单位:平方米)之间的函数关系为()4,0105,10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩(m 为常数).已知太阳能电池板面积为5平方米时,每年消耗的电费为12万元,安装这种供电设备的工本费为0.5x (单位:万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和.(1)求常数m 的值;(2)写出()F x 的解析式;(3)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【正确答案】(1)80(2)()7.5160,0108000.5,10x x F x x x x-+≤≤⎧⎪=⎨+>⎪⎩(3)40;40【分析】(1)根据题意可知5x =时,()12C x =,代入即可求得m 的值;(2)根据题意可知()()100.5F x C x x =+,由此化简可得;(3)分段讨论()F x 的最小值,从而得到()F x 的最小值及x 的值.【详解】(1)依题意得,当5x =时,()12C x =,因为()4,0105,10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,所以当010x ≤≤时,()45m x C x -=,所以45125m -⨯=,解得80m =,故m 的值为80.(2)依题意可知()()100.5F x C x x =+,又由(1)得,()804,010580,10xx C x x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,所以()8047.5160,010100.5,0105800800.5,10100.5,10x x x x x F x x x x x x x -⎧-+≤≤⨯+≤≤⎧⎪⎪⎪==⎨⎨+>⎪⎪⨯+>⎩⎪⎩.(3)当010x ≤≤时,()7.5160F x x =-+,显然()F x 在[]0,10上单调递减,所以()()min 1085F x F ==;当10x >时,()8000.540F x x x =+≥=,当且仅当8000.5x x=,即40x =时,等号成立,故()min 40F x =;综上:()min 40F x =,此时40x =,所以当x 为40平方米时,()F x 取得最小值,最小值是40万元.。

2022-2023学年北京市海淀区高一年级上册学期期末数学试题【含答案】

2022-2023学年北京市海淀区高一年级上册学期期末数学试题【含答案】

2022-2023学年北京市清华大学附中高一(上)期末数学试卷一、单选题(本大题共6小题,共30.0分.在每小题列出的选项中,选出符合题目的一项)1. 已知集合,,则(){}2log ,2A y y x x ==>{}4B y y =<A B = A.B.C.D. {}04y y <<{}01y y <<{}14y y <<∅【答案】C 【解析】【分析】求出集合,利用交集的定义可求得集合.A A B ⋂【详解】因为对数函数为增函数,当时,,即,2log y x =2x >22log log 21x >={}1A y y =>又,因此,.{}4B y y =< {}14A B y y ⋂=<<故选:C.2. 命题“,”的否定是()0x ∀>2210x x -+≥A. , B. ,0x ∃>2210x x -+<0x ∀>2210x x -+<C. , D. ,0x ∃≤2210x x -+<0x ∀≤2210x x -+<【答案】A 【解析】【分析】根据题意,全称命题的否定是存在命题,全称改存在,再否定结论.【详解】因为命题“,”是全称命题,全称命题的否定是存在命题,0x ∀>2210x x -+≥所以命题“,”的否定是“,”0x ∀>2210x x -+≥0x ∃>2210x x -+<故选:A3. 下列函数中,在其定义域内既是增函数又是奇函数的是()A. yB. y =3x ﹣3﹣xC. y =tanxD. y 1x=-=【答案】B 【解析】【分析】对选项逐一分析函数的定义域、单调性和奇偶性,由此确定正确选项.【详解】对于A 选项,函数定义域为,在定义域上没有单调性.()(),00,-∞⋃+∞对于B 选项,在上是增函数又是奇函数,符合题意.13333x x x x y -=-=-R 对于C 选项,函数的定义域为,在定义域上没有单调性.,,22k k k Zππππ⎛⎫-+∈ ⎪⎝⎭对于D 选项,函数的定义域为,为非奇非偶函数.[)0,∞+综上所述,符合题意的是B 选项.故选:B【点睛】本小题主要考查函数的定义域、单调性和奇偶性,属于基础题.4. 已知,则的大小关系为()3.11211, 3.1,lg22a b c ⎛⎫=== ⎪⎝⎭,,a b c A. B. C. D. c<a<b a c b<<c b a <<a b c<<【答案】A 【解析】【分析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.,,a b c 【详解】,,,3.11(0,1)2a ⎛⎫=∈ ⎪⎝⎭123.11b =>1lg 02c =<,c a b ∴<<故选:A .5. 函数的图象可能是()2()ln ||xf xx x =+A. B.C.D.【答案】B 【解析】【分析】根据函数的单调性排除A D ;根据排除C.(1)(1)f f -≠【详解】因为,2()ln ||x f x x x =+()12ln ,012ln ,0x x x x +>⎧=⎨-+-<⎩所以函数在上递减,在上递增,故排除A D ;2()ln ||xf x x x =+(,0)-∞(0,)+∞因为,,所以,所以函数不是偶函数,图象不关于轴对称,故排(1)1f -=-(1)1f =(1)(1)f f -≠()f x y 除C.故选:B【点睛】关键点点睛:根据函数的性质排除不符合的选型进行求解是解题关键.6. 已知函数是R 上的单调函数,则实数a 的取值范围为()()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩A. B. 11,42⎡⎫⎪⎢⎣⎭11,42⎡⎤⎢⎥⎣⎦C .D. 10,2⎛⎤ ⎥⎝⎦1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】【分析】分函数在R 上的单调递减和单调递增求解.()f x【详解】当函数是R 上的单调递减函数,()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩所以,解得,01112514a a a ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩1142a ≤≤因为且,0a >1a ≠所以当时,不可能是增函数,1x ≤()f x 所以函数在R 上不可能是增函数,()f x 综上:实数a 的取值范围为,11,42⎡⎤⎢⎥⎣⎦故选:B二、多选题(本大题共2小题,共10.0分.在每小题有多项符合题目要求)7. 函数的最小正周期为,,下列说法正确的是()()()()sin 0f x x ωϕω=+>π()8f x f π⎛⎫≤ ⎪⎝⎭A.的一个零点为B. 是偶函数()f x 8π-8f x π⎛⎫+ ⎪⎝⎭C. 在区间上单调递增D.的一条对称轴为()f x 37,88ππ⎛⎫⎪⎝⎭()f x 38x π=-【答案】ABD 【解析】【分析】利用周期公式可求,由恒成立,结合的范围,可求,求得函数的解析式,比较2ω=()8f x f π⎛⎫≤ ⎪⎝⎭ϕϕ各个选项即可得答案.【详解】由函数的最小正周期为,()()()sin 0f x x ωϕω=+>π得,得,2ππω=2ω=又,()8f x f π⎛⎫≤ ⎪⎝⎭,()max 8f x f π⎛⎫= ⎪⎝⎭即,()2282k k Z ππϕπ⨯+=+∈得,()24k k Z πϕπ=+∈故,()sin 22sin 244f x x k x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭因为,sin 20884f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故选项A 正确;又,sin 2sin 228842f x x x cos xππππ⎡⎤⎛⎫⎛⎫⎛⎫+=⨯++=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选项B 正确;当,()37,,2,2884x x πππππ⎛⎫∈+∈ ⎪⎝⎭所以在区间不单调;()f x 37,88ππ⎛⎫⎪⎝⎭故选项C 不正确;由,33sin 2sin 18842f ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选项D 正确;故选:ABD.8. 定义域和值域均为的函数和的图象如图所示,其中,下列四[],a a -()y f x =()y g x =0a c b >>>个结论中正确的有()A .方程有且仅有三个解 B. 方程有且仅有三个解()0f g x =⎡⎤⎣⎦()0g f x =⎡⎤⎣⎦C. 方程有且仅有八个解D. 方程有且仅有一个解()0f f x =⎡⎤⎣⎦()0g g x =⎡⎤⎣⎦【答案】ABD 【解析】【分析】通过利用和,结合函数和的图象,分析每个选项中外层函数的零()t f x =()t g x =()y f x =()y g x =点,再分析内层函数的图象,即可得出结论.【详解】由图象可知,对于方程,当或,方程只有一解;()y f x =a y c -≤<-c y a <≤()y f x =当时,方程只有两解;当时,方程有三解;y c =±()y f x =c y c -<<()y f x =对于方程,当时,方程只有唯一解.