海淀区2019-2020学年高一第一学期期末数学试题及答案(官方版)
海淀区2020届高三第一学期期末数学试题及答案(官方版)

海淀区高三年级第一学期期末练习数学 2020. 01本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}2,3,4B =,则集合U A B I ð是 (A ){1,3,5,6}(B ){1,3,5} (C ){1,3} (D ){1,5}(2)抛物线24y x =的焦点坐标为 (A )(0,1)(B )(10,) (C )(0,1-) (D )(1,0)-(3)下列直线与圆22(1)(1)2x y -+-=相切的是(A )y x =- (B )y x =(C )2y x =- (D )2y x =(4)已知,a b R Î,且a b >,则 (A )11ab <(B )sin sin a b >(C )11()()33ab<(D )22a b >(5)在51()x x-的展开式中,3x 的系数为 (A )5-(B )5(C )10-(D )10(6)已知平面向量,,a b c 满足++=0a b c ,且||||||1===a b c ,则⋅a b 的值为(A )12-(B )12(C )32-(D )32(7)已知α, β, γ是三个不同的平面,且=m αγI ,=n βγI ,则“m n ∥”是“αβ∥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)已知等边△ABC 边长为3. 点D 在BC 边上,且BD CD >,7AD =. 下列结论中错误的是(A )2BDCD= (B )2ABDACDS S ∆∆= (C )cos 2cos BADCAD∠=∠ (D )sin 2sin BAD CAD ∠=∠ (9)声音的等级()f x (单位:dB )与声音强度x (单位:2W/m )满足12()10lg110x f x -=⨯⨯.喷气式飞机起飞时,声音的等级约为140dB ;一般说话时,声音的等级约为60dB ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的 (A )610倍(B )810倍(C )1010倍(D )1210倍(10)若点N 为点M 在平面a 上的正投影,则记()N f M a =. 如图,在棱长为1的正方体1111ABCD A B C D -中,记平面11AB C D 为b ,平面ABCD 为g ,点P 是棱1CC 上一动点(与C ,1C 不重合),1[()]Q f f P g b =,2[()]Q f f P b g =. 给出下列三个结论:①线段2PQ 长度的取值范围是12[,)22;②存在点P 使得1PQ ∥平面b ; ③存在点P 使得12PQ PQ ^. 其中,所有正确结论的序号是 (A )①②③(B )②③(C )①③(D )①②第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2019-2020第一学期海淀期末数学答案

海淀区高三年级第一学期期末练习参考答案数学 2020.01阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共10小题,每小题4分,共40分. 题号 1 2 3 4 5 6 7 8 9 10 答案DBACAABCBD二、填空题:本大题共6小题,每小题5分,共30分. 题号 11 1213 141516答案22(1,16)2-;0① ②③;2m >均可说明: 第(14)题写成[]1,16给3分;第(15)题第一空3分,第二空2分;第(16)题第一空写对一个得1分,全对得3分,第二空2分,答案不唯一,取值2m >均可. 三、解答题共6小题,共80分。
解答应写出文字说明、演算步骤或证明过程。
(17)解:(Ⅰ)1cos 231()sin 2222x f x x +=+- ----------------------------------4分31sin 2cos 222x x =+ πsin(2)6x =+. ----------------------------------5分因为sin y x =的单调递增区间为ππ2π,2π()22k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,-----------6分 令πππ22π,2π()622x k k k ⎡⎤+∈-+∈⎢⎥⎣⎦Z , ----------------------------------7分 得πππ,π()36x k k k ⎡⎤∈-+∈⎢⎥⎣⎦Z . ----------------------------------8分所以()f x 的单调递增区间为πππ,π()36k k k ⎡⎤-+∈⎢⎥⎣⎦Z .-------------------9分 (Ⅱ)方法1:因为[0,]x m ∈,所以πππ2[,2]666x m +∈+. ----------------------------------10分 又因为[0,]x m ∈,()f x πsin(2)6x =+的最大值为1,所以ππ262m +≥. ----------------------------------11分解得π6m ≥. ----------------------------------12分所以m 的最小值为π6. ----------------------------------13分方法2:由(Ⅰ)知: 当且仅当π=π()6x k k +∈Z 时,()f x 取得最大值1.--------------------------11分 因为()f x 在区间[0,]m 上的最大值为1,所以π6m ≥. ----------------------------------12分 所以m 的最小值为π6. ----------------------------------13分(18)解:(Ⅰ)在△VAB 中,M ,N 分别为VA ,VB 的中点,所以MN 为中位线.所以//MN AB .----------------------------------1分 又因为AB ⊄平面CMN ,MN ⊂平面CMN , 所以AB //平面CMN .------------------------3分 (Ⅱ)在等腰直角三角形△VAC 中,AC CV =,所以VC AC ⊥.----------------------------------4分 因为平面VAC ⊥平面ABC ,平面VAC平面ABC AC =, VC ⊂平面VAC ,所以VC ⊥平面ABC .-------------------------5分 又因为AB ⊂平面ABC ,ABCVMNHyx z所以AB VC ⊥.-----------------------------------6分 (Ⅲ)在平面ABC 内过点C 做CH 垂直于AC ,由(Ⅱ)知,VC ⊥平面ABC , 因为CH⊂平面ABC ,所以VC CH ⊥. ----------------------------------7分 如图,以C 为原点建立空间直角坐标系C xyz -.----------------------------------8分 则(0,0,0)C ,(0,0,2)V ,(1,1,0)B ,(1,0,1)M ,11(,,1)22N . (1,1,2)VB =-,(1,0,1)CM =,11(,,1)22CN =.设平面CMN 的法向量为(,,)x y z =n ,则0,0.CM CN ⎧⋅=⎪⎨⋅=⎪⎩n n ----------------------------------10分 即0,110.22x z x y z +=⎧⎪⎨++=⎪⎩ 令1x =则1y =,1z =-,所以(1,1,1)=-n . ----------------------------------11分 直线VB 与平面CMN 所成角大小为θ,22sin |cos ,|3||||VB VB VB θ⋅=<>==n n n . ----------------------------------13分所以直线VB 与平面CMN 所成角的正弦值为223. (19)解:(Ⅰ)方法1:A 小区的指数0.70.20.70.20.50.320.50.280.58T =⨯+⨯+⨯+⨯=, 0.580.60<,所以A 小区不是优质小区;----------------------------------2分 B 小区的指数0.90.20.60.20.70.320.60.280.692T =⨯+⨯+⨯+⨯=, 0.6920.60>,所以B 小区是优质小区;--------------------------------4分 C 小区的指数0.10.20.30.20.20.320.10.280.172T =⨯+⨯+⨯+⨯=, 0.1720.60<,所以C 小区不是优质小区.