()y g x =a y a -≤≤()y g x =对于A 选项,令,则方程有三个根,,,()t x g =()0f t =1t b =-20t =3t b =方程、、均只有一解,()g x b =-()0g x =()g x b =所以,方程有且仅有三个解,A 选项正确;()0f g x =⎡⎤⎣⎦对于B 选项,令,方程只有一解,()t f x =()0g t =1t b =方程只有三解,所以,方程有且仅有三个解,B 选项正确;()f x b=()0g f x =⎡⎤⎣⎦对于C 选项,设,方程有三个根,,,()t f x =()0f t =1t b =-20t =3t b =方程有三解,方程有三解,方程有三解,()f x b=-()0f x =()f x b=所以,方程有且仅有九个解,C 选项错误;()0f f x =⎡⎤⎣⎦对于D 选项,令,方程只有一解,方程只有一解,()t x g =()0g t =1t b =()g x b =所以,方程有且仅有一个解,D 选项正确.()0g g x =⎡⎤⎣⎦故选:ABD.【点睛】思路点睛:对于复合函数的零点个数问题,求解思路如下:()y f g x ⎡⎤=⎣⎦(1)确定内层函数和外层函数;()u g x =()y f u =(2)确定外层函数的零点;()y f u =()1,2,3,,i u u i n == (3)确定直线与内层函数图象的交点个数分别为、、、、()1,2,3,,i u u i n == ()u g x =1a 2a 3a ,则函数的零点个数为.n a ()y f g x ⎡⎤=⎣⎦123n a a a a ++++ 三、填空题(本大题共5小题,共25.0分)9. 函数的定义域为_______.1()lg(2)3f x x x =-+-【答案】(2,3)(3,)⋃+∞【解析】【分析】由对数函数的真数大于零和分式的分母不为零,列不等式组可得答案【详解】解:由题意得,解得或,2030x x ->⎧⎨-≠⎩>2x 3x ≠所以函数的定义域为,(2,3)(3,)⋃+∞故答案为:(2,3)(3,)⋃+∞10. 把函数的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),然后把图象向左平移cos y x =个单位,则所得图形对应的函数解析式为__________.4π【答案】sin 2y x =-【解析】【分析】利用三角函数图象的平移变换和伸缩变换求解.【详解】将函数的图象上的所有点的横坐标缩小到原来的一半,cos y x =可得的图象,再向左平移个单位,cos 2y x =4π所得图象的解析式为,cos 24y x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦即.cos 2sin 22y x xπ⎛⎫=+=- ⎪⎝⎭故答案为:sin 2y x=-11. 若的终边过点,则_________.________.α(1,2)-tan α=sin()sin cos()2παπαπα-=⎛⎫+-+ ⎪⎝⎭【答案】 ①.②. 2-1-【解析】【分析】由三角函数的定义可得,利用诱导公式和同角公式化简后,代入可tan αsin()sin cos()2παπαπα-⎛⎫+-+ ⎪⎝⎭tan α求得结果.【详解】因为的终边过点,由三角函数的定义可得,α(1,2)-2tan 21α==--.sin()sin 11tan (2)1cos cos 22sin cos()2παααπαααπα-===⨯-=-+⎛⎫+-+ ⎪⎝⎭故答案为:;2-1-【点睛】关键点点睛:利用三角函数的定义和诱导公式求解是解题关键.12. 设函数,若,则实数________,________.log (0)()2(0)a xx x f x x >⎧=⎨≤⎩1122f ⎛⎫=⎪⎝⎭=a ((2))f f =【答案】 ①. . ②.14【解析】【分析】代入分段函数求解的值,然后再求和的值.a (2)f ((2))f f 【详解】,所以,;,111log 222a f ⎛⎫== ⎪⎝⎭1212a =21124a ⎛⎫== ⎪⎝⎭()212412log 2log 22f -===-所以.121((2))()22f f f -=-==故答案为:.1413. 已知函数,方程有两个实数解,则的范围是____.()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩()f x k =k 【答案】{}()43,--+∞ 【解析】【分析】由题意可知,直线与函数的图象有两个交点,数形结合可得出实数的取值范围.y k =()f x k 【详解】由题意可知,直线与函数的图象有两个交点,y k =()fx 作出直线与函数的图象如下图所示:y k =()f x 由图象可知,当或时,直线与函数的图象有两个交点.4k =-3k >-y k =()f x 因此,实数的取值范围是.k {}()43,--+∞ 故答案为:.{}()43,--+∞【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.四、解答题(本大题共3小题,共36.0分.解答应写出文字说明,证明过程或演算步骤)14. 已知集合,集合.4{|0}3x A x x -=>+{|221}B x a x a =-≤≤+(1)当时,求和;3a =A ()RA B ⋃ (2)若是的必要不充分条件,求实数的取值范围.x A ∈x B ∈a 【答案】(1)或,;(2)或.{|3A x x =<-}4x >(){}|37RA B x x ⋃=-≤≤ 2a <-6a >【解析】【分析】(1)当时,得出集合,解分式不等式即可得集合,再根据补集和并集的运算,从而可求出3a =B A ;()RA B ⋃ (2)由题意知,当时,;当时,或,从B A B =∅221a a ->+B ≠∅221213a a a -≤+⎧⎨+<-⎩22124a a a -≤+⎧⎨->⎩而可求出实数的取值范围.a 【详解】解:(1)由题可知,当时,则,3a ={}|17B x x =≤≤或,{40|33x A x x x x ⎧⎫-=>=<-⎨⎬+⎩⎭}4x >则,{}|34R A x x =-≤≤ 所以.(){}{}{}|34|17|37RA B x x x x x x ⋃=-≤≤⋃≤≤=-≤≤ (2)由题可知,是的必要不充分条件,则,x A ∈x B ∈B A当时,,解得:;B =∅221a a ->+3a <-当时,或,B ≠∅221213a a a -≤+⎧⎨+<-⎩22124a a a -≤+⎧⎨->⎩解得:或;32a -≤<-6a >综上所得:或.2a <-6a >【点睛】结论点睛:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;p q q p (2)是的充分不必要条件,则对应集合是对应集合的真子集;p q p q (3)是的充分必要条件,则对应集合与对应集合相等;p q p q (4)是的既不充分又不必要条件,对的集合与对应集合互不包含.p q qp 15. 已知,.π,π2α⎛⎫∈ ⎪⎝⎭3tan 4α=-(1)求的值;tan 2α(2)求的值;sin 2cos 5cos sin αααα+-(3)求的值.πsin 26α⎛⎫- ⎪⎝⎭【答案】(1);(2)24-7523【解析】【分析】(1)利用二倍角的正切公式求解即可;(2)将分子分母同除得到,代值求解即可;sin 2cos 5cos sin αααα+-cos αtan 25tan αα+-(3)先求得,再用两角差的正弦公式求解即可.sin 2,cos 2αα【详解】(1)2232()2tan 244tan 2===-31-tan 71-()4ααα⨯--(2)3-2sin 2cos tan 254===35cos sin 5tan 235-4αααααα⎛⎫+ ⎪++⎝⎭--⎛⎫- ⎪⎝⎭(3)222232()2sin cos 2tan 244sin 2====-3sin cos 1+tan 251+()4ααααααα⨯-+-2222222231-()cos sin 1-tan 74cos2====3sin cos 1+tan 251+()4ααααααα--+-π12417sin 22cos 26225225ααα⎛⎫⎛⎫∴----⨯= ⎪ ⎪⎝⎭⎝⎭16. 函数是R 上的奇函数,a ,b 是常数.12()2x x b f x a +-=+(1)求a ,b 的值;(2)若不等式对任意实数x 恒成立,求实数k 范围.()()33920x x x f k f ⋅+--<【答案】(1);(2).2,1a b ==(),1-∞-【解析】【分析】(1)根据函数是R 上的奇函数,由求解. ()f x ()()()0011f f f ⎧=⎪⎨-=-⎪⎩(2)由(1)知,先利用单调性的定义证明是R 上的增函数,11()221x f x =-+()f x 再结合奇偶性,将不等式对任意实数x 恒成立,转化为不等式()()33920x x x f k f ⋅+--<对任意实数x 恒成立求解.2133x x k -++<【详解】(1)因为函数是R 上的奇函数,12()2x x b f x a +-=+所以 ,()()()0011f f f ⎧=⎪⎨-=-⎪⎩解得21a b =⎧⎨=⎩(2)由(1)知,12111()22221x x x f x +-==-++设,且,12,x x R ∈12x x <则,()()12121222()()2121x x x x f x f x --=++因为,12x x <所以,12220x x -<又,12210,210x x +>+>所以,即,12())0(f x f x -<12()()f x f x <所以是R 上的增函数,()f x 因为不等式对任意实数x 恒成立,()()33920x x x f k f ⋅+--<所以不等式对任意实数x 恒成立,()()()3392392x x x x x f k f f ⋅<---=-++所以不等式对任意实数x 恒成立,3392x x x k ⋅<-++所以不等式对任意实数x 恒成立,2133x x k -++<令,()2133x x g x +-+=令,30x t =>则由对勾函数的性质得:211y t t +=≥+--即的最小值为,()gx 1-所以.1k <-所以实数k 的范围是.(),1-∞-【点睛】方法点睛:恒成立问题的解法:若在区间D 上有最值,则;;()f x ()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<若能分离常数,即将问题转化为:(或),则;()a f x >()a f x <()()max a f x a f x >⇔>.()()min a f x a f x <⇔<。

最新版北京市海淀区高一上学期期末考试数学试题Word版含答案

最新版北京市海淀区高一上学期期末考试数学试题Word版含答案

海淀区高一年级第一学期期末练习数学一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,3,5A =,()(){}130B x x x =--=,则A B =I ( ) A .∅ B .{}1 C .{}3 D .{}1,3 2.2sin 3π⎛⎫-= ⎪⎝⎭( )A ..12- C .123.若幂函数()y f x =的图象经过点()2,4-,则()f x 在定义域内( ) A .为增函数 B .为减函数 C .有最小值 D .有最大值 4.下列函数为奇函数的是( )A .2x y =B .[]sin ,0,2y x x π=∈ C .3y x = D .lg y x = 5.如图,在平面内放置两个相同的直角三角板,其中30A ∠=︒,且,,B C D 三点共线,则下列结论不成立的是( )A .CD =uu u r u rB .0CA CE ⋅=u u r u u rC .AB uu u r 与DE 共线D .CA CB CE CD ⋅=⋅u u r u u r u u r u u u r6.函数()f x 的图象如图所示,为了得到函数2sin y x =的图象,可以把函数()f x 的图象( )A .每个点的横坐标缩短到原来的12(纵坐标不变),再向左平移3π个单位 B .每个点的横坐标缩短到原来的2倍(纵坐标不变),再向左平移6π个单位 C .先向左平移6π个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变) D .先向左平移3π个单位,再把所得各点的横坐标伸长到原来的12(纵坐标不变)7.已知()21log 2xf x x ⎛⎫=- ⎪⎝⎭,若实数,,a b c 满足0a b c <<<,且()()()0f a f b f c <,实数0x 满足()00f x =,那么下列不等式中,一定成立的是( ) A .0x a < B .0x a > C .0x c < D .0x c >8.如图,以AB 为直径在正方形ABCD 内部作半圆O ,P 为半圆上与,A B 不重合的一动点,下面关于PA PB PC PD +++uu r uu r uu u r uu u r的说法正确的是( )A .无最大值,但有最小值B .既有最大值,又有最小值C .有最大值,但无最小值D .既无最大值,又无最小值二、填空题(每题4分,满分24分,将答案填在答题纸上)9.已知向量()1,2a =r,写出一个与a r 共线的非零向量的坐标 .10.已知角θ的终边过点()3,4-,则cos θ= .11.向量,a b r r 在边长为1的正方形网格中的位置如图所示,则a b ⋅=r r.12.函数()2,,,0.x x t f x x x t ⎧≥=⎨<<⎩()0t >是区间()0,+∞上的增函数,则t 的取值范围是 .13.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从 年开始,快递业产生的包装垃圾超过4000万吨. (参考数据:lg 20.3010≈,lg30.4771≈) 14.已知函数()sin f x x ω=在区间0,6π⎛⎫⎪⎝⎭上是增函数,则下列结论正确的是 (将所有符合题意的序号填在横线上). ①函数()sin f x x ω=在区间,06π⎛⎫-⎪⎝⎭上是增函数; ②满足条件的正整数ω的最大值为3; ③412f f ππ⎛⎫⎛⎫≥⎪ ⎪⎝⎭⎝⎭. 三、解答题 (本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)15.已知向量()sin ,1a x =r ,()1,b k =r ,()f x a b =⋅r r .(Ⅰ)若关于x 的方程()1f x =有解,求实数k 的取值范围; (Ⅱ)若()13f k α=+且()0,απ∈,求tan α. 16.已知二次函数()2f x x bx c =++满足()()133f f ==-. (Ⅰ)求,b c 的值;(Ⅱ)若函数()g x 是奇函数,当0x ≥时,()()g x f x =, (ⅰ)直接写出()g x 的单调递减区间: ;(ⅱ)若()g a a >,求a 的取值范围.17.某同学用“五点法”画函数()sin y A x ωϕ=+0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭在某一周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,函数()f x 的解析式()f x = (直接写出结果即可)(Ⅱ)求函数()f x 的单调递增区间; (Ⅲ)求函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 18.定义:若函数()f x 的定义域为R ,且存在非零常数T ,对任意x ∈R ,()()f x T f x T +=+恒成立,则称()f x 为线周期函数,T 为()f x 的线周期.(Ⅰ)下列函数①2xy =,②2l o gy x =,③[]y x =(其中[]x 表示不超过x 的最大整数),是线周期函数的是 (直接填写序号);(Ⅱ)若()g x 为线周期函数,其线周期为T ,求证:函数()()G x g x x =-为周期函数; (Ⅲ)若()sin x x kx ϕ=+为线周期函数,求k 的值.海淀区高一年级第一学期期末练习参考答案数学一、选择题1-4:DACC 5-8:DCBA 二、填空题9.答案不唯一,纵坐标为横坐标2倍即可,例如()2,4等 10.3511.3 12.1t ≥ 13.2021 14.①②③ 三、解答题15.解:(Ⅰ)∵向量()sin ,1a x =r ,()1,b k =r ,()f x a b =⋅r r, ∴()sin f x a b x k =⋅=+r r.关于x 的方程()1f x =有解,即关于x 的方程sin 1x k =-有解. ∵[]sin 1,1x ∈-,∴当[]11,1k -∈-时,方程有解. 则实数k 的取值范围为[]0,2. (Ⅱ)因为()13f k α=+,所以1sin 3k k α+=+,即1sin 3α=.当0,2πα⎛⎤∈ ⎥⎝⎦时,cos 3α==,sin tan cos 4ααα==.当,2παπ⎛⎫∈⎪⎝⎭时,cos α==,tan α=. 16.解:(Ⅰ)4b =-;0c =.(Ⅱ)(ⅰ)[]2,2-.(ⅱ)由(Ⅰ)知()24f x x x =-,则当0x ≥时,()24g x x x =-;当0x <时,0x ->,则()()()2244g x x x x x -=---=+因为()g x 是奇函数,所以()()24g x g x x x =--=--.若()g a a >,则20,4,a a a a >⎧⎨->⎩或20,4,a a a a ≤⎧⎨-->⎩ 解得5a >或50a -<<.综上,a 的取值范围为5a >或50a -<<. 17.解:(Ⅰ)解析式为:()2sin 26f x x π⎛⎫=+⎪⎝⎭(Ⅱ)函数()f x 的单调递增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(Ⅲ)因为02x π-≤≤,所以52666x πππ-≤+≤. 得:11sin 262x π⎛⎫-≤+≤ ⎪⎝⎭. 所以,当262x ππ+=-即3x π=-时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值为-2. 当266x ππ+=即0x =时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值为1. 18.解:(Ⅰ)③(Ⅱ)证明:∵()g x 为线周期函数,其线周期为T ,∴存在非零常数T ,对任意x ∈R ,()()g x T g x T -=+恒成立. ∵()()G x g x x =-,∴()()()G x T g x T x T +=+-+=()()()()g x T x T g x x G x +-+=-=.∴()()G x g x x =-为周期函数.(Ⅲ)∵()sin x x kx ϕ=+为线周期函数,∴存在非零常数T ,对任意x ∈R ,()()sin sin x T k x T x kx T +++=++. ∴()sin sin x T kT x T ++=+.令0x =,得sin T kT T +=;…………① 令x π=,得sin T kT T -+=;…………② ①②两式相加,得22kT T =. ∵0T ≠, ∴1k =. 检验:当2k =时,()sin x x x ϕ=+. 存在非零常数2π,对任意x ∈R ,()()2sin 22x x x ϕπππ+=+++=()sin 22x x x πϕπ++=+,∴()sin x x x ϕ=+为线周期函数. 综上,1k =.。