------------------------------6分方法2:A 小区的指数0.70.20.70.20.50.320.50.280.58T =⨯+⨯+⨯+⨯= 0.580.60<,所以A 小区不是优质小区;---------------------------------2分B 小区的指数0.90.20.60.20.70.320.60.28T =⨯+⨯+⨯+⨯0.60.20.60.20.60.320.60.280.6>⨯+⨯+⨯+⨯=.B 小区是优质小区; -------------------------------4分C 小区的指数0.10.20.30.20.20.320.10.28T =⨯+⨯+⨯+⨯0.60.20.60.20.60.320.60.280.6<⨯+⨯+⨯+⨯=.C 小区不是优质小区. ---------------------------------6分 (在对A 、B 、C 小区做说明时必须出现与0.6比较的说明.每一项中结论1分,计算和说明理由1分)(Ⅱ)依题意,抽取10个小区中,共有优质小区3010104100+⨯=个,其它小区1046-=个. --------------------------------7分依题意ξ的所有可能取值为0,1,2. --------------------------------8分26210C 151(0)C 453P ξ====; --------------------------------9分1146210C C 248(1)C 4515P ξ====; --------------------------------10分24210C 62(2)C 4515P ξ====. -------------------------------11分则ξ的分布列为:ξ0 12P13815215-------------------------------12分1824012315155E ξ=⨯+⨯+⨯=. -------------------------------13分(20)解:(Ⅰ)解:依题意,得222(0)2,3,2.a b a cac a b >>=⎧⎪⎪=⎨⎪⎪=-⎩--------------------------------3分 解得,2,1.a b =⎧⎨=⎩ ----------------------------------4分所以椭圆C 的方程为2214x y +=. ----------------------------------5分(Ⅱ)设点00(,)Q x y ,依题意,点P 坐标为00(,)x y --,满足220014x y +=(022x -<<且00y ≠),直线QA 的方程为00(2)2y y x x =-- ----------------------------------6分 令4x =,得0022y y x =-,即002(4,)2y N x -. --------------------------------7分 直线PA 的方程为00(2)2y y x x =-+ ,同理可得002(4,)2y M x +.--------8分 设B 为4x =与x 轴的交点.11||||||||22APQ AMN P Q M N S S OA y y AB y y ∆∆+=⋅⋅-+⋅⋅-0000022112|2|2||2222y y y x x =⨯⨯+⨯⨯--+---------------10分0000112||2||||22y y x x =+⋅--+ 002042||2||||4y y x =+⋅-.----------------------------------11分又因为220044x y +=,00y ≠,所以002012||2||APQ AMN S S y y y ∆∆+=+⋅002=2||4||y y +≥. -----------13分 当且仅当01y =±取等号,所以APQ AMN S S ∆∆+的最小值为4.----------14分(21)解:(Ⅰ)由已知得2()e (21)x f x ax ax '=++, ---------------------------------2分因为(0)1f = ,(0)1f ¢=, ---------------------------------4分 所以直线l 的方程为1y x =+. ---------------------------------5分 (Ⅱ)(i )当01a <?时,2221(1)10ax ax a x a ++=++-≥,所以2()e (21)0x f x ax ax '=++≥(当且仅当1a =且1x =-时,等号成立). 所以()f x 在R 上是单调递增函数. ---------------------------------6分 所以()f x 在R 上无极小值. ---------------------------------7分 (ii )当1a >时,一元二次方程2210ax ax ++=的判别式4(1)0a a ∆=->,---------------------------------8分记12,x x 是方程的两个根,不妨设12x x <.则121220,10.x x x x a +=-<⎧⎪⎨=>⎪⎩所以120x x <<. ---------------------------------9分 此时()f x ',()f x 随x 的变化如下:x1(,)x -?1x12(,)x x2x 2(,)x +?()f x '+0 -+()f x↗极大值↘极小值↗所以()f x 的极小值为2()f x . --------------------------------11分 又因为()f x 在2[,0]x 单调递增, ---------------------------------12分 所以2()(0)1f x f <=. ---------------------------------13分 所以()f x 的极小值为小于1.22. 解:(Ⅰ)由题知:1(33)(23)1m =+-+=; ---------------------------------1分 2(33)(31)2m =+-+=; ---------------------------------2分33m =. ---------------------------------3分 5A 的特征值为1. ---------------------------------4分(Ⅱ)||=i j m m -||i j x x -. ---------------------------------5分理由如下:由于[(1)][(1)]0i n j n -+-+≥,可分下列两种情况讨论:○1当,{1,2,,1}i j n ∈+时,根据定义可知:212211()()i n n n n n i m x x x x x x x +++=+++-+++- 212211 =()()n n n n n i x x x x x x x ++++++-++++同理可得:212211=()()j n n n n n j m x x x x x x x ++++++-++++所以i j i j m m x x -=-.所以||=||i j i j m m x x --. ---------------------------------7分○2当,{1,2,,21}i j n n n ∈+++时,同○1理可得: 212111()()i n n n i n n m x x x x x x x ++-=+++--+++212111 =()()n n n n n i x x x x x x x ++-+++-+++-212111=()()j n n n n n j m x x x x x x x ++-+++-+++-所以i j j i m m x x -=-.所以||=||i j i j m m x x --. ---------------------------------9分 综上有:||=i j m m -||i j x x -.(Ⅲ)不妨设1221n x x x +≤≤≤,121||i j i j n x x ≤<≤+-∑=2122112(22)2022n n n n n nx n x x x x nx ++++-+++⋅---2112222()(22)()2()n n n n n x x n x x x x ++=-+--++-,-------------------10分显然,211222n n n n x x x x x x ++-≥-≥≥-,212211()n n n n n x x x x x x ++-+++-+++121221()()n n n n x x x x x m ++≥++-+++=.当且仅当121n n x x ++=时取等号; 212211()n n n n n x x x x x x ++-+++-+++ 221231()()n n n x x x x x m+++≥++-+++= 当且仅当11n x x +=时取等号;由(Ⅱ)可知121,n m m +的较小值为1n -, 所以212211()1n n n n n x x x x x x n ++-+++-+++≥-.当且仅当1121n n x x x ++==时取等号,此时数列21n A +为常数列,其特征值为0,不符合题意,则必有 212211()n n n n n x xx x x x n ++-+++-+++≥. --------------------------11分下证:若0p q ≥≥,2k n ≤≤,总有(22)(1)()n k p kq n p q +-+≥++.证明:(22)(1)()n k p kq n p q +-+-++ =(1)(1)n k p n k q +--+- (1)()n k p q =+--0≥.所以(22)(1)()n k p kq n p q +-+≥++. --------------------------12分因此121||i j i j n x x ≤<≤+-∑2112222()(22)()2()n n n n n x x n x x x x ++=-+--++-212211(1)()n n n n n n x x x x x x ++-≥++++----(1)n n ≥+. --------------------------13分当0,1,1,121,k k n x n k n ≤≤⎧=⎨+≤≤+⎩时,121||i j i j n x x ≤<≤+-∑可取到最小值(1)n n +,符合题意.所以121||i j i j n x x ≤<≤+-∑的最小值为(1)n n +.---------------------------------14分。
北京市海淀区2019-2020学年高一上学期期末考试数学试题含答案

海淀区高一年级第一学期期末练习数学一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,3,5A =,()(){}130B x x x =--=,则A B =( )A .∅B .{}1C .{}3D .{}1,3 2.2sin 3π⎛⎫-= ⎪⎝⎭( ) A .32-B .12-C .32D .123.若幂函数()y f x =的图象经过点()2,4-,则()f x 在定义域内( ) A .为增函数 B .为减函数 C .有最小值 D .有最大值 4.下列函数为奇函数的是( )A .2xy = B .[]sin ,0,2y x x π=∈ C .3y x = D .lg y x =5.如图,在平面内放置两个相同的直角三角板,其中30A ∠=︒,且,,B C D 三点共线,则下列结论不成立的是( ) A .3CD BC =B .0CA CE ⋅=C .AB 与DE 共线D .CA CB CE CD ⋅=⋅6.函数()f x 的图象如图所示,为了得到函数2sin y x =的图象,可以把函数()f x 的图象( )A .每个点的横坐标缩短到原来的12(纵坐标不变),再向左平移3π个单位 B .每个点的横坐标缩短到原来的2倍(纵坐标不变),再向左平移6π个单位C .先向左平移6π个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)D .先向左平移3π个单位,再把所得各点的横坐标伸长到原来的12(纵坐标不变)7.已知()21log 2xf x x ⎛⎫=- ⎪⎝⎭,若实数,,a b c 满足0a b c <<<,且()()()0f a f b f c <,实数0x 满足()00f x =,那么下列不等式中,一定成立的是( )A .0x a <B .0x a >C .0x c <D .0x c >8.如图,以AB 为直径在正方形ABCD 内部作半圆O ,P 为半圆上与,A B 不重合的一动点,下面关于PA PB PC PD +++的说法正确的是( )A .无最大值,但有最小值B .既有最大值,又有最小值C .有最大值,但无最小值D .既无最大值,又无最小值二、填空题(每题4分,满分24分,将答案填在答题纸上)9.已知向量()1,2a =,写出一个与a 共线的非零向量的坐标 . 10.已知角θ的终边过点()3,4-,则cos θ= .11.向量,a b 在边长为1的正方形网格中的位置如图所示,则a b ⋅= .12.函数()2,,,0.x x t f x x x t ⎧≥=⎨<<⎩()0t >是区间()0,+∞上的增函数,则t 的取值范围是 .13.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从 年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:lg 20.3010≈,lg30.4771≈) 14.已知函数()sin f x x ω=在区间0,6π⎛⎫⎪⎝⎭上是增函数,则下列结论正确的是 (将所有符合题意的序号填在横线上). ①函数()sin f x x ω=在区间,06π⎛⎫-⎪⎝⎭上是增函数; ②满足条件的正整数ω的最大值为3; ③412f f ππ⎛⎫⎛⎫≥⎪ ⎪⎝⎭⎝⎭. 三、解答题 (本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.) 15.已知向量()sin ,1a x =,()1,b k =,()f x a b =⋅. (Ⅰ)若关于x 的方程()1f x =有解,求实数k 的取值范围; (Ⅱ)若()13f k α=+且()0,απ∈,求tan α. 16.已知二次函数()2f x x bx c =++满足()()133f f ==-. (Ⅰ)求,b c 的值;(Ⅱ)若函数()g x 是奇函数,当0x ≥时,()()g x f x =, (ⅰ)直接写出()g x 的单调递减区间: ; (ⅱ)若()g a a >,求a 的取值范围.17.某同学用“五点法”画函数()sin y A x ωϕ=+0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭在某一周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,函数()f x 的解析式()f x = (直接写出结果即可) (Ⅱ)求函数()f x 的单调递增区间; (Ⅲ)求函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 18.定义:若函数()f x 的定义域为R ,且存在非零常数T ,对任意x ∈R ,()()f x T f x T +=+恒成立,则称()f x 为线周期函数,T 为()f x 的线周期.(Ⅰ)下列函数①2xy =,②2log y x =,③[]y x =(其中[]x 表示不超过x 的最大整数),是线周期函数的是 (直接填写序号);(Ⅱ)若()g x 为线周期函数,其线周期为T ,求证:函数()()G x g x x =-为周期函数; (Ⅲ)若()sin x x kx ϕ=+为线周期函数,求k 的值.海淀区高一年级第一学期期末练习参考答案数学一、选择题1-4:DACC 5-8:DCBA 二、填空题9.答案不唯一,纵坐标为横坐标2倍即可,例如()2,4等 10.3511.3 12.1t ≥ 13.2021 14.①②③ 三、解答题15.解:(Ⅰ)∵向量()sin ,1a x =,()1,b k =,()f x a b =⋅, ∴()sin f x a b x k =⋅=+.关于x 的方程()1f x =有解,即关于x 的方程sin 1x k =-有解. ∵[]sin 1,1x ∈-,∴当[]11,1k -∈-时,方程有解. 则实数k 的取值范围为[]0,2. (Ⅱ)因为()13f k α=+,所以1sin 3k k α+=+,即1sin 3α=.当0,2πα⎛⎤∈ ⎥⎝⎦时,cos 3α==,sin tan cos 4ααα==.当,2παπ⎛⎫∈⎪⎝⎭时,cos 3α==-,tan 4α=-. 16.解:(Ⅰ)4b =-;0c =.(Ⅱ)(ⅰ)[]2,2-.(ⅱ)由(Ⅰ)知()24f x x x =-,则当0x ≥时,()24g x x x =-;当0x <时,0x ->,则()()()2244g x x x x x -=---=+ 因为()g x 是奇函数,所以()()24g x g x x x =--=--.