北京市海淀高一上学期期末数学试卷

北京市海淀高一上学期期末数学试卷

北京市海淀区高一(上)期末数学试卷.选择题(每小题4分,共32分,每小题给出的四个选项中,只有一个是符 合题目要求的)1 •已知集合U={1, 2, 3, 4, 5, 6} , M={1, 5} , P={2, 4},则下列结论正确的 是( )A. 1 € ?U ( MU P )B. 2€ ?U (MU P )C. 3 € ?U (MU P )D. 6??u (MU P )2•下列函数在区间(-x, 0)上是增函数的是( )A. f(x ) =x 2 - 4x B. g (x ) =3x+1 C. h (x ) =3- x D. t (x ) =tanx3. 已知向量-=(1, 3), = (3, t ),若J/ ;',则实数t 的值为()A.- 9 B . - 1 C . 1 D. 94. 下列函数中,对于任意的x € R,满足条件f (x ) +f (- x ) =0的函数是()1 2A. f (x ) =xB. f (x ) =sinxC. f (x ) =cosxD. f (x ) =log 2 (x +1) 7T 7T1T 1T5. 代数式sin (冷十才)+cos (冷■-卡)的值为( )A. - 1 B . 0 C. 1 D.甞26. 在边长为1的正方形ABC 冲,向量I •=「,丁 =二『:,贝U 向量「,厂的夹 角为()7. 如果函数f (x ) =3sin (2x+®的图象关于点(辛),那么函数f (x )图象的一条对称轴是()IT7TH7TA. x= -— B . x= 一 C. x= D. x=2s 5M8.已知函数f (x )其中MU P=R 则下列结论中一定正确的是( )A.函数f (x )一定存在最大值B •函数f (x ) —定存在最小值A. n ?B. 4 D. -,0)成中心对称(|创vC.函数f (x) 一定不存在最大值D.函数f (x) 一定不存在最小值二.填空题(本大题6小题,每小题4分,共24分)9. 函数y= _________ ' - 的定义域为 .10. _________________________________________________________ 已知a=40.5, b=0.54, c=log 0.54,则a, b, c 从小到大的排列为_______________ .11. ______________________________________________________ 已知角a终边上有一点P (x, 1),且cos a=-寺,贝U tan a= __________________ .12. 已知△ ABC中,点A (- 2, 0), B (2, 0), C (x, 1)(i )若/ ACB是直角,贝U x= __(ii )若厶ABC是锐角三角形,贝U x的取值范围是____ .13. 燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog2 •.若两岁燕子耗氧量达到40个单10位时,其飞行速度为v=10m/s,则两岁燕子飞行速度为25m/s时,耗氧量达到单位.14. 已知函数f (x) =|ax - 1| -(a - 1) x(1)当a」时,满足不等式f (x)> 1的x的取值范围为—;(2)________________________________________________________ 若函数f (x)的图象与x轴没有交点,则实数a的取值范围为__________________ .三.解答题(本大题共4小题,共44分)15. 已知函数f (x) =x2+bx+c,其对称轴为y轴(其中b, c为常数)(I )求实数b的值;(U )记函数g (x) =f (x) - 2,若函数g (x)有两个不同的零点,求实数 c 的取值范围;(川)求证:不等式f (c2+1)>f (c)对任意c€ R成立.16. 已知如表为五点法”绘制函数f (x) =Asin(3X+®图象时的五个关键点的坐标(其中A>0, 3>0, |创v n)(I )请写出函数f (x)的最小正周期和解析式; (U)求函数f (x)的单调递减区间;TT(川)求函数f (x)在区间[0 ,]上的取值范围.17. 如图,在平面直角坐标系中,点A (-唇0), B(^, 0),锐角a的终边与单位圆O 交于点P.(I)用a的三角函数表示点P的坐标;(U )当?.二-.时,求a的值;(川)在X轴上是否存在定点M使得I '.1= 一I厂|恒成立?若存在,求出点M 的横坐标;若不存在,请说明理由.18. 已知函数f (x)的定义域为R,若存在常数T M0,使得f (x) =Tf (x+T) 对任意的x € R成立,则称函数f (x)是Q函数.(I )判断函数f (x) =x, g (x) =sin n(是否是Q函数;(只需写出结论)(U)说明:请在(i )、(ii )问中选择一问解答即可,两问都作答的按选择(i ) 计分(i )求证:若函数f (x)是Q函数,且f (x)是偶函数,贝U f (x)是周期函数;(ii )求证:若函数f (x)是Q函数,且f (x)是奇函数,贝U f (x)是周期函数;(川)求证:当a> 1时,函数f (x) =a x一定是Q函数.选做题(本题满分10分)19. 记所有非零向量构成的集合为V,对于',■€ V, > ;■,定义V( ', ■) =|x€ V|x? :=x? |(1)请你任意写出两个平面向量打一,并写出集合V(】,J中的三个元素;(2)请根据你在(1)中写出的三个元素,猜想集合V(:,')中元素的关系,并试着给出证明;(3)若V( ., ) =V(-,),其中工「,求证:一定存在实数入,“,且入+ ?2=1, 使得「a -.2016-2017学年北京市海淀区高一(上)期末数学试卷参考答案与试题解析一.选择题(每小题4分,共32分,每小题给出的四个选项中,只有一个是符合题目要求的)1 •已知集合U={1, 2, 3, 4, 5, 6} , M={1, 5} , P={2, 4},则下列结论正确的是( )A. 1 € ?U ( MU P)B. 2€ ?U (MU P)C. 3 € ?U (MU P)D. 6??u (MU P)【考点】元素与集合关系的判断.【分析】首先计算MU P,并求其补集,然后判断元素与集合的关系.【解答】解:由已知得到MU P={1, 5, 2, 4};所以?u (MU P) ={3 , 6};故A、B、D错误;故选:C.2. 下列函数在区间(-%, 0)上是增函数的是( )A. f (x) =x2- 4xB. g (x) =3x+1C. h (x) =3- xD. t (x) =tanx【考点】函数单调性的判断与证明.【分析】分别判断选项中的函数在区间(-%, 0) 上的单调性即可.【解答】解:对于A, f (x) =x2- 4x= (x - 2) 2- 4,在(-X, 0) 上是单调减函数,不满足题意;对于B, g (x) =3x+1在(-%, 0) 上是单调增函数,满足题意;对于C, h (x) =3-x=丄I是(-%, 0) 上的单调减函数,不满足题意;对于D, t (x) =tanx在区间(-%, 0)上是周期函数,不是单调函数,不满足题意.故选:B.3. 已知向量-(1, 3), = (3, t),若J/「,则实数t的值为( )A.- 9 B . - 1 C . 1 D. 9【考点】平面向量共线(平行)的坐标表示.【分析】利用向量共线列出方程求解即可.【解答】解:向量>(1, 3), I =( 3, t),若;可得t=9 .故选:D.4. 下列函数中,对于任意的x € R,满足条件f (x) +f (- x) =0的函数是( )1 2A. f (x) =x 'B. f (x) =sinxC. f (x) =cosxD. f (x) =log 2 (x +1)【考点】函数奇偶性的性质.【分析】对于任意的x€ R,满足条件f (x) +f (- x) =0的函数是奇函数,分析选项,即可得出结论.【解答】解:对于任意的x € R,满足条件f (x) +f (-x) =0的函数是奇函数. A,非奇非偶函数;B奇函数,C, D是偶函数,故选B.5 .代数式sin (=+ , ) +cos - )的值为( )Z J d 0A. - 1 B . 0 C. 1 D.于【考点】三角函数的化简求值.【分析】原式利用诱导公式化简,再利用特殊角的三角函数值计算即可得答案. 【解答】解:sin + . ) +cos ( ------------------ ) =•:・....】i;一_:故选:C.6.在边长为1的正方形ABC冲,向量I ■=,:「,「=「「,则向量的夹角为( )n A.bit ir 5 兀B. C D---【考点】平面向量数量积的运算.【分析】以A为坐标原点,以AB为x轴,以AD为x轴,建立直角坐标系,根据向量的夹角的公式计算即可【解答】解:设向量■.;:.'的夹角为9,以A 为坐标原点,以AB 为x 轴,以AD 为x 轴,建立直角坐标系, ••• A (0, 0), B (1.0 ), C (1,1), D( 0,1),(1,:), '■/= (1 , ■:),八1 '■ 1=,厂=「_ ,'■' ?「=:+• = ., § 6血7 •如果函数f (x ) =3sin (2x+©)的图象关于点JT=),那么函数f (x )图象的一条对称轴是( JT JTH 7TA. x= —— B . x=^C. x=D. x=—6 1263【考点】函数y=Asin (®x+©)的图象变换.【分析】由正弦函数的对称性可得 2X =+忻kn, k €乙 结合范围| V —,可 求氛令2x+^=k 廿一,k € Z ,可求函数的对称轴方程,对比选项即可得解.AE-AF二 cos 9=十|AE l-lAFl—0)成中心对称(|吗v )二 e =,【解答】解:•••函数f (x) =3sin (2x+©)的图象关于点(r, 0)成中心对称, TT 9 JTw+ 忙k n, k € Z,解得:©二k n—务,k€ Z,门⑷V :,•••忻.,可得:f (x) =3sin (2x+ ),人 c 兀i TT ― / 曰IT•••令2x+ .. =k n+ .. , k€ 乙可得:x= 一 , k€ 乙TT•••当k=0时,可得函数的对称轴为x=-.故选:B.X垃E H28. 已知函数f (x) = •其中MU P=R则下列结论中一定正确的是( ) 〔启疋PA.函数f (x)一定存在最大值B•函数f (x) —定存在最小值C. 函数f (x) 一定不存在最大值D.函数f (x) 一定不存在最小值【考点】函数的最值及其几何意义.【分析】分别根据指数函数和二次函数的图象和性质,结合条件M U P=R讨论M P,即可得到结论.【解答】解:由函数y=2x的值域为(0, +x),y=x2的值域为[0 , +x),且MU P=R若M=(0 , +x) , p=(-x, 0],则f (x)的最小值为0 ,故D错;若M=( — x , 2), P=[2 , +x),则f (x)无最小值为,故B错;由MU P=R可得图象无限上升, 则f (x)无最大值.故选:C.二.填空题(本大题6小题,每小题4分,共24分)9. 函数y= - .|的定义域为_[2 , +x)_.【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,然后求解指数不等式.【解答】解:由2x- 4>0,得2x>4,则x>2.函数y= 」的定义域为[2 , +x).故答案为:[2 , +X).10. 已知a=40.5, b=0.54, c=log°.54,则a, b, c 从小到大的排列为_c v b v a_ 【考点】对数值大小的比较.【分析】利用指数函数、对数函数的单调性求解.【解答】解:••• a=40.5> 40=1,0v b=0.54v 0.5 0=1,c=log o.54v log 0.51=0,••• a, b, c从小到大的排列为c v b v a.故答案为:c v b v a.11. 已知角a终边上有一点P (x, 1),且cos o=-*,贝U tan a=-讥【考点】任意角的三角函数的定义.【分析】利用任意角的三角函数的定义,求得tan a的值.1 工価•••角a 终边上有一点P( X, 1),且cos a=-—= 「.,• x=- , 【解答】解:• tan a=—= - _,故答案为:-二12. 已知△ ABC中,点A (- 2, 0), B (2, 0), C (x , 1)(i )若/ ACB是直角,贝U x= -(ii )若厶ABC是锐角三角形,则x的取值范围是_(- 2,-二)U (2 , +^)精品文档【考点】平面向量的坐标运算.【分析】(i )求出視=(-2 - x, - 1),忑=(2 -x, - 1),由/ ACB是直角,则 :.・「=0,由此能求出x.CA*CB>0 (ii )分别求出石,&,反,爲,反,环,由厶ABC是锐角三角形,得,丘屁>0, 由此能求出x的取值范围.【解答】解:(i )•「△ ABC中,点 A (-2, 0), B (2 , 0), C (x , 1), •••.:= (- 2 -x, - 1), y (2 - x, - 1),•••/ ACB是直角,・ |= (- 2- x) (2-x) + (- 1) (- 1) =x - 3=0 , 解得x= • 二(")•••△ ABC中,点 A (- 2 , 0), B (2 , 0), C (x , 1),•••:=(-2 - x, - 1), y (2-x, - 1), ■-■ = (x+2 , 1), :;=( 4 , 0) , 「二 (x- 2 , 1), .*= ( - 4 , 0),•••△ ABC是锐角三角形,CA*CB = x2- 3>0••瓦•尿4仗+2)>0 ,解得-2vxv-占或x>2.• x的取值范围是(-2, - -)U( 2 , +x). 故答案为:.-,(-2, - =)U( 2 , +x).13. 燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog2 •'.若两岁燕子耗氧量达到40个单10位时,其飞行速度为v=10m/s ,则两岁燕子飞行速度为25m/s时,耗氧量达到_320 单位.【考点】对数函数的图象与性质.【分析】由题意,令x=4 , y=10代入解析式得到a;求得解析式,然后将v=25 代入解析式求x【解答】解:由题意,令x=40 , v=1011欢迎下载。

北京市海淀区北师大附中2024届高一数学第一学期期末统考试题含解析

北京市海淀区北师大附中2024届高一数学第一学期期末统考试题含解析

0,
f
4
3 2
log2
4
1 2
0
根据函数 f(x) 在 0, 上单调递减,由零点存在定理可得函数在(3,4)之间存在零点.
故选:C
9、D
【解析】根据直线是否过原点进行分类讨论,结合截距式求得直线方程.
【详解】当直线过原点时,直线方程为 y 2 x ,即 2x 5y 0 . 5
当直线不过原点时,设直线方程为 x y 1,代入 5, 2 得 5 2 1 a 6 ,
A.(0,1)
B.(2,3)
C.(3,4)
D.(4,+∞)
9.过点(5,2),且在 y 轴上的截距是在 x 轴上的截距的 2 倍的直线方程是()
A.2x+y-12=0
B.x-2y-1=0 或 2x-5y=0
C.x-2y-1=0
D.2x+y-12=0 或 2x-5y=0
10.已知 a log3 2 , b log9 5 , c 30.1 ,则 a, b, c 的大小关系为
a 2a
a 2a
所以直线方程为 2x y 12 0 .
故选:D 10、A 【解析】利用对数的性质,比较 a,b 的大小,将 b,c 与 1 进行比较,即可得出答案
【详解】令 y log9 x ,结合对数函数性质,单调递减, a log3 2 log9 4 log95 b 1 , c 30.1 1, a b c .
(2)判断当
时函数 的单调性,并用定义证明.
参考答案
一、选择题(本大题共 10 小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1、C 【解析】利用函数的单调性及零点存在定理即得.
【详解】因为 f (x) x x 3 ,