若()g a a >,则20,4,a a a a >⎧⎨->⎩或20,4,a a a a ≤⎧⎨-->⎩ 解得5a >或50a -<<.综上,a 的取值范围为5a >或50a -<<. 17.解:(Ⅰ)解析式为:()2sin 26f x x π⎛⎫=+⎪⎝⎭(Ⅱ)函数()f x 的单调递增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(Ⅲ)因为02x π-≤≤,所以52666x πππ-≤+≤. 得:11sin 262x π⎛⎫-≤+≤ ⎪⎝⎭. 所以,当262x ππ+=-即3x π=-时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值为-2. 当266x ππ+=即0x =时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值为1. 18.解:(Ⅰ)③(Ⅱ)证明:∵()g x 为线周期函数,其线周期为T ,∴存在非零常数T ,对任意x ∈R ,()()g x T g x T -=+恒成立. ∵()()G x g x x =-,∴()()()G x T g x T x T +=+-+=()()()()g x T x T g x x G x +-+=-=. ∴()()G x g x x =-为周期函数.(Ⅲ)∵()sin x x kx ϕ=+为线周期函数,∴存在非零常数T ,对任意x ∈R ,()()sin sin x T k x T x kx T +++=++. ∴()sin sin x T kT x T ++=+.令0x =,得sin T kT T +=;…………① 令x π=,得sin T kT T -+=;…………② ①②两式相加,得22kT T =. ∵0T ≠, ∴1k =. 检验:当2k =时,()sin x x x ϕ=+.存在非零常数2π,对任意x ∈R ,()()2sin 22x x x ϕπππ+=+++=()sin 22x x x πϕπ++=+,∴()sin x x x ϕ=+为线周期函数. 综上,1k =.。
北京市海淀区2019-2020学年高一年级第一学期期末调研数学试题和答案(原版)

北京市海淀区2019-2020学年高一年级第一学期期末调研数 学2020.01学校 班级 姓名 成绩一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{|12},{0,1,2}A x x B =−<<= ,则AB = ( )A. {0}B. {01},C. {012},,D. {1,012}−,, (2)不等式|1|2x −≤的解集是 ( )A. {|3}x x ≤B. {|13}x x ≤≤C.{|13}x x −≤≤D. {|33}x x −≤≤ (3)下列函数中,既是偶函数,又在(0,)+∞上是增函数的是( )A. 1y x=B.2x y =C.y =D.ln y x = (4)某赛季甲、乙两名篮球运动员各参加了13场比赛,得分情况用茎叶图表示如下:根据上图对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 ( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的中位数大于乙运动员得分的中位数 C .甲运动员得分的平均值大于乙运动员得分的平均值 D .甲运动员的成绩比乙运动员的成绩稳定 (5)已知,a b ∈R ,则“a b >”是“1ab>”的 ( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(6)已知函数22,2,()3, 2.x f x x x x ⎧≥⎪=⎨⎪−<⎩若关于x 的函数()y f x k =−有且只有三个不同的零点,则实数k 的取值范围是 ( ) A.(3,1)− B. (0,1) C. (]3,0− D. (0,)+∞(7)“函数()f x 在区间[1,2]上不是..增函数”的一个充要条件是 ( ) A. 存在(1,2)a ∈满足()(1)f a f ≤ B. 存在(1,2)a ∈满足()(2)f a f ≥ C. 存在,[1,2]a b ∈且a b <满足()()f a f b = D. 存在,[1,2]a b ∈且a b <满足()()f a f b ≥ (8)区块链作为一种革新的技术,已经被应用于许多领域,包括金融、政务服务、供应链、版权和专利、能源、物联网等. 在区块链技术中,若密码的长度设定为256比特,则密码一共有2562种可能,因此,为了破解密码,最坏情况需要进行2562次哈希运算. 现在有一台机器,每秒能进行112.510⨯次哈希运算,假设机器一直正常运转,那么在最坏情况下,这台机器破译密码所需时间大约为 (参考数据lg 20.3010,lg30.477≈≈) ( )A. 734.510⨯秒B. 654.510⨯秒C. 74.510⨯秒D. 28秒二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.(9)函数()(0x f x a a =>且1)a ≠的图象经过点(1,2)−,则a 的值为__________.(10)已知()lg f x x =,则()f x 的定义域为__________,不等式(1)0f x −<的解集为 . (11)已知(1,0)OA =,(1,2)AB =,(1,1)AC =−,则点B 的坐标为_________,CB 的坐标为_________. (12)函数2()2x f x x=−的零点个数为_______,不等式()0f x >的解集为_____________. (13)某大学在其百年校庆上,对参加校庆的校友做了一项问卷调查,发现在20世纪最后5年间毕业的校友,他们2018年的平均年收入约为35万元. 由此_____(填“能够”或“不能”)推断该大学20世纪最后5年间的毕业生,2018年的平均年收入约为35万元,理由是_________________________ _______________________________________________________.(14)对于正整数k ,设函数()[][]k f x kx k x =−,其中[]a 表示不超过a 的最大整数.①则22()3f =_______;②设函数24()()()g x f x f x =+,则在函数()g x 的值域中所含元素的个数是____________.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共11分)某校2019级高一年级共有学生195人,其中男生105人,女生90人. 基于目前高考制度的改革,为了预估学生“分科选考制”中的学科选择情况,该校对2019级高一年级全体学生进行了问卷调查. 现采用按性别分层抽样的方法,从中抽取13份问卷.已知问卷中某个必答题的选项分别为“同意”和“不同意”,下面表格记录了抽取的这13份问卷中此题的答题情况.(Ⅰ)写出a ,b 的值;(Ⅱ)根据上表的数据估计2019级高一年级学生该题选择“同意”的人数;(Ⅲ)从被抽取的男生问卷中随机选取2份问卷,对相应的学生进行访谈,求至少有一人选择“同意”的概率.(16)(本小题共11分)已知函数2()23f x ax ax =−−.(Ⅰ)若1a =,求不等式()0f x ≥的解集;(Ⅱ)已知0a >,且()0f x ≥在[3,)+∞上恒成立,求a 的取值范围;(Ⅲ)若关于x 的方程()0f x =有两个不相等的正.实数根12,x x ,求2212x x +的取值范围.(17)(本小题共12分)如图,在射线,,OA OB OC 中,相邻两条射线所成的角都是120,且线段OA OB OC ==. 设OP xOA yOB =+.(Ⅰ)当2,1x y ==时,在图1中作出点P 的位置(保留作图的痕迹);(Ⅱ)请用,x y 写出“点P 在射线OC 上”的一个充要条件:_________________________________;(Ⅲ)设满足“24x y +=且0xy ≥”的点P 所构成的图形为G ,①图形G 是_________;A. 线段B. 射线C. 直线D. 圆 ②在图2中作出图形G .(18)(本小题共10分)已知函数()f x 的图象在定义域(0,)+∞上连续不断.若存在常数0T >,使得对于任意的0x >,()()f Tx f x T =+恒成立,称函数()f x 满足性质()P T .(Ⅰ)若()f x 满足性质(2)P ,且(1)0f =,求1(4)()4f f +的值;(Ⅱ)若 1.2()log f x x =,试说明至少存在两个不等的正数12,T T ,同时使得函数()f x 满足性质1()P T 和2()P T . (参考数据:41.2 2.0736=)(Ⅲ)若函数()f x 满足性质()P T ,求证:函数()f x 存在零点.1图2图附加题:(本题满分5分. 