高一数学上学期期末考试试题及答案 (3)

高一数学上学期期末考试试题及答案 (3)

海淀区高一年级第一学期期末练习数 学.1学校 班级 姓名 成绩 本试卷共100分.考试时间90分钟.一.选择题:本大题共8小题, 每小题4分,共32分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集则 ( )A. B. C. D.2.代数式的值为 ( )A.C. D.3.已知向量 若共线,则实数的值为 ( ) A. B. C.或 D.或4.函数的定义域为 ( )A. B. C. D.5.如图所示,矩形中, 点为中点,若,则 ( )A. B. C. D.6.函数的零点所在的区间是 ( ) A.() B.() C.() D.()7.下列四个函数中,以为最小正周期,且在区间上为减函数的是 ( ){1,2,3,4},{1,2},{2,3},U A B ===( )U A B ={2,3}{1,2,3}{2,3,4}{1,2,3,4}sin120cos21034-32-142(1,1),(,2),x x ==+a b ,a b x 1-212-1-21()lg 1f x x =-(0,)+∞(0,1)(1,)+∞(1,)+∞(0,10)(10,)+∞ABCD 4,AB =E AB DE AC ⊥||DE =52341()log 4x f x x =-10,21,121,22,4ππ(,π)2EDCBAA. B. C. D.8.已知函数,则下列说法中正确的是 ( )A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则二.填空题:本大题共6小题, 每小题4分,共24分.把答案填在题中横线上. 9. 已知角的顶点在坐标原点,始边在轴的正半轴,终边经过点,则10.比较大小: (用“”,“”或“”连接). 11.已知函数,则的值域为 . 12.如图,向量 若则 13.已知,则14.已知函数,任取,记函数在区间上的最大值为最小值为,记. 则关于函数有如下结论: ①函数为偶函数; ②函数的值域为; ③函数的周期为;④函数的单调增区间为.其中正确的结论有____________.(填上所有正确的结论序号)2|sin |y x =sin2y x =2|cos |y x =cos2y x =||()||x af x x a -=-0a ≤()1f x ≤()1f x ≥0a ≥0a <x ()f x a =x ()f x a =01a <≤αx (1,cos ____.α=sin1cos1><=()13,(,1)x f x x =-∈-∞()f x 1,4BP BA =+,OP xOA yOB = ____.x y -=sin tan 1αα⋅=cos ____.α=π()sin 2f x x =t ∈R ()f x [,1]t t +,t M t m ()t t h t M m =-()h t ()h t ()ht [12-()h t 2()h t 13[2,2],22k k k ++∈Z POB A三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分)已知函数,其中为常数. (Ⅰ)若函数在区间上单调,求的取值范围;(Ⅱ)若对任意,都有成立,且函数的图象经过点,求的值.16.(本小题满分12分)2()f x x bx c =++,b c ()f x [1,)+∞b x ∈R (1)(1)f x f x -+=--()f x (,)c b -,b cy11 xO 已知函数.(Ⅰ)请用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图); (Ⅱ)求函数的单调递增区间;(Ⅲ)当时,求函数的最大值和最小值及相应的的值.17.(本小题满分12分)()sin(2)3f x x π=-()f x ()f x [0,]2x π∈()f x x已知点,点为直线上的一个动点. (Ⅰ)求证:恒为锐角;(Ⅱ)若四边形为菱形,求的值.18.(本小题满分10分)已知函数的定义域为,且的图象连续不间断. 若函数满足:对于(1,0),(0,1)A B -(,)P x y 1y x =-APB ∠ABPQ BQ AQ ⋅()f x [0,1]()f x ()f x给定的(且),存在,使得,则称具有性质.(Ⅰ)已知函数,,判断是否具有性质,并说明理由;(Ⅱ)已知函数 若具有性质,求的最大值;(Ⅲ)若函数的定义域为,且的图象连续不间断,又满足,求证:对任意且,函数具有性质.m m ∈R 01m <<0[0,1]x m ∈-00()()f x f x m =+()f x ()P m 21()()2f x x =-[0,1]x ∈()f x 1()3P 141, 0,413()41, ,44345, 1.4x x f x x x x x ⎧-+≤≤⎪⎪⎪=-<<⎨⎪⎪-+≤≤⎪⎩()f x ()P m m ()f x [0,1]()f x (0)(1)f f =*k ∈N 2k ≥()f x 1()P k海淀区高一年级第一学期期末练习数 学参考答案及评分标准 2014.1一、选择题(本大题共8小题,每小题4分,共32分)二、填空题(本大题共4小题,每小题4分)三、解答题(本大题共6小题,共80分) 15.(本小题满分10分)解:(I)因为函数,所以它的开口向上,对称轴方程为 ………………2分 因为函数在区间上单调递增,所以,所以………………………4分(Ⅱ)因为, 所以函数的对称轴方程为,所以………………………6分又因为函数的图象经过点,所以有 ………………………8分即,所以或………………………10分2()f x x bx c =++2bx =-()f x [,)2b -+∞12b-≤2b ≥-(1)(1)f x f x-+=--()f x 1x =-2b =()f x (,)c b -222c c c ++=-2320c c ++=2c =-1c =-9.10. 11.12. 13.14.③④说明:14题答案如果只有③ 或④,则给2分,错写的不给分12>(2),1-21-12-+16.(本小题满分12分) 解:(I ) 令,则.填表:………………………2分………………4分(Ⅱ)令………………………6分 解得 所以函数的单调增区间为 ………………………8分(Ⅲ)因为,所以, ………………10分 所以当,即时,取得最小值; 当,即时,取得最大值1 ……………………12分17.(本小题满分12分)解:(Ⅰ)因为点在直线上,所以点 ………………………1分所以,23X x π=-1()23x X π=+222()232k x k k ππππ-≤-≤π+∈Z ()1212k x k k π5ππ-≤≤π+∈Z sin(2)3y x π=-5[,]()1212k k k πππ-π+∈Z [0,]2x π∈2[0,]x ∈π(2)[,]333x ππ2π-∈-233x ππ-=-0x =in(2)3y s x π=-2-232x ππ-=12x 5π=sin(2)3y x π=-(,)P x y 1y x =-(,1)P x x -(1,1),(,2)PA x x PB x x =---=--1O yx1所以………………………3分所以………………………4分若三点在一条直线上,则,得到,方程无解,所以 …………………5分 所以恒为锐角. ………………………6分 (Ⅱ)因为四边形为菱形, 所以,即………………………8分化简得到,所以,所以………………………9分设,因为, 所以,所以………………………11分222132222(1)=2[()]24PA PB x x x x x ⋅=-+=-+-+>cos ,0||||PA PBPA PB PA PB ⋅<>=>,,A P B //PA PB (1)(2)(1)0x x x x +---=0APB ∠≠APB∠ABPQ ||||AB BP =2210x x -+=1x =(1,0)P (,)Q a b PQ BA =(1,)(1,1)a b -=--01a b =⎧⎨=-⎩(0,2)(1,1)2BQ AQ ⋅=-⋅-=………………………12分18.(本小题满分10分)解:(Ⅰ)设,即令, 则 解得, 所以函数具有性质………………………3分 (Ⅱ)的最大值为首先当时,取则, 所以函数具有性质………………………5分 假设存在,使得函数具有性质 则 当时,,,当时,,, 01[0,1]3x ∈-02[0,]3x ∈001()()3f x f x =+2200111()()232x x -=+-013x =2[0,]3∈()f x 1()3P m 1212m =012x =01()()12f x f ==011()()(1)122f x m f f +=+==()f x 1()2P 112m <<()f x ()P m 1012m <-<00x =01(,1)2x m +∈00()1,()1f x f x m =+>00()()f x f x m ≠+0(0,1]x m ∈-01(,1]2x m +∈00()1,()1f x f x m <+≥00()()f x f x m ≠+所以不存在,使得所以,的最大值为 ………………………7分 (Ⅲ)任取设,其中 则有 …………以上各式相加得:当中有一个为时,不妨设为, 即 则函数具有性质 当均不为时,由于其和为,则必然存在正数和负数, 0[0,1]x m ∈-00()()f x f x m =+m 12*,2k k ∈≥N 1()()()g x f x f x k=+-1[0,]k x k -∈1(0)()(0)g f f k=-121()()()g f f k k k=-232()()()g f f k k k=-1()()()t t t g f f k k k k=+-11()(1)()k k g f f k k--=-11(0)()...()...()(1)(0)0t k g g g g f f k k k-+++++=-=11(0),(),...,()k g g g k k-0()0,{0,1,2,...,1}i g i k k =∈-1()()()0i i i g f f k k k k=+-=()f x 1()P k11(0),(),...,()k g g g k k-00不妨设 其中,由于是连续的,所以当时,至少存在一个(当时,至少存在一个)使得,即所以,函数具有性质 ………………………10分说明: 若有其它正确解法,请酌情给分,但不得超过原题分数.()0,()0,i jg g k k ><i j ≠,{0,1,2,...,1}i j k ∈-()g x j i >0(,)i jx k k ∈j i <0(,)i jx k k ∈0()0g x =0001()()()0g x f x f x k =+-=()f x 1()P k。