所得分数可计入总分,但整份试卷得分不超过100分)在工程实践和科学研究中经常需要对采样所得的数据点进行函数拟合.定义数据点集为平面点集{(,)|1,2,,}i i i S P x y i N ==(N ∈N +),寻找函数y =()f x 去拟合数据点集S ,就是寻找合适的函数,使其图象尽可能地反映数据点集中元素位置的分布趋势. (Ⅰ)下列说法正确的是_________.(写出所有正确说法对应的序号) A. 对于任意的数据点集S ,一定存在某个函数,其图象可以经过每一个数据点 B. 存在数据点集S ,不存在函数使其图象经过每一个数据点C. 对于任意的数据点集S ,一定存在某个函数,使得这些数据点均位于其图象的一侧D. 拟合函数的图象所经过的数据点集S 中元素个数越多,拟合的效果越好(Ⅱ)衡量拟合函数是否恰当有很多判断指标,其中有一个指标叫做“偏置度δ”,用以衡量数据点集在拟合函数图象周围的分布情况. 如图所示,对于数据点集{}123,,P P P ,在如下的两种“偏置度δ”的定义中,使得函数1()f x 的偏置度大于函数2()f x 的偏置度的序号为 ________;① 1112221=(,())(,())(,())(,())niiin n n i x y f x x yf x x y f x x y f x δ=−=−+−++−∑;②1112221=|(,())||(,())||(,())||(,())|ni i i n n n i x y f x x y f x x y f x x y f x δ=−=−+−++−∑.(其中|(,)|x y 代表向量w (,)x y =的模长) (Ⅲ)对于数据点集()()()(){}0,0,1,1,1,1,2,2S =−,用形如()f x ax b =+的函数去拟合.当拟合函数()f x ax b =+满足(Ⅱ)中你所选择的“偏置度δ”达到最小时,该拟合函数的图象必过点_______.(填点的坐标)北京市海淀区2109-2020学年高一年级期末统一练习数 学参考答案及评分标准 2020.01一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分. (9) (10) ; (11); (12)1 ;(,0)(1,)−∞+∞(13)不能;参加校庆的校友年收入不能代表全体毕业生的年收入 (14) 1;4注:两空的题,每空2分;三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15) (Ⅰ) 由题意可得 ; ..........2分; ..........4分(Ⅱ) 估计2019级高一年级学生该题选择“同意”的人数为 ; ..........7分(Ⅲ) 如果访谈学生中选择“同意”则记为1,如果选择“不同意”则记为0,列举如下:..........9分共有76=42⨯种等可能的结果,其中至少有一人选择“同意”的有42636−=种,..........10分记“访谈学生中至少有一人选择‘同意’”为事件,则366()427P A == ..........11分(16) (Ⅰ) 当1a =时,由2()230f x x x =−−≥解得{|31}x x x ≥或≤-. .........3分(Ⅱ) 当0a >时,二次函数2()23f x ax ax =−−开口向上,对称轴为1x =,所以()f x 在[3,)+∞上单调递增, ...........5分 要使()0f x ≥在[3,)+∞上恒成立,只需(3)9630f a a =−−≥, ...........6分 所以a 的取值范围是{|1}a a ≥ ...........7分 (Ⅲ) 因为()0f x =有两个不相等的正.实数根12,x x , 所以21212041202030a a a x x x x a ≠⎧⎪∆=+>⎪⎪⎨+=>⎪⎪=−>⎪⎩, ..........8分解得3a <−,所以a 的取值范围是{|3}a a <−. ..........9分 因为2221212126()24x x x x x x a+=+−=+, ..........10分 所以,2212x x +的取值范围是(2,4). ..........11分(17) (Ⅰ)图中点P 即为所求. ...........4分(Ⅱ) x y =且0,0x y ≤≤ ; ...........7分 说明:如果丢掉了“0,0x y ≤≤”,(Ⅱ)给2分(Ⅲ) ① A ; ,..........10分 ②图中线段DE 即为所求. ...........12分(18) (Ⅰ) 因为满足性质,所以对于任意的,(2)()2f x f x =+恒成立. 又因为(1)0f =,所以,(2)(1)22f f =+=, ...........1分(4)(2)24f f =+=, ...........2分由1(1)()22f f =+可得1()(1)222f f =−=−,由11()()+224f f =可得11()()2442f f =−=−, .........3分所以,1(4)()04f f +=. ............4分(Ⅱ)若正数T 满足 1.2 1.2log ()log Tx x T =+,等价于 1.2log T T =(或者1.2T T =), 记 1.2()log g x x x =−,(或者设() 1.2(0,)x g x x x =−∈+∞,) .........5分显然(1)0g >, 1.2 1.2 1.2(2)2log 2log 1.44log 20g =−=−<,因为41.22>,所以161.216>, 1.216log 16>,即(16)0g >. ...........6分 因为()g x 的图像连续不断,所以存在12(1,2),(2,16)T T ∈∈,使得12()()0g T g T ==,因此,至少存在两个不等的正数12,T T ,使得函数同时满足性质1()P T 和2()P T . ............7分(Ⅲ) ① 若(1)0f =,则1即为的零点; ...........8分 ② 若(1)0f M =<,则()(1)f T f T =+,2()()(1)2f T f T T f T =+=+,,可得1()()(1)k k f T f T T f kT k −+=+=+∈N ,其中. 取[]1M Mk T T−=+>−即可使得()0k f T M kT =+>. 所以,存在零点. ...........9分③ 若(1)0f M =>,则由1(1)()f f T T =+,可得1()(1)f f T T=−,由211()()f f T T T =+,可得211()()(1)2f f T f T T T=−=−,,由111()()k k f f T TT −=+,可得111()()(1)k k f f T f kT k T T +−=−=−∈N ,其中. 取[]1M M k T T =+>即可使得1()0k f M kT T=−<. 所以,存在零点. 综上,存在零点. ...........10分附加题:(本题满分5分. 所得分数可计入总分,但整份试卷得分不超过100分)【答案】(Ⅰ) B、C ...........2分(Ⅱ) ①...........4分(Ⅲ)1(,1)2...........5分注:对于其它正确解法,相应给分.。
最新版北京市海淀区高一上学期期末考试数学试题Word版含答案