海淀区学年高一第一学期期末数学试题及答案官方版

海淀区学年高一第一学期期末数学试题及答案官方版

WOED格式海淀区高一年级第一学期期末调研数学学校班级姓名成绩考1.本试卷共6页,共三道大题,18道小题.总分值100分.另有一道附加题〔5分〕.考生试时间90分钟.须2.在卷面上准确填写学校名称、班级名称、姓名.知3.考试结束,请将本试卷和草稿纸一并交回.一、选择题:本大题共8小题,每题4分,共32分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合A{x|1x2},B{0,1,2} ,那么AIB()A.{0}B.{0 ,1}C.{0,1,2}D.{1,01,,2}2〕不等式|x1|2的解集是()A.{x|x3}B.{ x|1x3}C.{ x|1x3}D.{ x|3x3}(0,.B.y2C.〔4〕某赛季甲、乙两名篮球运发动各参加了13场比赛,得分情况用茎叶图表示如下:甲乙988177996102256799532030237104根据上图对这两名运发动的成绩进行比拟,以下四个结论中,不正确...的是()A.甲运发动得分的极差大于乙运发动得分的极差(B.甲运发动得分的中位数大于乙运发动得分的中位数(C.甲运发动得分的平均值大于乙运发动得分的平均值(D.甲运发动的成绩比乙运发动的成绩稳定( a(5〕a,bR,那么“ab〞是“1〞的()bA.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件1专业资料整理WOED格式2,x2,〔6〕函数f(x)x假设关于x的函数yf(x)k有且只有三个不同的零点,那么实数k 的2x3,x2.取值范围是()A.(3,1)B.(0,1)C.3,0D.(0,)7〕“函数f(x)在区间[1,2]上不.是.增函数〞的一个充要条件是()A.存在a(1,2)满足f(a)f(1)B.存在a(1,2)满足f(a)f(2)C.存在a,b[1,2] 且ab满足f(a)f(b)D. 存在a,b[1,2] 且ab满足f(a)f(b)〔8〕区块链作为一种革新的技术,已经被应用于许多领域,包括金融、政务效劳、供给链、版权和专利、能源、物联网等.在区块链技术中,假设密码的长度设定为256比特,那么密码一共有256种可能,因此,2为了破解密码,最坏情况需要进行25611次哈希运算.现在有一台机器,每秒能进行10次哈希2运算,假设机器一直正常运转,那么在最坏情况下,这台机器破译密码所需时间大约为〔参考数据〕()73657二、填空题:本大题共6小题,每题4分,共24分,把答案填在题中横线上.x9〕函数f(x)a(a0且a1)的图象经过点(1,2),那么a的值为__________.10〕f(x)lgx,那么f(x)的定义域为__________,不等式f(x1)0的解集为.uuur uuur uuur uuur 〔11〕OA(1,0),AB(1,2),AC(1,1),那么点B的坐标为_________,CB的坐标为_________.〔12〕函数()22的零点个数为_______,不等式f(x)0的解集为_____________.fxx〔13〕某大学在其百年校庆上,对参加校庆的校友做了一项问卷调查,发现在20世纪最后5年间毕业的校友,他们2021年的平均年收入约为35万元.由此_____〔填“能够〞或“不能〞〕推断该大学20世纪最后5年间的毕业生,2021年的平均年收入约为35万元,理由是________________________________________________________________________________.〔14〕对于正整数k,设函数fk(x)[kx]k[x] ,其中[a] 表示不超过a的最大整数.①那么2f()_______; 23②设函数g(x)f 2(x)f 4(x) ,那么在函数g(x)的值域中所含元素的个数是____________.专业资料整理WOED格式2专业资料整理WOED格式三、解答题:本大题共4小题,共44分.解容许写出文字说明,证明过程或演算步骤.(15)〔本小题共11分〕某校2021级高一年级共有学生 195人,其中男生105人,女生90人.基于目前高考制度的改革,为了预估学生“分科选考制〞中的学科选择情况,该校对2021级高一年级全体学生进行了问卷调查.现采用按性别分层抽样的方法,从中抽取13份问卷.问卷中某个必答题的选项分别为“同意〞和“不同意〞,下面表格记录了抽取的这13份问卷中此题的答题情况.选“同意〞的人数选“不同意〞的人数男生4a女生b2〔Ⅰ〕写出a,b的值;〔Ⅱ〕根据上表的数据估计2021级高一年级学生该题选择“同意〞的人数;〔Ⅲ〕从被抽取的男生问卷中随机选取2份问卷,对相应的学生进行访谈,求至少有一人选择“同意〞的概率.函数f(x)ax2ax3.2〔Ⅰ〕假设a1,求不等式f(x)0的解集;〔Ⅱ〕a0,且f(x)0在[3,)上恒成立,求a的取值范围;〔Ⅲ〕假设关于x的方程f(x)0x1,x2,求22有两个不相等的正.实数根xx的取值范围.123专业资料整理WOED格式〔本小题共12分〕如图,在射线OA,OB,OC中,相邻两条射线所成的角都是120o,且线段OAOBOC.uuuruuuruuur设OPxOAyOB.〔Ⅰ〕当x2,y1时,在图1中作出点P的位置〔保存作图的痕迹〕;〔Ⅱ〕请用x,y 写出“点P在射线OC上〞的一个充要条件: _________________________________;〔Ⅲ〕设满足“x2y4且xy0〞的点P所构成的图形为G,①图形G是_________;A.线段B.射线C.直线D.圆②在图2中作出图形G.BBOOCACA图图21〔本小题共10分〕函数f(x) 的图象在定义域(0,) 上连续不断.假设存在常数T0,使得对于任意的x0,f(Tx)f(x)T 恒成立,称函数f(x) 满足性质P(T).(Ⅰ)假设f(x)满足性质P(2),且f(1)0,求1f(4)f()的值;(Ⅱ)假设f(x)logx4,试说明至少存在两个不等的正数T1,T2,同时使得函数f(x)满足性质P(T1) 4和P(T2).(参考数据:2.0736)(Ⅲ)假设函数f(x)满足性质P(T),求证:函数f(x) 存在零点.4专业资料整理附加题:〔此题总分值5分.所得分数可计入总分,但整份试卷得分不超过100分〕在工程实践和科学研究中经常需要对采样所得的数据点进行函数拟合.定义数据点集为平面点集SPxyiLN〔NN+〕,寻找函数yf(x)去拟合数据点集S,就是寻找适宜的函数,{i(i,i)|1,2,,}使其图象尽可能地反映数据点集中元素位置的分布趋势.〔Ⅰ〕以下说法正确的选项是_________.〔写出所有正确说法对应的序号〕A.对于任意的数据点集S,一定存在某个函数,其图象可以经过每一个数据点B.存在数据点集S,不存在函数使其图象经过每一个数据点C.对于任意的数据点集S,一定存在某个函数,使得这些数据点均位于其图象的一侧D.拟合函数的图象所经过的数据点集S中元素个数越多,拟合的效果越好〔Ⅱ〕衡量拟合函数是否恰当有很多判断指标,其中有一个指标叫做“偏置度〞,用以衡量数据点集在拟合函数图象周围的分布情况.如下图,对于数据点集PPP,在如下的两种“偏1,2,3置度〞的定义中,使得函数1(x)的偏置度大于函数f2(x)的偏置度的序号为________;yP3l31P221P1O13xl2n①=(x,yf(x))(x,yf(x))(x,yf(x))L(x,yf(x));iii111222nnn i1x))||,yf(iii111222nnni1〔其中|(x,y)|代表向量w(x,y)的模长〕〔Ⅲ〕对于数据点集S0,0,1,1,1,1,2,2,用形如f(x)axb的函数去拟合.当拟合函数f(x)axb满足〔Ⅱ〕中你所选择的“偏置度〞到达最小时,该拟合函数的图象必过点_______.〔填点的坐标〕5专业资料整理WOED格式草稿纸6专业资料整理WOED格式高一年数学级习参一.选择题:本大题共8小题,每题4分,共32分.考(1〕〔2〕〔3〕〔4〕〔5〕〔6〕〔7〕〔8〕答答案BCCDDBDB 案及准2021.01二.填空题:本大题共 6小题,每题4分,共24分.9〕〔10〕;11〕;〔12〕1;(,0)U(1,)13〕不能;参加校庆的校友年收入不能代表全体毕业生的年收入14〕1;4注:两空的题,每空2分;三.解答题:本大题共 4小题,共44分.解容许写出文字说明,证明过程或演算步骤.〔15〕(Ⅰ)由题意可得;..........2 分;..........4 分(Ⅱ)估计2021级高一年级学生该题选择“同意〞的人数为;..........7 分(Ⅲ)如果访谈学生中选择“同意〞那么记为1,如果选择“不同意〞那么记为0,列举如下:1111000 ..........9 分共有76=42种等可能的结果,其中至少有一人选择“同意〞的有42636种,中至少有一人选择‘同意’〞为事件,那么P(A)..........10 分记“访谈学生366427..........11 分〔16〕(Ⅰ)当a1时,由2f(x)x2x3≥0解得{x|x≥3或x≤-1}..........3分专业资料整理WOED格式7专业资料整理WOED格式(Ⅱ)当a0时,二次函数2f(x)ax2ax3开口向上,对称为轴x1,所以f(x)在[3,)上单调递,增...........5分要使f(x)≥0在[3,)上恒成立,只需f(3)9a6a3≥0,...........6分所以a的取值范围是{a|a≥1}...........7分(Ⅲ)因为f(x)0有两个不相等的正.实数根x1,x2,a024a12a0所以xx2,..........8分123xgx0a12解得a3,所以a的取值范围是{a|a3}...........9分因为2226 xx(xx)2xgx4,..........10分121212a22所以,xx的取值范围是(2,4)...........11分1217〕(Ⅰ)BPOCA图中点P即为所求............4 分(Ⅱ)xy且x0,y0;...........7分说(明Ⅲ)①A;,..........10分:②如果“xE,ByO〞CA,(D分图中线段DE即为所求............12 分专业资料整理WOED格式〔18〕(Ⅰ)因为满足性质,所以对于任意的,f(2x)f(x)2恒成立.又因为f(1)0,所以,f(2)f(1)22,...........1分f(4)f(2)2 4,...........2分由f(1)f()211可得f()f(1)22,22111 1由f()f()+2可得f()f()24,.........3分2414 2所以,f(4)f()0.............4分4(Ⅱ)假设正数T满足,等价于log TT〔或者TT〕,log(Tx)logxTx记g(x)xlog x,〔或者设,x(0,)〕.........5分显然g(1)0,,2,所以16,16log16,即g(16)0............6分因为g(x)的图像连续不断,所以存在T(1,2),T(2,16),使得g(T1)g(T 2)0,1 2因此,至少存在两个不等的正数1,使得函数同时满足性质1T,T P(T)和P(T).............7分2(Ⅲ)①假设f(1)0,那么1即为的零点;...........8分②假设f(1)M0,那么f(T)f(1)T,2f(T)f(T)Tf(1)2T,L,可得kk1f(T)f(T)Tf(1)kT,其中kN.取k[M]1M kTT即可使得f(T)MkT0.所以,存在零点............9分③假设f(1)M0,那么由1,可得1,f(1)f()T f()f(1)TT T1111,L,由f()f()T,可得f()f()Tf(1)2TTT2TT111 1k1k kk1TTTTMM即可使得1取[]1f(k)MkT0.所以,存在零点.kTTT综上,存在零点............10分专业资料整理WOED格式9专业资料整理WOED格式附加题:〔此题总分值5分.所得分数可计入总分,但整份试卷得分不超过100分〕【答案】(Ⅰ)B、C ...........2分(Ⅱ)①...........分(Ⅲ)(1,1)..........2.5分注:对于其它正确解法,相应给分.10专业资料整理。