海淀区高一年级第一学期期末练习数学一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,3,5A =,()(){}130B x x x =--=,则A B =I ( ) A .∅ B .{}1 C .{}3 D .{}1,3 2.2sin 3π⎛⎫-= ⎪⎝⎭( )A ..12- C .123.若幂函数()y f x =的图象经过点()2,4-,则()f x 在定义域内( ) A .为增函数 B .为减函数 C .有最小值 D .有最大值 4.下列函数为奇函数的是( )A .2x y =B .[]sin ,0,2y x x π=∈ C .3y x = D .lg y x = 5.如图,在平面内放置两个相同的直角三角板,其中30A ∠=︒,且,,B C D 三点共线,则下列结论不成立的是( )A .CD =uu u r u rB .0CA CE ⋅=u u r u u rC .AB uu u r 与DE 共线D .CA CB CE CD ⋅=⋅u u r u u r u u r u u u r6.函数()f x 的图象如图所示,为了得到函数2sin y x =的图象,可以把函数()f x 的图象( )A .每个点的横坐标缩短到原来的12(纵坐标不变),再向左平移3π个单位 B .每个点的横坐标缩短到原来的2倍(纵坐标不变),再向左平移6π个单位 C .先向左平移6π个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变) D .先向左平移3π个单位,再把所得各点的横坐标伸长到原来的12(纵坐标不变)7.已知()21log 2xf x x ⎛⎫=- ⎪⎝⎭,若实数,,a b c 满足0a b c <<<,且()()()0f a f b f c <,实数0x 满足()00f x =,那么下列不等式中,一定成立的是( ) A .0x a < B .0x a > C .0x c < D .0x c >8.如图,以AB 为直径在正方形ABCD 内部作半圆O ,P 为半圆上与,A B 不重合的一动点,下面关于PA PB PC PD +++uu r uu r uu u r uu u r的说法正确的是( )A .无最大值,但有最小值B .既有最大值,又有最小值C .有最大值,但无最小值D .既无最大值,又无最小值二、填空题(每题4分,满分24分,将答案填在答题纸上)9.已知向量()1,2a =r,写出一个与a r 共线的非零向量的坐标 .10.已知角θ的终边过点()3,4-,则cos θ= .11.向量,a b r r 在边长为1的正方形网格中的位置如图所示,则a b ⋅=r r.12.函数()2,,,0.x x t f x x x t ⎧≥=⎨<<⎩()0t >是区间()0,+∞上的增函数,则t 的取值范围是 .13.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从 年开始,快递业产生的包装垃圾超过4000万吨. (参考数据:lg 20.3010≈,lg30.4771≈) 14.已知函数()sin f x x ω=在区间0,6π⎛⎫⎪⎝⎭上是增函数,则下列结论正确的是 (将所有符合题意的序号填在横线上). ①函数()sin f x x ω=在区间,06π⎛⎫-⎪⎝⎭上是增函数; ②满足条件的正整数ω的最大值为3; ③412f f ππ⎛⎫⎛⎫≥⎪ ⎪⎝⎭⎝⎭. 三、解答题 (本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)15.已知向量()sin ,1a x =r ,()1,b k =r ,()f x a b =⋅r r .(Ⅰ)若关于x 的方程()1f x =有解,求实数k 的取值范围; (Ⅱ)若()13f k α=+且()0,απ∈,求tan α. 16.已知二次函数()2f x x bx c =++满足()()133f f ==-. (Ⅰ)求,b c 的值;(Ⅱ)若函数()g x 是奇函数,当0x ≥时,()()g x f x =, (ⅰ)直接写出()g x 的单调递减区间: ;(ⅱ)若()g a a >,求a 的取值范围.17.某同学用“五点法”画函数()sin y A x ωϕ=+0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭在某一周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,函数()f x 的解析式()f x = (直接写出结果即可)(Ⅱ)求函数()f x 的单调递增区间; (Ⅲ)求函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 18.定义:若函数()f x 的定义域为R ,且存在非零常数T ,对任意x ∈R ,()()f x T f x T +=+恒成立,则称()f x 为线周期函数,T 为()f x 的线周期.(Ⅰ)下列函数①2xy =,②2l o gy x =,③[]y x =(其中[]x 表示不超过x 的最大整数),是线周期函数的是 (直接填写序号);(Ⅱ)若()g x 为线周期函数,其线周期为T ,求证:函数()()G x g x x =-为周期函数; (Ⅲ)若()sin x x kx ϕ=+为线周期函数,求k 的值.海淀区高一年级第一学期期末练习参考答案数学一、选择题1-4:DACC 5-8:DCBA 二、填空题9.答案不唯一,纵坐标为横坐标2倍即可,例如()2,4等 10.3511.3 12.1t ≥ 13.2021 14.①②③ 三、解答题15.解:(Ⅰ)∵向量()sin ,1a x =r ,()1,b k =r ,()f x a b =⋅r r, ∴()sin f x a b x k =⋅=+r r.关于x 的方程()1f x =有解,即关于x 的方程sin 1x k =-有解. ∵[]sin 1,1x ∈-,∴当[]11,1k -∈-时,方程有解. 则实数k 的取值范围为[]0,2. (Ⅱ)因为()13f k α=+,所以1sin 3k k α+=+,即1sin 3α=.当0,2πα⎛⎤∈ ⎥⎝⎦时,cos 3α==,sin tan cos 4ααα==.当,2παπ⎛⎫∈⎪⎝⎭时,cos α==,tan α=. 16.解:(Ⅰ)4b =-;0c =.(Ⅱ)(ⅰ)[]2,2-.(ⅱ)由(Ⅰ)知()24f x x x =-,则当0x ≥时,()24g x x x =-;当0x <时,0x ->,则()()()2244g x x x x x -=---=+因为()g x 是奇函数,所以()()24g x g x x x =--=--.若()g a a >,则20,4,a a a a >⎧⎨->⎩或20,4,a a a a ≤⎧⎨-->⎩ 解得5a >或50a -<<.综上,a 的取值范围为5a >或50a -<<. 17.解:(Ⅰ)解析式为:()2sin 26f x x π⎛⎫=+⎪⎝⎭(Ⅱ)函数()f x 的单调递增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(Ⅲ)因为02x π-≤≤,所以52666x πππ-≤+≤. 得:11sin 262x π⎛⎫-≤+≤ ⎪⎝⎭. 所以,当262x ππ+=-即3x π=-时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值为-2. 当266x ππ+=即0x =时,()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值为1. 18.解:(Ⅰ)③(Ⅱ)证明:∵()g x 为线周期函数,其线周期为T ,∴存在非零常数T ,对任意x ∈R ,()()g x T g x T -=+恒成立. ∵()()G x g x x =-,∴()()()G x T g x T x T +=+-+=()()()()g x T x T g x x G x +-+=-=.∴()()G x g x x =-为周期函数.(Ⅲ)∵()sin x x kx ϕ=+为线周期函数,∴存在非零常数T ,对任意x ∈R ,()()sin sin x T k x T x kx T +++=++. ∴()sin sin x T kT x T ++=+.令0x =,得sin T kT T +=;…………① 令x π=,得sin T kT T -+=;…………② ①②两式相加,得22kT T =. ∵0T ≠, ∴1k =. 检验:当2k =时,()sin x x x ϕ=+. 存在非零常数2π,对任意x ∈R ,()()2sin 22x x x ϕπππ+=+++=()sin 22x x x πϕπ++=+,∴()sin x x x ϕ=+为线周期函数. 综上,1k =.。
3_2019北京海淀高一(上)期末数学

如图,在四边形 OBCD 中, CD 2BO , OA 2 AD , D 90 ,且 BO AD 1 .
(Ⅰ)用 OA,OB 表示 CB ; (Ⅱ)点 P 在线段 AB 上,且 AB 3AP ,求 cos PCB 的值 .
C
B
P
O
A
D
3 / 11
(18) (本小题共 12 分)
2019 北京海淀高一(上)期末 数学
2019.01
学校班级姓名 成绩
一、选择题:本大题共 8 小题,每小题 4 分,共 32 分. 在每小题给出的四个选项中,只有一项是符合题目要求的
.
( 1)已知集合 A {1,2} , B { x | 0 x 2} ,则 A B
()
( A) {1}
( B) {1,2}
OA,OP .
( 14)已知函数 f ( x)
2x 1,
x a,
x2 2a, x a.
B P
(Ⅰ)若函数 f ( x) 没有零点,则实数 a 的取值范围是
O
A ________;
(Ⅱ)称实数 a 为函数 f ( x) 的包容数,如果函数 f ( x2 ) f ( x1) .
f ( x)0 x 2}
( 2)已知向量 a (m,6) , b ( 1,3) ,且 a b ,则 m
()
( A) 18
( B) 2
( C) 18
(D) 2
( 3)下列函数中,既是奇函数又在 (0, ) 上是增函数的是
( A) f (x) 2 x
3
( B) f (x) x ( C) f ( x) lg x
, a) ,都存在 x2 (a,
) ,使得
2019年-2020学年高一上学期数学期末模拟考试试题(含答案解析)

2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。
北京市海淀区2019-2020学年第一学期高一期末数学试题

高一年级期末统一练习数 学参考答案及评分标准 2020.01一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分. (9)12(10) (0,)+∞;{|12}x x << (11)(22),;(03), (12)1 ;(,0)(1,)-∞+∞(13)不能;参加校庆的校友年收入不能代表全体毕业生的年收入 (14) 1;4注:两空的题,每空2分;三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15) (Ⅰ) 由题意可得 1051343195a =⨯-=; ..........2分 901324195b =⨯-=; ..........4分 (Ⅱ) 估计2019级高一年级学生该题选择“同意”的人数为441059012076⨯+⨯=; ..........7分 (Ⅲ) 如果访谈学生中选择“同意”则记为1,如果选择“不同意”则记为0, 列举如下:..........9分共有76=42⨯种等可能的结果,其中至少有一人选择“同意”的有42636-=种,.........10分记“访谈学生中至少有一人选择‘同意’”为事件A ,则366()427P A ==..........11分(16) (Ⅰ) 当1a =时,由2()230f x x x =--≥解得{|31}x x x ≥或≤-. .........3分(Ⅱ) 当0a >时,二次函数2()23f x ax ax =--开口向上,对称轴为1x =,所以()f x 在[3,)+∞上单调递增, ...........5分 要使()0f x ≥在[3,)+∞上恒成立,只需(3)9630f a a =--≥, ...........6分 所以a 的取值范围是{|1}a a ≥..........7分(Ⅲ) 因为()0f x =有两个不相等的正.实数根12,x x , 所以21212041202030a a a x x x x a ≠⎧⎪∆=+>⎪⎪⎨+=>⎪⎪=->⎪⎩, .........8分解得3a <-,所以a 的取值范围是{|3}a a <-. ..........9分 因为2221212126()24x x x x x x a+=+-=+, ..........10分 所以,2212x x +的取值范围是(2,4). .........11分(17) (Ⅰ)图中点P 即为所求. ...........4分(Ⅱ) x y =且0,0x y ≤≤; ..........7分 说明:如果丢掉了“0,0x y ≤≤”,(Ⅱ)给2分 (Ⅲ) ① A ; ,......................................................................................................................................10分②图中线段DE 即为所求. ...........12分(18) (Ⅰ) 因为()f x 满足性质(2)P ,所以对于任意的0x >,(2)()2f x f x =+恒成立. 又因为(1)0f =,所以,(2)(1)22f f =+=, ...........1分(4)(2)24f f =+=, ...........2分由1(1)()22f f =+可得1()(1)222f f =-=-,由11()()+224f f =可得11()()2442f f =-=-, ........3分所以,1(4)()04f f +=. ...........4分(Ⅱ)若正数T 满足 1.2 1.2log ()log Tx x T =+,等价于 1.2log T T =(或者1.2T T =), 记 1.2()log g x x x =-,(或者设() 1.2(0,)x g x x x =-∈+∞,) .........5分显然(1)0g >, 1.2 1.2 1.2(2)2log 2log 1.44log 20g =-=-<,因为41.22>,所以161.216>, 1.216log 16>,即(16)0g >. ..........6分 因为()g x 的图像连续不断,所以存在12(1,2),(2,16)T T ∈∈,使得12()()0g T g T ==,因此,至少存在两个不等的正数12,T T ,使得函数()f x 同时满足性质1()P T 和2()P T . ...........7分 (Ⅲ) ① 若(1)0f =,则1即为()f x 的零点; ...........8分② 若(1)0f M =<,则()(1)f T f T =+,2()()(1)2f T f T T f T =+=+,,可得1()()(1)k k f T f T T f kT k -+=+=+∈N ,其中.取[]1M Mk T T-=+>-即可使得()0k f T M kT =+>. 所以,()f x 存在零点. ...........9分 ③ 若(1)0f M =>,则由1(1)()f f T T =+,可得1()(1)f f T T =-,由211()()f f T T T =+,可得211()()(1)2f f T f T T T =-=-,,由111()()k k f f T TT -=+,可得111()()(1)k k f f T f kT k T T+-=-=-∈N ,其中. 取[]1M M k T T =+>即可使得1()0k f M kT T=-<. 所以,()f x 存在零点.综上,()f x存在零点. ...........10分附加题:(本题满分5分. 所得分数可计入总分,但整份试卷得分不超过100分)【答案】(Ⅰ) B、C ..........2分(Ⅱ) ①...........4分(Ⅲ)1(,1)2...........5分注:对于其它正确解法,相应给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高一年级第一学期期末调研数 学2020.01学校 班级 姓名 成绩一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{|12},{0,1,2}A x x B =-<<= ,则AB = ( )A. {0}B. {01},C. {012},,D. {1,012}-,, (2)不等式|1|2x -≤的解集是 ( )A. {|3}x x ≤B. {|13}x x ≤≤C.{|13}x x -≤≤D. {|33}x x -≤≤ (3)下列函数中,既是偶函数,又在(0,)+∞上是增函数的是 ( )A. 1y x=B.2x y =C.y =D.ln y x = (4)某赛季甲、乙两名篮球运动员各参加了13场比赛,得分情况用茎叶图表示如下:...的是 ( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的中位数大于乙运动员得分的中位数 C .甲运动员得分的平均值大于乙运动员得分的平均值 D .甲运动员的成绩比乙运动员的成绩稳定 (5)已知,a b ∈R ,则“a b >”是“1ab>”的 ( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(6)已知函数22,2,()3, 2.x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的函数()y f x k =-有且只有三个不同的零点,则实数k 的取值范围是 ( ) A.(3,1)- B. (0,1) C. (]3,0- D. (0,)+∞(7)“函数()f x 在区间[1,2]上不是..增函数”的一个充要条件是 ( ) A. 存在(1,2)a ∈满足()(1)f a f ≤ B. 存在(1,2)a ∈满足()(2)f a f ≥ C. 存在,[1,2]a b ∈且a b <满足()()f a f b = D. 存在,[1,2]a b ∈且a b <满足()()f a f b ≥ (8)区块链作为一种革新的技术,已经被应用于许多领域,包括金融、政务服务、供应链、版权和专利、能源、物联网等. 在区块链技术中,若密码的长度设定为256比特,则密码一共有2562种可能,因此,为了破解密码,最坏情况需要进行2562次哈希运算. 现在有一台机器,每秒能进行112.510⨯次哈希运算,假设机器一直正常运转,那么在最坏情况下,这台机器破译密码所需时间大约为 (参考数据lg 20.3010,lg30.477≈≈) ( )A. 734.510⨯秒B. 654.510⨯秒C. 74.510⨯秒D. 28秒 二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.(9)函数()(0x f x a a =>且1)a ≠的图象经过点(1,2)-,则a 的值为__________.(10)已知()lg f x x =,则()f x 的定义域为__________,不等式(1)0f x -<的解集为 . (11)已知(1,0)OA =,(1,2)AB =,(1,1)AC =-,则点B 的坐标为_________,CB 的坐标为_________.(12)函数2()2x f x x=-的零点个数为_______,不等式()0f x >的解集为_____________.(13)某大学在其百年校庆上,对参加校庆的校友做了一项问卷调查,发现在20世纪最后5年间毕业的校友,他们2018年的平均年收入约为35万元. 