北京市海淀区高一上期末数学试卷((有答案))

北京市海淀区高一上期末数学试卷((有答案))

北京市海淀区高一(上)期末数学试卷一.选择题(每小题4分,共32分,每小题给出的四个选项中,只有一个是符合题目要求的)1.(4分)已知集合U={1,2,3,4,5,6},M={1,5},P={2,4},则下列结论正确的是()A.1∈∁U(M∪P)B.2∈∁U(M∪P)C.3∈∁U(M∪P)D.6∉∁U(M∪P)2.(4分)下列函数在区间(﹣∞,0)上是增函数的是()A.f(x)=x2﹣4x B.g(x)=3x+1 C.h(x)=3﹣x D.t(x)=tanx3.(4分)已知向量=(1,3),=(3,t),若∥,则实数t的值为()A.﹣9 B.﹣1 C.1 D.94.(4分)下列函数中,对于任意的x∈R,满足条件f(x)+f(﹣x)=0的函数是()A.f(x)=x B.f(x)=sinx C.f(x)=cosx D.f(x)=log2(x2+1)5.(4分)代数式sin(+)+cos(﹣)的值为()A.﹣1 B.0 C.1 D.6.(4分)在边长为1的正方形ABCD中,向量=,=,则向量,的夹角为()A.B.C.D.7.(4分)如果函数f(x)=3sin(2x+φ)的图象关于点(,0)成中心对称(|φ|<),那么函数f(x)图象的一条对称轴是()A.x=﹣B.x=C.x=D.x=8.(4分)已知函数f(x)=其中M∪P=R,则下列结论中一定正确的是()A.函数f(x)一定存在最大值B.函数f(x)一定存在最小值C.函数f(x)一定不存在最大值D.函数f(x)一定不存在最小值二.填空题(本大题6小题,每小题4分,共24分)9.(4分)函数y=的定义域为.10.(4分)已知a=40.5,b=0.54,c=log0.54,则a,b,c从小到大的排列为.11.(4分)已知角α终边上有一点P(x,1),且cosα=﹣,则tanα=.12.(4分)已知△ABC中,点A(﹣2,0),B(2,0),C(x,1)(i)若∠ACB是直角,则x=(ii)若△ABC是锐角三角形,则x的取值范围是.13.(4分)燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog 2.若两岁燕子耗氧量达到40个单位时,其飞行速度为v=10m/s,则两岁燕子飞行速度为25m/s时,耗氧量达到单位.14.(4分)已知函数f(x)=|ax﹣1|﹣(a﹣1)x(1)当a=时,满足不等式f(x)>1的x的取值范围为;(2)若函数f(x)的图象与x轴没有交点,则实数a的取值范围为.三.解答题(本大题共4小题,共44分)15.(12分)已知函数f(x)=x2+bx+c,其对称轴为y轴(其中b,c为常数)(Ⅰ)求实数b的值;(Ⅱ)记函数g(x)=f(x)﹣2,若函数g(x)有两个不同的零点,求实数c 的取值范围;(Ⅲ)求证:不等式f(c2+1)>f(c)对任意c∈R成立.16.(12分)已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)(Ⅰ)请写出函数f(x)的最小正周期和解析式;(Ⅱ)求函数f (x )的单调递减区间; (Ⅲ)求函数f (x )在区间[0,]上的取值范围.17.(10分)如图,在平面直角坐标系中,点A (﹣,0),B (,0),锐角α的终边与单位圆O 交于点P .(Ⅰ)用α的三角函数表示点P 的坐标; (Ⅱ)当•=﹣时,求α的值;(Ⅲ)在x 轴上是否存在定点M ,使得||=||恒成立?若存在,求出点M的横坐标;若不存在,请说明理由.18.(10分)已知函数f (x )的定义域为R ,若存在常数T ≠0,使得f (x )=Tf (x +T )对任意的x ∈R 成立,则称函数f (x )是Ω函数.(Ⅰ)判断函数f (x )=x ,g (x )=sinπx 是否是Ω函数;(只需写出结论) (Ⅱ)说明:请在(i )、(ii )问中选择一问解答即可,两问都作答的按选择(i )计分(i )求证:若函数f (x )是Ω函数,且f (x )是偶函数,则f (x )是周期函数; (ii )求证:若函数f (x )是Ω函数,且f (x )是奇函数,则f (x )是周期函数; (Ⅲ)求证:当a >1时,函数f (x )=a x 一定是Ω函数.选做题(本题满分10分)19.(10分)记所有非零向量构成的集合为V ,对于,∈V ,≠,定义V (,)=|x ∈V |x•=x•|(1)请你任意写出两个平面向量,,并写出集合V (,)中的三个元素; (2)请根据你在(1)中写出的三个元素,猜想集合V (,)中元素的关系,并试着给出证明;(3)若V(,)=V(,),其中≠,求证:一定存在实数λ1,λ2,且λ1+λ2=1,使得=λ1+λ2.2016-2017学年北京市海淀区高一(上)期末数学试卷参考答案与试题解析一.选择题(每小题4分,共32分,每小题给出的四个选项中,只有一个是符合题目要求的)1.(4分)已知集合U={1,2,3,4,5,6},M={1,5},P={2,4},则下列结论正确的是()A.1∈∁U(M∪P)B.2∈∁U(M∪P)C.3∈∁U(M∪P)D.6∉∁U(M∪P)【解答】解:由已知得到M∪P={1,5,2,4};所以∁U(M∪P)={3,6};故A、B、D错误;故选:C.2.(4分)下列函数在区间(﹣∞,0)上是增函数的是()A.f(x)=x2﹣4x B.g(x)=3x+1 C.h(x)=3﹣x D.t(x)=tanx【解答】解:对于A,f(x)=x2﹣4x=(x﹣2)2﹣4,在(﹣∞,0)上是单调减函数,不满足题意;对于B,g(x)=3x+1在(﹣∞,0)上是单调增函数,满足题意;对于C,h(x)=3﹣x=是(﹣∞,0)上的单调减函数,不满足题意;对于D,t(x)=tanx在区间(﹣∞,0)上是周期函数,不是单调函数,不满足题意.故选:B.3.(4分)已知向量=(1,3),=(3,t),若∥,则实数t的值为()A.﹣9 B.﹣1 C.1 D.9【解答】解:向量=(1,3),=(3,t),若∥,可得t=9.故选:D.4.(4分)下列函数中,对于任意的x∈R,满足条件f(x)+f(﹣x)=0的函数是()A.f(x)=x B.f(x)=sinx C.f(x)=cosx D.f(x)=log2(x2+1)【解答】解:对于任意的x∈R,满足条件f(x)+f(﹣x)=0的函数是奇函数.A,非奇非偶函数;B奇函数,C,D是偶函数,故选B.5.(4分)代数式sin(+)+cos(﹣)的值为()A.﹣1 B.0 C.1 D.【解答】解:sin(+)+cos(﹣)=.故选:C.6.(4分)在边长为1的正方形ABCD中,向量=,=,则向量,的夹角为()A.B.C.D.【解答】解:设向量,的夹角为θ,以A为坐标原点,以AB为x轴,以AD为x轴,建立直角坐标系,∴A(0,0),B(1.0),C(1,1),D(0,1),∵向量=,=,∴E(,1),F(1,),∴=(,1),=(1,),∴||=,=,•=+=,∴cosθ===,∴θ=,故选:B7.(4分)如果函数f(x)=3sin(2x+φ)的图象关于点(,0)成中心对称(|φ|<),那么函数f(x)图象的一条对称轴是()A.x=﹣B.x=C.x=D.x=【解答】解:∵函数f(x)=3sin(2x+φ)的图象关于点(,0)成中心对称,∴2×+φ=kπ,k∈Z,解得:φ=kπ﹣,k∈Z,∵|φ|<,∴φ=,可得:f(x)=3sin(2x+),∴令2x+=kπ+,k∈Z,可得:x=+,k∈Z,∴当k=0时,可得函数的对称轴为x=.故选:B.8.(4分)已知函数f(x)=其中M∪P=R,则下列结论中一定正确的是()A.函数f(x)一定存在最大值B.函数f(x)一定存在最小值C.函数f(x)一定不存在最大值D.函数f(x)一定不存在最小值【解答】解:由函数y=2x的值域为(0,+∞),y=x2的值域为[0,+∞),且M∪P=R,若M=(0,+∞),P=(﹣∞,0],则f(x)的最小值为0,故D错;若M=(﹣∞,2),P=[2,+∞),则f(x)无最小值为,故B错;由M∪P=R,可得图象无限上升,则f(x)无最大值.故选:C.二.填空题(本大题6小题,每小题4分,共24分)9.(4分)函数y=的定义域为[2,+∞).【解答】解:由2x﹣4≥0,得2x≥4,则x≥2.∴函数y=的定义域为[2,+∞).故答案为:[2,+∞).10.(4分)已知a=40.5,b=0.54,c=log0.54,则a,b,c从小到大的排列为c<b <a.【解答】解:∵a=40.5>40=1,0<b=0.54<0.50=1,c=log0.54<log0.51=0,∴a,b,c从小到大的排列为c<b<a.故答案为:c<b<a.11.(4分)已知角α终边上有一点P(x,1),且cosα=﹣,则tanα=﹣.【解答】解:∵角α终边上有一点P(x,1),且cosα=﹣=,∴x=﹣,∴tanα==﹣,故答案为:﹣.12.(4分)已知△ABC中,点A(﹣2,0),B(2,0),C(x,1)(i)若∠ACB是直角,则x=(ii)若△ABC是锐角三角形,则x的取值范围是(﹣2,﹣)∪(2,+∞).【解答】解:(i)∵△ABC中,点A(﹣2,0),B(2,0),C(x,1),∴=(﹣2﹣x,﹣1),=(2﹣x,﹣1),∵∠ACB是直角,∴=(﹣2﹣x)(2﹣x)+(﹣1)(﹣1)=x2﹣3=0,解得x=.(ii)∵△ABC中,点A(﹣2,0),B(2,0),C(x,1),∴=(﹣2﹣x,﹣1),=(2﹣x,﹣1),=(x+2,1),=(4,0),=(x﹣2,1),=(﹣4,0),∵△ABC是锐角三角形,∴,解得﹣2<x<﹣或x>2.∴x的取值范围是(﹣2,﹣)∪(2,+∞).故答案为:,(﹣2,﹣)∪(2,+∞).13.(4分)燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度v与耗氧量x之间满足函数关系v=alog2.若两岁燕子耗氧量达到40个单位时,其飞行速度为v=10m/s,则两岁燕子飞行速度为25m/s时,耗氧量达到320单位.【解答】解:由题意,令x=40,v=1010=alog24;所以a=5;v=25 m/s,25=5 log,得到x=320单位.故答案为:320.14.(4分)已知函数f(x)=|ax﹣1|﹣(a﹣1)x(1)当a=时,满足不等式f(x)>1的x的取值范围为(2,+∞);(2)若函数f(x)的图象与x轴没有交点,则实数a的取值范围为[,1).【解答】解:(1)a=时,f(x)=|x﹣1|+x=,∵f(x)>1,∴,解得x>2,故x的取值范围为(2,+∞),(2)函数f(x)的图象与x轴没有交点,①当a≥1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:两函数的图象恒有交点,②当0<a<1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:要使两个图象无交点,斜率满足:a﹣1≥﹣a,∴a≥,故≤≤a<1③当a≤0时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:两函数的图象恒有交点,综上①②③知:≤a<1故答案为:(2,+∞),[,1)三.解答题(本大题共4小题,共44分)15.(12分)已知函数f(x)=x2+bx+c,其对称轴为y轴(其中b,c为常数)(Ⅰ)求实数b的值;(Ⅱ)记函数g(x)=f(x)﹣2,若函数g(x)有两个不同的零点,求实数c 的取值范围;(Ⅲ)求证:不等式f(c2+1)>f(c)对任意c∈R成立.【解答】解:(Ⅰ)∵函数f(x)=x2+bx+c,其对称轴为y轴,∴=0,解得:b=0;(Ⅱ)由(I)得:f(x)=x2+c,则g (x )=f (x )﹣2=x 2+c ﹣2, 若函数g (x )有两个不同的零点, 则△=﹣4(c ﹣2)>0, 解得:c <2;(Ⅲ)证明:函数f (x )=x 2+c 的开口朝上, ∵|c 2+1|2﹣|c |2=c 4+c 2+1=(c 2+)2+>0恒成立, 故|c 2+1|>|c |,故不等式f (c 2+1)>f (c )对任意c ∈R 成立.16.(12分)已知如表为“五点法”绘制函数f (x )=Asin (ωx +φ)图象时的五个关键点的坐标(其中A >0,ω>0,|φ|<π)(Ⅰ)请写出函数f (x )的最小正周期和解析式; (Ⅱ)求函数f (x)的单调递减区间; (Ⅲ)求函数f(x )在区间[0,]上的取值范围.【解答】解:(Ⅰ)由表格可得A=2,=+,∴ω=2,结合五点法作图可得2•+φ=,∴φ=,∴f (x )=2sin (2x +),它的最小正周期为=π.(Ⅱ)令2kπ+≤2x +≤2kπ+,求得kπ+≤x ≤kπ+,可得函数f (x )的单调递减区间为[kπ+,kπ+],k ∈Z .(Ⅲ)在区间[0,]上,2x +∈[,],sin (2x +)∈[﹣,1],f (x )∈[﹣,2],即函数f (x )的值域为[﹣,2].17.(10分)如图,在平面直角坐标系中,点A(﹣,0),B(,0),锐角α的终边与单位圆O交于点P.(Ⅰ)用α的三角函数表示点P的坐标;(Ⅱ)当•=﹣时,求α的值;(Ⅲ)在x轴上是否存在定点M,使得||=||恒成立?若存在,求出点M 的横坐标;若不存在,请说明理由.【解答】解:锐角α的终边与单位圆O交于点P.(Ⅰ)用α的三角函数表示点P的坐标为(cosα,sinα);(Ⅱ),,•=﹣时,即(cos)(cos)+sin2α=,整理得到cos,所以锐角α=60°;(Ⅲ)在x轴上假设存在定点M,设M(x,0),,则由||=||恒成立,得到=,整理得2cosα(2+x)=x2﹣4,所以存在x=﹣2时等式恒成立,所以存在M(﹣2,0).18.(10分)已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf (x+T)对任意的x∈R成立,则称函数f(x)是Ω函数.(Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;(Ⅲ)求证:当a>1时,函数f(x)=a x一定是Ω函数.【解答】解:(I)①对于函数f(x)=x是Ω函数,假设存在非零常数T,Tf(x+T)=f(x),则T(x+T)=x,取x=0时,则T=0,与T≠0矛盾,因此假设不成立,即函数f(x)=x不是Ω函数.②对于g(x)=sinπx是Ω函数,令T=﹣1,则sin(πx﹣π)=﹣sin(π﹣πx)=﹣sinπx.即﹣sin(π(x﹣1))=sinπx.∴Tsin(πx+πT)=sinπx成立,即函数f(x)=sinπx对任意x∈R,有Tf(x+T)=f (x)成立.(II)(i)证明:∵函数f(x)是Ω函数,∴存在非零常数T,Tf(x+T)=f(x),Tf(﹣x+T)=f(﹣x).又f(x)是偶函数,∴f(﹣x)=f(x),∴Tf(﹣x+T)=Tf(x+T),T≠0,化为:f(x+T)=f(﹣x+T),令x﹣T=t,则x=T+t,∴f(2T+t)=f(﹣t)=f(t),可得:f(2T+t)=f(t),因此函数f(x)是周期为2T的周期函数.(ii)证明:∵函数f(x)是Ω函数,∴存在非零常数T,Tf(x+T)=f(x),Tf (﹣x+T)=f(﹣x).又f(x)是奇函数,∴f(﹣x)=﹣f(x),∴﹣Tf(x+T)=Tf(﹣x+T),T≠0,化为:﹣f(x+T)=f(﹣x+T),令x﹣T=t,则x=T+t,∴﹣f(2T+t)=f(﹣t)=﹣f(t),可得:f(2T+t)=f(t),因此函数f(x)是周期为2T的周期函数.(III)证明:当a>1时,假设函数f(x)=a x是Ω函数,则存在非零常数T,Tf (x+T)=f(x),∴Ta x+T=a x,化为:Ta T a x=a x,∵a x>0,∴Ta T=1,即a T=,此方程有非0 的实数根,因此T≠0且存在,∴当a>1时,函数f(x)=a x一定是Ω函数.选做题(本题满分10分)19.(10分)记所有非零向量构成的集合为V,对于,∈V,≠,定义V(,)=|x∈V|x•=x•|(1)请你任意写出两个平面向量,,并写出集合V(,)中的三个元素;(2)请根据你在(1)中写出的三个元素,猜想集合V(,)中元素的关系,并试着给出证明;(3)若V(,)=V(,),其中≠,求证:一定存在实数λ1,λ2,且λ1+λ2=1,使得=λ1+λ2.【解答】解:(1)比如=(1,2),=(3,4),设=(x,y),由•=•,可得x+2y=3x+4y,即为x+y=0,则集合V(,)中的三个元素为(1,﹣1),(2,﹣2),(3,﹣3);(2)由(1)可得这些向量共线.理由:设=(s,t),=(a,b),=(c,d),由•=•,可得as+bt=cs+dt,即有s=t,即=(t,t),故集合V(,)中元素的关系为共线;(3)证明:设=(s,t),=(a,b),=(c,d),=(u,v),=(e,f),若V(,)=V(,),即有as+bt=cs+dt,au+bv=ue+fv,解得a=•c+•e+,可令d=f,可得λ1=,λ2=,则一定存在实数λ1,λ2,且λ1+λ2=1,使得=λ1+λ2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档