由此_____(填“能够”或“不能”)推断该大学20世纪最后5年间的毕业生,2018年的平均年收入约为35万元,理由是_________________________ _______________________________________________________.(14)对于正整数k ,设函数()[][]k f x kx k x =-,其中[]a 表示不超过a 的最大整数.①则22()3f =_______;②设函数24()()()g x f x f x =+,则在函数()g x 的值域中所含元素的个数是____________.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共11分)某校2019级高一年级共有学生195人,其中男生105人,女生90人. 基于目前高考制度的改革,为了预估学生“分科选考制”中的学科选择情况,该校对2019级高一年级全体学生进行了问卷调查. 现采用按性别分层抽样的方法,从中抽取13份问卷.已知问卷中某个必答题的选项分别为“同意”和“不同意”,下面表格记录了抽取的这13份问卷中此题的答题情况.(Ⅰ)写出a ,b 的值;(Ⅱ)根据上表的数据估计2019级高一年级学生该题选择“同意”的人数;(Ⅲ)从被抽取的男生问卷中随机选取2份问卷,对相应的学生进行访谈,求至少有一人选择“同意”的概率.(16)(本小题共11分)已知函数2()23f x ax ax =--.(Ⅰ)若1a =,求不等式()0f x ≥的解集;(Ⅱ)已知0a >,且()0f x ≥在[3,)+∞上恒成立,求a 的取值范围;(Ⅲ)若关于x 的方程()0f x =有两个不相等的正.实数根12,x x ,求2212x x +的取值范围.(17)(本小题共12分)如图,在射线,,OA OB OC 中,相邻两条射线所成的角都是120,且线段OA OB OC ==. 设OP xOA yOB =+.(Ⅰ)当2,1x y ==时,在图1中作出点P 的位置(保留作图的痕迹);(Ⅱ)请用,x y 写出“点P 在射线OC 上”的一个充要条件:_________________________________;(Ⅲ)设满足“24x y +=且0xy ≥”的点P 所构成的图形为G ,①图形G 是_________;A. 线段B. 射线C. 直线D. 圆 ②在图2中作出图形G .(18)(本小题共10分)已知函数()f x 的图象在定义域(0,)+∞上连续不断.若存在常数0T >,使得对于任意的0x >,()()f Tx f x T =+恒成立,称函数()f x 满足性质()P T .(Ⅰ)若()f x 满足性质(2)P ,且(1)0f =,求1(4)()4f f +的值;(Ⅱ)若 1.2()log f x x =,试说明至少存在两个不等的正数12,T T ,同时使得函数()f x 满足性质1()P T 和2()P T . (参考数据:41.22.0736=)(Ⅲ)若函数()f x 满足性质()P T ,求证:函数()f x 存在零点.1图2图附加题:(本题满分5分. 所得分数可计入总分,但整份试卷得分不超过100分)在工程实践和科学研究中经常需要对采样所得的数据点进行函数拟合.定义数据点集为平面点集{(,)|1,2,,}i i i S P x y i N ==(N ∈N +),寻找函数y =()f x 去拟合数据点集S ,就是寻找合适的函数,使其图象尽可能地反映数据点集中元素位置的分布趋势. (Ⅰ)下列说法正确的是_________.(写出所有正确说法对应的序号) A. 对于任意的数据点集S ,一定存在某个函数,其图象可以经过每一个数据点 B. 存在数据点集S ,不存在函数使其图象经过每一个数据点 C. 对于任意的数据点集S ,一定存在某个函数,使得这些数据点均位于其图象的一侧 D. 拟合函数的图象所经过的数据点集S 中元素个数越多,拟合的效果越好(Ⅱ)衡量拟合函数是否恰当有很多判断指标,其中有一个指标叫做“偏置度δ”,用以衡量数据点集在拟合函数图象周围的分布情况. 如图所示,对于数据点集{}123,,P P P ,在如下的两种“偏置度δ”的定义中,使得函数1()f x 的偏置度大于函数2()f x 的偏置度的序号为 ________;① 1112221=(,())(,())(,())(,())niiin n n i x y f x x y f x x yf x x y f x δ=-=-+-++-∑;② 1112221=|(,())||(,())||(,())||(,())|niiin n n i x y f x x yf x x y f x x y f x δ=-=-+-++-∑.(其中|(,)|x y 代表向量w (,)x y =的模长) (Ⅲ)对于数据点集()()()(){}0,0,1,1,1,1,2,2S =-,用形如()f x ax b =+的函数去拟合.当拟合函数()f x ax b =+满足(Ⅱ)中你所选择的“偏置度δ”达到最小时,该拟合函数的图象必过点_______.(填点的坐标)草稿纸高一年级期末统一练习数 学参考答案及评分标准 2020.01一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分. (9) (10) ; (11); (12)1 ;(,0)(1,)-∞+∞(13)不能;参加校庆的校友年收入不能代表全体毕业生的年收入 (14) 1;4注:两空的题,每空2分;三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15) (Ⅰ) 由题意可得 ; ..........2分; ..........4分(Ⅱ) 估计2019级高一年级学生该题选择“同意”的人数为 ; ..........7分(Ⅲ) 如果访谈学生中选择“同意”则记为1,如果选择“不同意”则记为0,列举如下:..........9分共有76=42⨯种等可能的结果,其中至少有一人选择“同意”的有42636-=种,..........10分记“访谈学生中至少有一人选择‘同意’”为事件,则366()427P A == ..........11分(16) (Ⅰ) 当1a =时,由2()230f x x x =--≥解得{|31}x x x ≥或≤-. .........3分(Ⅱ) 当0a >时,二次函数2()23f x ax ax =--开口向上,对称轴为1x =,所以()f x 在[3,)+∞上单调递增, ...........5分 要使()0f x ≥在[3,)+∞上恒成立,只需(3)9630f a a =--≥, ...........6分 所以a 的取值范围是{|1}a a ≥ ...........7分 (Ⅲ) 因为()0f x =有两个不相等的正.实数根12,x x , 所以21212041202030a a a x x x x a ≠⎧⎪∆=+>⎪⎪⎨+=>⎪⎪=->⎪⎩, ..........8分解得3a <-,所以a 的取值范围是{|3}a a <-. ..........9分 因为2221212126()24x x x x x x a+=+-=+, ..........10分 所以,2212x x +的取值范围是(2,4). ..........11分(17) (Ⅰ)图中点P 即为所求. ...........4分(Ⅱ) x y =且0,0x y ≤≤ ; ...........7分 说明:如果丢掉了“0,0x y ≤≤”,(Ⅱ)给2分 (Ⅲ) ① A ; ,..........10分 ②图中线段DE 即为所求. ...........12分(18) (Ⅰ) 因为满足性质,所以对于任意的,(2)()2f x f x =+恒成立. 又因为(1)0f =,所以,(2)(1)22f f =+=, ...........1分(4)(2)24f f =+=, ...........2分由1(1)()22f f =+可得1()(1)222f f =-=-,由11()()+224f f =可得11()()2442f f =-=-, .........3分所以,1(4)()04f f +=. ............4分(Ⅱ)若正数T 满足 1.2 1.2log ()log Tx x T =+,等价于 1.2log T T =(或者1.2T T =), 记 1.2()log g x x x =-,(或者设() 1.2(0,)x g x x x =-∈+∞,) .........5分显然(1)0g >, 1.2 1.2 1.2(2)2log 2log 1.44log 20g =-=-<,因为41.22>,所以161.216>, 1.216log 16>,即(16)0g >. ...........6分 因为()g x 的图像连续不断,所以存在12(1,2),(2,16)T T ∈∈,使得12()()0g T g T ==,因此,至少存在两个不等的正数12,T T ,使得函数同时满足性质1()P T 和2()P T . ............7分(Ⅲ) ① 若(1)0f =,则1即为的零点; ...........8分 ② 若(1)0f M =<,则()(1)f T f T =+,2()()(1)2f T f T T f T =+=+,,可得1()()(1)k k f T f T T f kT k -+=+=+∈N ,其中.取[]1M Mk T T-=+>-即可使得()0k f T M kT =+>. 所以,存在零点. ...........9分 ③ 若(1)0f M =>,则由1(1)()f f T T =+,可得1()(1)f f T T=-,由211()()f f T T T =+,可得211()()(1)2f f T f T T T =-=-,,由111()()k k f f T TT -=+,可得111()()(1)k k f f T f kT k T T +-=-=-∈N ,其中.取[]1M M k T T =+>即可使得1()0k f M kT T=-<. 所以,存在零点. 综上,存在零点. ...........10分附加题:(本题满分5分. 所得分数可计入总分,但整份试卷得分不超过100分)【答案】(Ⅰ) B、C ...........2分(Ⅱ) ①...........4分(Ⅲ)1(,1)2...........5分注:对于其它正确解法,相应给分.。